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On the chord method

In the paper [1], I.K. Argyros considers as divided difference of the mapping
f : X1 → X2, where X1 and X2 are Banach spaces, a linear mapping [x, y; f ] ∈
L (X1, X2) which fulfils the following conditions:

(a) [x, y; f ] (y − x) = f (y) − f (x) , for every x, y ∈ D, where D ⊆ X1 is
a subset of X1;

(b) there exist the real constants l1 ≥ 0, l2 ≥ 0, l3 ≥ 0 and p ∈ (0, 1] such
that for every x, y, u ∈ D the following inequality holds:∥∥ [y, u; f ]− [x, y; f ]

∥∥ ≤ l1 ‖x− u‖p + l2 ‖x− y‖p + l3 ‖y − u‖p .

In [1] the hypothesis that the equation:

(1) f (x) = 0

admits a simple solution x∗ in adopted, and conditions for the convergence of
the sequence (xn)n≥0 generated by the chord method:

(2) xn+1 = xn − [xn−1, xn; f ]−1 f (xn) , n = 1, 2, . . . , x0, x1 ∈ D0

are given.
In a recent paper [2] there is shown that, with the hypotheses considered

in [1], the convergence speed of the sequence generated by (2) and the error
estimation are featured by the inequality:

(3) ‖x∗ − xn+1‖ ≤ α d
tn+1
1
0 ,

where α is a precised constant, 0 < d0 < 1 and t1 is the positive root of the
equation t2 − t− p.

We shall admit further down that the divided difference operator fulfils the
conditions (a) and (b), and search for supplementary conditions in order to
make equation (1) admit a solution x∗ into a precised domain D0 and the
sequence (xn)n≥0 generated by (2) converge to this solution.
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Observe firstly that the identity:

(4) xn − [xn−1, xn; f ]−1 f (xn) = xn−1 − [xn−1, xn; f ]−1 f (xn−1)

holds for every n = 1, 2, . . . with the hypothesis that the linear mapping
[xn−1, xn; f ] admits an inverse mapping.

The following identity

f (xn+1) =f (xn) + [xn−1, xn; f ] (xn+1 − xn)
(5)

+ ([xn, xn+1; f ]− [xn−1, xn; f ]) (xn+1 − xn) , n = 1, 2, . . .

Let B > 0, α > 0, 0 < d0 < 1, and x0, x ∈ X1. Consider the sphere

(6) U =
{
x ∈ X1 : ‖x− x0‖ ≤ Bαd0

1−dt1−1
0

}
where t1 = 1+

√
1+4p
2 that is, the positive root, the equation:

(7) t2 − t− p = 0

The following theorem holds:

Theorem 1. If the divided difference [x, y; f ] fulfils the conditions (a) and
(b) for every x, y ∈ U and the following hypotheses:

(1) the mapping [x, y; f ] admits a bounded inverse mapping for every

x, y ∈ U, namely there exists a constant B > 0 such that
∥∥ [x, y; f ]−1

∥∥ ≤
B

(ii)

α = 1

B(1+p)/p(l1+l2+l3)
1/p ;

(iii)

‖x1 − x0‖ ≤ Bαd0, ‖f (x0)‖ ≤ αd0, ‖f (x1)‖ ≤ αdt10

are also fulfilled, then equation (1) has at least one solution x∗ ∈ U and
the sequence (xn)n≥0 generated by (2) converges to x∗, the convergence
speed and the error estimation being featured by the inequality:

‖x∗ − xn‖ ≤
Bαd

tn1
0

1−d
tn1 (t1−1)

0

.
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Proof. From (2) for n = 1 we deduce:

‖x2 − x1‖ ≤ B ‖f (x1)‖ ≤ Bαdt10

from which, taking also into account iii. it follows

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖
≤ Bαdt10 +Bαd0

≤ Bαd0
(

1 + dt1−10

)
<

Bαd0

1− dt1−10

from which it results that x2 ∈ U .
Using the fact that x2 ∈ U, the identities (4) and (5), and the inequality

a), we obtain

‖f (x2)‖ ≤ ‖x2 − x1‖ (l1 ‖x2 − x0‖p + l2 ‖x1 − x0‖p + l3 ‖x2 − x1‖p)
≤ B ‖f (x1)‖ (l1B

p ‖f (x0)‖p + l2 ‖x1 − x0‖p + l3B
p ‖f (x1)‖p)

