On the chord method

In the paper [1], I.K. Argyros considers as divided difference of the mapping $f: X_1 \to X_2$, where X_1 and X_2 are Banach spaces, a linear mapping $[x, y; f] \in \mathcal{L}(X_1, X_2)$ which fulfils the following conditions:

- (a) [x, y; f](y x) = f(y) f(x), for every $x, y \in D$, where $D \subseteq X_1$ is a subset of X_1 ;
- (b) there exist the real constants $l_1 \ge 0$, $l_2 \ge 0$, $l_3 \ge 0$ and $p \in (0, 1]$ such that for every $x, y, u \in D$ the following inequality holds:

$$\| [y, u; f] - [x, y; f] \| \le l_1 \| x - u \|^p + l_2 \| x - y \|^p + l_3 \| y - u \|^p.$$

In [1] the hypothesis that the equation:

$$(1) f(x) = 0$$

admits a simple solution x^* in adopted, and conditions for the convergence of the sequence $(x_n)_{n>0}$ generated by the chord method:

(2)
$$x_{n+1} = x_n - [x_{n-1}, x_n; f]^{-1} f(x_n), \quad n = 1, 2, \dots, x_0, x_1 \in D_0$$

are given.

In a recent paper [2] there is shown that, with the hypotheses considered in [1], the convergence speed of the sequence generated by (2) and the error estimation are featured by the inequality:

(3)
$$||x^* - x_{n+1}|| \le \alpha \ d_0^{t_1^{n+1}},$$

where α is a precised constant, $0 < d_0 < 1$ and t_1 is the positive root of the equation $t^2 - t - p$.

We shall admit further down that the divided difference operator fulfils the conditions (a) and (b), and search for supplementary conditions in order to make equation (1) admit a solution x^* into a precised domain D_0 and the sequence $(x_n)_{n>0}$ generated by (2) converge to this solution.

Observe firstly that the identity:

(4)
$$x_n - [x_{n-1}, x_n; f]^{-1} f(x_n) = x_{n-1} - [x_{n-1}, x_n; f]^{-1} f(x_{n-1})$$

holds for every n = 1, 2, ... with the hypothesis that the linear mapping $[x_{n-1}, x_n; f]$ admits an inverse mapping.

The following identity

(5)

$$f(x_{n+1}) = f(x_n) + [x_{n-1}, x_n; f](x_{n+1} - x_n) + ([x_n, x_{n+1}; f] - [x_{n-1}, x_n; f])(x_{n+1} - x_n), \qquad n = 1, 2, \dots$$

Let $B > 0, \alpha > 0, 0 < d_0 < 1$, and $x_0, x \in X_1$. Consider the sphere

(6)
$$U = \left\{ x \in X_1 : \|x - x_0\| \le \frac{B\alpha d_0}{1 - d_0^{t_1 - 1}} \right\}$$

where $t_1 = \frac{1+\sqrt{1+4p}}{2}$ that is, the positive root, the equation:

$$(7) t^2 - t - p = 0$$

The following theorem holds:

Theorem 1. If the divided difference [x, y; f] fulfils the conditions (a) and (b) for every $x, y \in U$ and the following hypotheses:

(1) the mapping [x, y; f] admits a bounded inverse mapping for every $x, y \in U$, namely there exists a constant B > 0 such that $\| [x, y; f]^{-1} \| \leq B$

$$\alpha = \frac{1}{B^{(1+p)/p}(l_1+l_2+l_3)^{1/p}};$$

(iii)

$$||x_1 - x_0|| \le B\alpha d_0, \quad ||f(x_0)|| \le \alpha d_0, \quad ||f(x_1)|| \le \alpha d_0^{t_1}$$

are also fulfilled, then equation (1) has at least one solution $x^* \in U$ and the sequence $(x_n)_{n\geq 0}$ generated by (2) converges to x^* , the convergence speed and the error estimation being featured by the inequality:

$$|x^* - x_n|| \le \frac{B\alpha d_0^{t_1^n}}{1 - d_0^{t_1^n(t_1 - 1)}}.$$

62

Proof. From (2) for n = 1 we deduce:

$$||x_2 - x_1|| \le B ||f(x_1)|| \le B \alpha d_0^{t_1}$$

from which, taking also into account iii. it follows

$$\begin{aligned} \|x_2 - x_0\| &\leq \|x_2 - x_1\| + \|x_1 - x_0\| \\ &\leq B\alpha d_0^{t_1} + B\alpha d_0 \\ &\leq B\alpha d_0 \left(1 + d_0^{t_1 - 1}\right) \\ &< \frac{B\alpha d_0}{1 - d_0^{t_1 - 1}} \end{aligned}$$

from which it results that $x_2 \in U$.

Using the fact that $x_2 \in U$, the identities (4) and (5), and the inequality a), we obtain

$$\begin{aligned} \|f(x_2)\| &\leq \|x_2 - x_1\| \left(l_1 \|x_2 - x_0\|^p + l_2 \|x_1 - x_0\|^p + l_3 \|x_2 - x_1\|^p \right) \\ &\leq B \|f(x_1)\| \left(l_1 B^p \|f(x_0)\|^p + l_2 \|x_1 - x_0\|^p + l_3 B^p \|f(x_1)\|^p \right) \\ &\leq B \alpha d_0^{t_1} \left(l_1 B^p \alpha^p d_0^p + l_2 B^p \alpha^p d_0^p + l_3 B^p \alpha^p d_0^{t_1} \right) \\ &\leq B^{p+1} \alpha^{p+1} d_0^{t_1+p} \left(l_1 + l_2 + l_3 d_0^{p(t_1-1)} \right) \\ &= B^{p+1} \alpha^{p+1} \left(l_1 + l_2 + l_3 d_0^{p(t_1-1)} \right) d_0^{t_1^2-p} \leq \alpha d_0^{t_1^2} \end{aligned}$$

since $\alpha^p B^{p+1} (l_1 + l_2 + l_3 d_0^{p(t_1-1)}) \leq \alpha^p B^{p+1} (l_1 + l_2 + l_3) < 1$. From the above inequality follows therefore:

$$\|f(x_2)\| \le \alpha d_0^{t_1^2}$$

Suppose by induction that:

(a') $x_i \in U, \ i = 0, 1, \dots, k;$ (b') $||f(x_i)|| \le \alpha d_0^{t_1^i}, \ i = 1, 2, \dots, k.$ Then, for x_{k+1} we have:

$$\begin{aligned} \|x_{k+1} - x_0\| &\leq \|x_{k+1} - x_k\| + \|x_k - x_{k-1}\| + \dots + \|x_1 - x_0\| \\ &\leq B \|f(x_k)\| + B \|f(x_{k-1})\| + \dots + B\alpha d_0 \\ &\leq B\alpha d_0^{t_1^k} + B\alpha d_0^{t_1^{k-1}} + \dots + B\alpha d_0 \\ &= B\alpha d_0 \left(1 + d_0^{t_1 - 1} + d_0^{t_1^{2-1}} + \dots + d_0^{t_1^{k-1}}\right) \\ &\leq B\alpha d_0 \left(1 + d_0^{t_1 - 1} + d_0^{2(t_1 - 1)} + \dots + d_0^{k(t_1 - 1)}\right) \leq \frac{B\alpha d_0}{1 - d_0^{t_1 - 1}} \end{aligned}$$

from which follows that $x_{k+1} \in U$. Proceeding now for x_{k+1} , as in the case of x_2 , we obtain:

$$\|f(x_{k+1})\| \le B^{p+1}\alpha^{p+1} \left(l_1 + l_2 + l_3 d_o^{pt_1^{k-1}(t_1-1)} \right) d_0^{t_1^{k-1}(t_1+p)}$$
$$\le B^{p+1}\alpha^{p+1} \left(l_1 + l_2 + l_3 \right) d_0^{t_1^{k+1}} \le \alpha d_0^{t_1^{k+1}}$$

It results therefore that the relations (a') and (b') hold for every $i \in \mathbb{N}$. Now we shall show that the sequence $(x_n)_{n>0}$ is fundamental.

