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REMARKS ON THE SECANT METHOD FOR THE

SOLUTION OF NONLINEAR OPERATORIAL

EQUATIONS

Ion Păvăloiu

This note has for purpose some refinements of the convergence condi-

tions and error delimitations obtained by I.K. Argyros in [1] with respect

to the secant method for the solution of the equation:

(1) f (x) = 0,

where f : X1 → X2 is a nonlinear operator, while X1 and X2 are Banach

spaces.

If we denote by [x, y; f ] the divided difference of the mapping f on

the point x and y, then for fixed x, y we have [x, y; f ] ∈ L (X1, X2) . It

is known that in certain conditions the sequence (xn)n≥0 generated by

the secant method:

(2) xn+1 = xn − [xn−1, xn; f ]−1 f(xn), x0, x1 ∈ X1, n = 1, 2, . . .

converges to the solution x∗ of equation (1).

1. Generalizing a result on J.E. Dennis [2], I.K. Argyros [1] studies the

convergence of the method (2) with the assumptions that the operator

f is Fréchet differentiable, while the derivative f ′ (x) fulfils a Hölder-like

condition on a set D ⊂ X1,namely there exist a constant C > 0 and

number p ∈ (0, 1] such that the inequality:

(3)
∥∥f ′ (x)− f ′ (y)

∥∥ ≤ C ‖x− y‖p
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holds for every x, y ∈ D. In this case we shall say that f ′ (·) ∈ HD (C, p) .

In the quoted paper I.K. Argyros defines the divided difference oper-

ator [x, y; f ] as a linear operator which fulfils the conditions:

(4) [x, y; f ] (y − x) = f (y)− f (x) , ∀x, y ∈ D,

and, in addition, for every x, y, u ∈ D the following inequality holds:

(5) ‖[x, y; f ]− [y, u; f ]‖ ≤ l1 ‖x− u‖p + l2 ‖x− y‖p + l2 ‖y − u‖p ,

where l1 ≥ 0, l2 ≥ 0 are constants which do not depend on x, y and u,

while p ∈ (0, 1].

Let x∗ be a simple solution of (1). We mean by that the mapping

f ′ (x∗) admits a bounded inverse mapping, and if [x∗, x∗; f ] = f ′ (x∗)

then [x∗, x∗; f ] admits a bounded inverse mapping. Thus the continuity

of the mapping [x, y; f ] with respect to the variable x and y ensures the

existence of a number ε > 0 such that the mapping [x, y; f ] admits a

bounded inverse mapping for every x, y ∈ U (x∗, ε) , where U (x∗, ε) =

{x ∈ X1 : ‖x− x∗‖ < ε} that is, the set B (x, y) = ‖ [x, y; f ]−1 ‖ is

uniformly bounded in U (x∗, ε) = {x ∈ X1 : ‖x− x∗‖ ≤ ε}.

Theorem 1. [1] Let f : X1 → X2 and let D ⊂ X1 an open set. The

following conditions are fulfilled:

(a) x∗ ∈ D is a simple solution of the equation (1);

(b) there exist ε ∈ 0, b > 0 such that ‖ [x, y; f ]−1 ‖ ≤ b for every

x, y ∈ U (x∗, ε) ;

(c) there exists a convex set D0 ⊂ D such that x∗ ∈ D0, and there

exists ε1 > 0, with 0 < ε1 < ε such that f ′ (·) ∈ HD0 (C, p) for

every x, y ∈ D0 and U (x∗, ε1) ⊂ D0.
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Let r > 0 such that:

(6) 0 < r < min{ε1, (q (p))−1/p}

where:

(7) q (p) = b
p+1 [2p (l1 + l2) (1 + p) + C] .

Then, if x0x1 ∈ Ū (x∗, r) , the iterates xn, n = 2, 3, . . . , generated by

(2) are well defined and belong to the set Ū (x∗, r) , while the sequence

(xn)n≥0 converges to the unique solution x∗ of equation (1).

Moreover, the following estimation:

(8) ‖xn+1 − x∗‖ ≤ γ1 ‖xn−1 − x∗‖p · ‖xn − x∗‖+ γ2 ‖xn − x∗‖p+1

holds for sufficiently great n, where:

(9) γ1 = b (l1 + l2) 2p,

(10) γ2 = bC
1+p

while l1, l2 and p were precised by the relation (5).

