On the chord method

In the paper [1], I.K. Argyros considers as divided difference of the mapping $f: X_{1} \rightarrow X_{2}$, where X_{1} and X_{2} are Banach spaces, a linear mapping $[x, y ; f] \in$ $\mathcal{L}\left(X_{1}, X_{2}\right)$ which fulfils the following conditions:
(a) $[x, y ; f](y-x)=f(y)-f(x)$, for every $x, y \in D$, where $D \subseteq X_{1}$ is a subset of X_{1};
(b) there exist the real constants $l_{1} \geq 0, l_{2} \geq 0, l_{3} \geq 0$ and $p \in(0,1]$ such that for every $x, y, u \in D$ the following inequality holds:

$$
\|[y, u ; f]-[x, y ; f]\| \leq l_{1}\|x-u\|^{p}+l_{2}\|x-y\|^{p}+l_{3}\|y-u\|^{p} .
$$

In [1] the hypothesis that the equation:

$$
\begin{equation*}
f(x)=0 \tag{1}
\end{equation*}
$$

admits a simple solution x^{*} in adopted, and conditions for the convergence of the sequence $\left(x_{n}\right)_{n \geq 0}$ generated by the chord method:

$$
\begin{equation*}
x_{n+1}=x_{n}-\left[x_{n-1}, x_{n} ; f\right]^{-1} f\left(x_{n}\right), \quad n=1,2, \ldots, x_{0}, x_{1} \in D_{0} \tag{2}
\end{equation*}
$$

are given.
In a recent paper [2] there is shown that, with the hypotheses considered in [1], the convergence speed of the sequence generated by (22) and the error estimation are featured by the inequality:

$$
\begin{equation*}
\left\|x^{*}-x_{n+1}\right\| \leq \alpha d_{0}^{t_{1}^{n+1}} \tag{3}
\end{equation*}
$$

where α is a precised constant, $0<d_{0}<1$ and t_{1} is the positive root of the equation $t^{2}-t-p$.

We shall admit further down that the divided difference operator fulfils the conditions (a) and (b), and search for supplementary conditions in order to make equation (1) admit a solution x^{*} into a precised domain D_{0} and the sequence $\left(x_{n}\right)_{n \geq 0}$ generated by (2) converge to this solution.

Observe firstly that the identity:

$$
\begin{equation*}
x_{n}-\left[x_{n-1}, x_{n} ; f\right]^{-1} f\left(x_{n}\right)=x_{n-1}-\left[x_{n-1}, x_{n} ; f\right]^{-1} f\left(x_{n-1}\right) \tag{4}
\end{equation*}
$$

holds for every $n=1,2, \ldots$ with the hypothesis that the linear mapping $\left[x_{n-1}, x_{n} ; f\right]$ admits an inverse mapping.

The following identity

$$
\begin{align*}
f\left(x_{n+1}\right)= & f\left(x_{n}\right)+\left[x_{n-1}, x_{n} ; f\right]\left(x_{n+1}-x_{n}\right) \tag{5}\\
& +\left(\left[x_{n}, x_{n+1} ; f\right]-\left[x_{n-1}, x_{n} ; f\right]\right)\left(x_{n+1}-x_{n}\right), \quad n=1,2, \ldots
\end{align*}
$$

Let $B>0, \alpha>0,0<d_{0}<1$, and $x_{0}, x \in X_{1}$. Consider the sphere

$$
\begin{equation*}
U=\left\{x \in X_{1}:\left\|x-x_{0}\right\| \leq \frac{B \alpha d_{0}}{1-d_{0}^{t_{1}-1}}\right\} \tag{6}
\end{equation*}
$$

where $t_{1}=\frac{1+\sqrt{1+4 p}}{2}$ that is, the positive root, the equation:

$$
\begin{equation*}
t^{2}-t-p=0 \tag{7}
\end{equation*}
$$

The following theorem holds:
Theorem 1. If the divided difference $[x, y ; f]$ fulfils the conditions (a) and (b) for every $x, y \in U$ and the following hypotheses:
(1) the mapping $[x, y ; f]$ admits a bounded inverse mapping for every $x, y \in U$, namely there exists a constant $B>0$ such that $\left\|[x, y ; f]^{-1}\right\| \leq$ B
(ii)

$$
\alpha=\frac{1}{B^{(1+p) / p}\left(l_{1}+l_{2}+l_{3}\right)^{1 / p}} ;
$$

(iii)

$$
\left\|x_{1}-x_{0}\right\| \leq B \alpha d_{0}, \quad\left\|f\left(x_{0}\right)\right\| \leq \alpha d_{0}, \quad\left\|f\left(x_{1}\right)\right\| \leq \alpha d_{0}^{t_{1}}
$$

are also fulfilled, then equation (1) has at least one solution $x^{*} \in U$ and the sequence $\left(x_{n}\right)_{n \geq 0}$ generated by $\sqrt{2}$) converges to x^{*}, the convergence speed and the error estimation being featured by the inequality:

$$
\left\|x^{*}-x_{n}\right\| \leq \frac{B \alpha d_{0}^{t_{1}^{n}}}{1-d_{0}^{t_{1}^{1}\left(t_{1}-1\right)}}
$$