Indeed, for every $n, s \in \mathbb{N}$ we have:

$$\begin{aligned} \|x_{n+s} - x_n\| &\leq \sum_{k=n}^{n+s-1} \|x_{k+1} - x_k\| \leq \sum_{k=n}^{n+s-1} B \|f(x_k)\| \leq B\alpha \sum_{k=n}^{n+s-1} d_0^{t_1^n} \\ &= B\alpha d_0^{t_1^n} \sum_{k=n}^{n+s-1} d_0^{t_1^k - t_1^n} = B\alpha d_0^{t_1^n} \sum_{k=n}^{n-s-1} d_0^{t_1^n} (t_1^{k-n} - 1) \\ &\leq B\alpha d_0^{t_1^n} \sum_{k=n}^{n+s-1} d_0^{t_1^n(k-n)(t_1 - 1)} = B\alpha d_0^{t_1^n} \sum_{k=n}^{n+s-1} \left(d_0^{t_1^n(t_1 - 1)} \right)^{k-n} \\ &\leq \frac{B\alpha d_0^{t_1^n}}{1 - d_0^{t_1^n(t_1 - 1)}}. \end{aligned}$$

By the last inequality and the fact that $0 < d_0 < 1$ and $t_1 > 1$ follows that the sequence $(x_n)_{n\geq 2}$ is fundamental. For $s \to \infty$, from the inequality:

$$||x_{n+s} - x_n|| \le \frac{Bad_0^{t_1^{n}}}{1 - d_0^{t_1^{n}(t_1 - 1)}}$$

follows the inequality:

$$||x^* - x_n|| \le \frac{B\alpha d_0^{t_1^n}}{1 - d_0^{t_1^n(t_1 - 1)}}.$$

In [1] Argyros showed that if the divided difference [x, y; f] fulfils the conditions (a) and (b) then f is Fréchet differentiable and [x, x; f] = f'(x). From this fact follows that the mapping f is continuous on B: hence at limit for $n \to \infty$ in the inequality:

$$\|f(x_n)\| \le \alpha d_0^{t_1^n},$$

64

one obtains:

$\left\|f\left(x^*\right)\right\| \le 0$

from which results $f(x^*) = 0$. With this the theorem is entirely proved \Box

Remark 2. In [5], [6] Schmidt imposes in the divided difference conditions similar to the conditions (a) and (b) given by Argyros in [1], but for p = 1. The same conditions are reproduced in [2], too.

References

- Argyros, I. K., The secant method and fixed points on nonlinear operators, Mh. Math., 106 (1988), 85–94.
- [2] Balázs, M. şi Goldner, G., Observații asupra diferențelor divizate şi asupra metodei coardei. Revista de analiză numerică şi teoria aproximației vol. 3 (1974) fasc. 1, 19–30.
- [3] Păvăloiu, I., Remarks on the secant method for the solution of nonlinear operatorial equations, Research Seminars, Seminar on Mathematical Analysis, Preprint no. 7, (1991), pp. 127–132.
 - [4] Păvăloiu, I., Introducere în teoria aproximării soluțiilor ecuațiilor. Ed. Dacia, Cluj-Napoca, 1976. [™]
 - [5] Schmidt, I. W., Eine Ubertagungen der Regula Falsi auf Gleichungen, in "Banachräumen" I ZAMM, 48, 1–8 (1963).
 - [6] Schmidt, I. W., Eine Ubertagungen der Regula Falsi auf Gleichungen, in "Banachräumen" II 97–110 (1963).

Institutul de Calcul Academia Română Cluj-Napoca

clickable \rightarrow

clickable \rightarrow