≤ Bαdt10
(
l1B

pαpdp0 + l2B
pαpdp0 + l3B

pαpdt10
)

≤ Bp+1αp+1dt1+p0

(
l1 + l2 + l3d

p(t1−1)
0

)
= Bp+1αp+1

(
l1 + l2 + l3d

p(t1−1)
0

)
d
t21−p
0 ≤ αdt

2
1
0

since αpBp+1
(
l1 + l2 + l3d

p(t1−1)
0

)
≤ αpBp+1 (l1 + l2 + l3) < 1.

From the above inequality follows therefore:

‖f (x2)‖ ≤ αd
t21
0

Suppose by induction that:
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(a’) xi ∈ U, i = 0, 1, . . . , k;

(b’) ‖f (xi)‖ ≤ αd
ti1
0 , i = 1, 2, . . . , k.

Then, for xk+1we have:

‖xk+1 − x0‖ ≤ ‖xk+1 − xk‖+ ‖xk − xk−1‖+ . . .+ ‖x1 − x0‖
≤ B ‖f (xk)‖+B ‖f (xk−1)‖+ . . .+Bαd0

≤ Bαdt
k
1
0 +Bαd

tk−1
1
0 + . . .+Bαd0

= Bαd0

(
1 + dt1−10 + d

t21−1
0 + . . .+ d

tk1−1
0

)
≤ Bαd0

(
1 + dt1−10 + d

2(t1−1)
0 + . . .+ d

k(t1−1)
0

)
≤ Bαd0

1−dt1−1
0

from which follows that xk+1 ∈ U. Proceeding now for xk+1, as in the case of
x2, we obtain:

‖f (xk+1)‖ ≤ Bp+1αp+1

(
l1 + l2 + l3d

ptk−1
1 (t1−1)

o

)
d
tk−1
1 (t1+p)
0

≤ Bp+1αp+1 (l1 + l2 + l3) d
tk+1
1
0 ≤ αdt

k+1
1
0

It results therefore that the relations (a’) and (b’) hold for every i ∈ N.
Now we shall show that the sequence (xn)n≥0 is fundamental.
Indeed, for every n, s ∈ N we have:

‖xn+s − xn‖ ≤
n+s−1∑
k=n

‖xk+1 − xk‖ ≤
n+s−1∑
k=n

B ‖f (xk)‖ ≤ Bα
n+s−1∑
k=n

d
tk1
0

= Bαd
tn1
0

n+s−1∑
k=n

d
tk1−tn1
0 = Bαd

tn1
0

n−s−1∑
k=n

d
tn1 (tk−n

1 −1)
0

≤ Bαdt
n
1
0

n+s−1∑
k=n

d
tn1 (k−n)(t1−1)
0 = Bαd

tn1
0

n+s−1∑
k=n

(
d
tn1 (t1−1)
0

)k−n
≤ Bαd

tn1
0

1−d
tn1 (t1−1)

0

.

By the last inequality and the fact that 0 < d0 < 1 and t1 > 1 follows that
the sequence (xn)n≥2 is fundamental. For s→∞, from the inequality:

‖xn+s − xn‖ ≤
Bαd

tn1
0

1−d
tn1 (t1−1)

0

follows the inequality:

‖x∗ − xn‖ ≤
Bαd

tn1
0

1−d
tn1 (t1−1)

0

.

In [1] Argyros showed that if the divided difference [x, y; f ] fulfils the condi-
tions (a) and (b) then f is Fréchet differentiable and [x, x; f ] = f ′ (x) . From
this fact follows that the mapping f is continuous on B: hence at limit for
n→∞ in the inequality:

‖f (xn)‖ ≤ αdt
n
1
0 ,
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one obtains:
‖f (x∗)‖ ≤ 0

from which results f (x∗) = 0. With this the theorem is entirely proved �

Remark 2. In [5], [6] Schmidt imposes in the divided difference conditions
similar to the conditions (a) and (b) given by Argyros in [1], but for p = 1.
The same conditions are reproduced in [2], too.
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nachräumen” II 97–110 (1963).

Institutul de Calcul
Academia Română
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