Proof. From (2) for $n=1$ we deduce:

$$
\left\|x_{2}-x_{1}\right\| \leq B\left\|f\left(x_{1}\right)\right\| \leq B \alpha d_{0}^{t_{1}}
$$

from which, taking also into account iii. it follows

$$
\begin{aligned}
\left\|x_{2}-x_{0}\right\| & \leq\left\|x_{2}-x_{1}\right\|+\left\|x_{1}-x_{0}\right\| \\
& \leq B \alpha d_{0}^{t_{1}}+B \alpha d_{0} \\
& \leq B \alpha d_{0}\left(1+d_{0}^{t_{1}-1}\right) \\
& <\frac{B \alpha d_{0}}{1-d_{0}^{t_{1}-1}}
\end{aligned}
$$

from which it results that $x_{2} \in U$.
Using the fact that $x_{2} \in U$, the identities (4) and (5), and the inequality a), we obtain

$$
\begin{aligned}
\left\|f\left(x_{2}\right)\right\| & \leq\left\|x_{2}-x_{1}\right\|\left(l_{1}\left\|x_{2}-x_{0}\right\|^{p}+l_{2}\left\|x_{1}-x_{0}\right\|^{p}+l_{3}\left\|x_{2}-x_{1}\right\|^{p}\right) \\
& \leq B\left\|f\left(x_{1}\right)\right\|\left(l_{1} B^{p}\left\|f\left(x_{0}\right)\right\|^{p}+l_{2}\left\|x_{1}-x_{0}\right\|^{p}+l_{3} B^{p}\left\|f\left(x_{1}\right)\right\|^{p}\right) \\
& \leq B \alpha d_{0}^{t_{1}}\left(l_{1} B^{p} \alpha^{p} d_{0}^{p}+l_{2} B^{p} \alpha^{p} d_{0}^{p}+l_{3} B^{p} \alpha^{p} d_{0}^{t_{1}}\right) \\
& \leq B^{p+1} \alpha^{p+1} d_{0}^{t_{1}+p}\left(l_{1}+l_{2}+l_{3} d_{0}^{p\left(t_{1}-1\right)}\right) \\
& =B^{p+1} \alpha^{p+1}\left(l_{1}+l_{2}+l_{3} d_{0}^{p\left(t_{1}-1\right)}\right) d_{0}^{t_{1}^{t_{1}-p} \leq \alpha d_{0}^{t_{1}^{2}}}
\end{aligned}
$$

since $\alpha^{p} B^{p+1}\left(l_{1}+l_{2}+l_{3} d_{0}^{p\left(t_{1}-1\right)}\right) \leq \alpha^{p} B^{p+1}\left(l_{1}+l_{2}+l_{3}\right)<1$.
From the above inequality follows therefore:

$$
\left\|f\left(x_{2}\right)\right\| \leq \alpha d_{0}^{t_{1}^{2}}
$$

Suppose by induction that:
(a') $x_{i} \in U, i=0,1, \ldots, k$;
(b') $\left\|f\left(x_{i}\right)\right\| \leq \alpha d_{0}^{t_{1}^{2}}, i=1,2, \ldots, k$.
Then, for x_{k+1} we have:

$$
\begin{aligned}
& \left\|x_{k+1}-x_{0}\right\| \leq\left\|x_{k+1}-x_{k}\right\|+\left\|x_{k}-x_{k-1}\right\|+\ldots+\left\|x_{1}-x_{0}\right\| \\
& \leq B\left\|f\left(x_{k}\right)\right\|+B\left\|f\left(x_{k-1}\right)\right\|+\ldots+B \alpha d_{0} \\
& \leq B \alpha d_{0}^{t_{1}^{k}}+B \alpha d_{0}^{t_{1}^{k-1}}+\ldots+B \alpha d_{0} \\
& =B \alpha d_{0}\left(1+d_{0}^{t_{1}-1}+d_{0}^{t_{1}^{2}-1}+\ldots+d_{0}^{t_{1}^{k_{1}-1}}\right) \\
& \leq B \alpha d_{0}\left(1+d_{0}^{t_{1}-1}+d_{0}^{2\left(t_{1}-1\right)}+\ldots+d_{0}^{k\left(t_{1}-1\right)}\right) \leq \frac{B \alpha d_{0}}{1-d_{0}^{t_{1}-1}}
\end{aligned}
$$

from which follows that $x_{k+1} \in U$. Proceeding now for x_{k+1}, as in the case of x_{2}, we obtain:

$$
\begin{aligned}
\left\|f\left(x_{k+1}\right)\right\| & \leq B^{p+1} \alpha^{p+1}\left(l_{1}+l_{2}+l_{3} d_{o}^{p t_{1}^{k-1}\left(t_{1}-1\right)}\right) d_{0}^{t_{1}^{k-1}\left(t_{1}+p\right)} \\
& \leq B^{p+1} \alpha^{p+1}\left(l_{1}+l_{2}+l_{3}\right) d_{0}^{t_{1}^{k+1}} \leq \alpha d_{0}^{t_{1}^{k+1}}
\end{aligned}
$$

It results therefore that the relations (a^{\prime}) and (b^{\prime}) hold for every $i \in \mathbb{N}$.
Now we shall show that the sequence $\left(x_{n}\right)_{n \geq 0}$ is fundamental.
Indeed, for every $n, s \in \mathbb{N}$ we have:

$$
\begin{aligned}
\left\|x_{n+s}-x_{n}\right\| & \leq \sum_{k=n}^{n+s-1}\left\|x_{k+1}-x_{k}\right\| \leq \sum_{k=n}^{n+s-1} B\left\|f\left(x_{k}\right)\right\| \leq B \alpha \sum_{k=n}^{n+s-1} d_{0}^{t_{1}^{k}} \\
& =B \alpha d_{0}^{t_{1}^{n}} \sum_{k=n}^{n+s-1} d_{0}^{t_{1}^{k}-t_{1}^{n}}=B \alpha d_{0}^{t_{1}^{n}} \sum_{k=n}^{n-s-1} d_{0}^{t_{1}^{n}\left(t_{1}^{k-n}-1\right)} \\
& \leq B \alpha d_{0}^{t_{1}^{n}} \sum_{k=n}^{n+s-1} d_{0}^{t_{1}^{n}(k-n)\left(t_{1}-1\right)}=B \alpha d_{0}^{t_{1}^{n}} \sum_{k=n}^{n+s-1}\left(d_{0}^{t_{1}^{n}\left(t_{1}-1\right)}\right)^{k-n} \\
& \leq \frac{B \alpha d_{0}^{t_{1}^{n}}}{1-d_{0}^{t_{1}^{n}\left(t_{1}-1\right)}} .
\end{aligned}
$$

By the last inequality and the fact that $0<d_{0}<1$ and $t_{1}>1$ follows that the sequence $\left(x_{n}\right)_{n \geq 2}$ is fundamental. For $s \rightarrow \infty$, from the inequality:

$$
\left\|x_{n+s}-x_{n}\right\| \leq \frac{B \alpha d_{0}^{t_{1}^{n}}}{1-d_{0}^{t_{1}^{n}\left(t_{1}-1\right)}}
$$

follows the inequality:

$$
\left\|x^{*}-x_{n}\right\| \leq \frac{B d d_{0}^{t_{1}^{n}}}{1-d_{0}^{t_{1}^{n}\left(t_{1}-1\right)}} .
$$

In [1] Argyros showed that if the divided difference $[x, y ; f]$ fulfils the conditions (a) and (b) then f is Fréchet differentiable and $[x, x ; f]=f^{\prime}(x)$. From this fact follows that the mapping f is continuous on B : hence at limit for $n \rightarrow \infty$ in the inequality:

$$
\left\|f\left(x_{n}\right)\right\| \leq \alpha d_{0}^{t_{1}^{n}},
$$

one obtains:

$$
\left\|f\left(x^{*}\right)\right\| \leq 0
$$

from which results $f\left(x^{*}\right)=0$. With this the theorem is entirely proved
Remark 2. In [5], 6] Schmidt imposes in the divided difference conditions similar to the conditions (a) and (b) given by Argyros in [1], but for $p=1$. The same conditions are reproduced in [2], too.

References

clickable \rightarrow
clickable \rightarrow
clickable \rightarrow
[1] Argyros, I. K., The secant method and fixed points on nonlinear operators, Mh. Math., 106 (1988), 85-94.
[2] Balázs, M si Goldner, C Ohseruatii asunra diferentelor divizate si asunra metodei coardei. Revista de analiză numerică şi teoria aproximaţiei vol. 3 (1974) fasc. 1, 19-30. [
[3] Păvăloiu, I., Remarks on the secant method for the solution of nonlinear operatorial equations, Research Seminars, Seminar on Mathematical Analysis, Preprint no. 7, (1991), pp. 127-132. 지
[4] Păvăloin, I Introducere in teoria anrorimării solutijlor pruatilor Fd Dacia CluiNapoca, 1976. ᄌ
[5] Schmidt, I. W., Eine Ubertagungen der Regula Falsi auf Gleichungen, in "Banachräumen" I ZAMM, 48, 1-8 (1963).
[6] Schmidt, I. W., Eine Ubertagungen der Regula Falsi auf Gleichungen, in "Banachräumen" II 97-110 (1963).

Institutul de Calcul
Academia Română
Cluj-Napoca