In order to prove this theorem the author uses the following two lem-

mas:

Lemma 1. [1]. Let f : X1 → X2 and D ⊂ X1. Suppose that D is

an open set and f ′ (·) does exist in every point of D. If, for a convex

set D0 ⊆ D, f ′ (·) ∈ HD0 (C, p) , then for every x, y ∈ D0 the following

inequality holds:∥∥f (x)− f (y)− f ′ (x) (y − x)
∥∥ ≤ C

1+p ‖x− y‖
1+p .

Lemma 2. [1]. If [x, y; f ] fulfils the conditions (4) and (5), the following

relations hold:

(a) [x, x; f ] = f ′ (x) for every x ∈ D0;

(b) f ′ (·) ∈ HD0 (2 (l1 + l2) , p) .
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From the proof of Theorem 1 follows, for the error estimation and for

the convergence speeds of the sequence (xn)n≥0 , the inequality:

(11) ‖xn+1 − x∗‖ ≤ (M (r))n+1 ‖x0 − x∗‖

where one shows that M (r) ∈ (0, 1) .

2. We shall make further down some remarks upon the above exposed

results, showing that the hypotheses imposed in [1] can lead to more rich

conclusions with respect to both the convergency order of the secant

method and the error estimation.

Suppose that x0 and x1 fulfil the conditions:

(a’) ‖x∗ − x0‖ ≤ αd0;
(b’) ‖x∗ − x1‖ ≤ min{αdt10 , ‖x∗ − x0‖}

where 0 < d0 < 1, α = (q (p))−1, while t1 is the positive root of the

equation:

t2 − t− p = 0(12)

namely t1 = 1+(1+4p)1/2

2 .

Using the condition (4) and (5), Lemmas 1 and 2, and the hypotheses

of 1, it results easily from (2),for n = 1, the inequality [1]:

(13) ‖x2 − x∗‖ ≤ γ1 ‖x0 − x∗‖p ‖x1 − x∗‖+ γ2 ‖x1 − x∗‖p+1

from which, using (a’) and (b’) and the fact that t1 is a root of equation

(12), we obtain:

‖x2 − x∗‖ ≤ γ1αpdp0αd
t1
0 + γ2α

1+pd
t1(1+p)
0

= α1+p
(
γ1d

t1+p
0 + γ2d

t1(1+p)
0

)
= α1+pdt1+p

0

(
γ1 + γ2d

p(t1−1)
0

)
= αd

t21
0

(
γ1 + γ2d

p(t1−1)
0

)
αp.
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But (
γ1 + γ2d

p(t1−1)
0

)
αp =

γ1 + γ2d
p(t1−1)
0

γ1 + γ2
< 1,

then the following inequality holds

‖x2 − x∗‖ ≤ αd
t21
0 .

We prove now that ‖x2 − x∗‖ ≤ ‖x1 − x∗‖ . From the inequality (13) we

obtain:

‖x2 − x∗‖
(
γ1α

pdp0 + γ2α
pdt1p0

)
‖x1 − x∗‖ ≤

≤ αpdp0

(
γ1 + γ2d

p(t1−1)
0

)
‖x1 − x∗‖ < ‖x1 − x∗‖

since dp0 < 1 and, as we saw above, αp
(
γ1 + γ2d

p(t1−1)
0

)
< 1.

Assume now that for n ∈ N, n ≥ 2, the following relations hold:

(a”) ‖xn−1 − x∗‖ ≤ αd
tn−1
1
0 ;

(b”) ‖xn − x∗‖ ≤ min{αdt
n
1
0 , ‖xn−1 − x∗‖}

Proceeding as in the case of x2, and taking into account (a”), (b”)

and (8), we obtain:

‖xn+1 − x∗‖ ≤ α1+pd
tn+1
1
0 ·

(
γ1 + γ2d

ptn−1
1 (t1+1)

0

)
=

= αd
tn+1
1
0 · αp

(
γ1 + γ2d

ptn−1
1 (t1−1)

0

)
≤ αdt

n+1
1
0 ,

since, as previously, it is easy to show that:

αp

(
γ1 + γ2d

ptn−1
1 (t1−1)

0

)
< 1

In order to complete the proof, we shall show that:

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖

Indeed, form (8) we deduce:

‖xn+1 − x∗‖ ≤ (γ1α
pd

ptn−1
1

0 + γ2α
pd

ptn1
0 ) ‖xn − x∗‖ .
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But d0 < 1 and αp
(
γ1 + γ2d

p(t1−1)
0

)
< 1, therefore:

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖ .

We proved in this way the following theorem:

Theorem 2. If the conditions of Theorem 1 are fulfilled, with the differ-

ence that x0 and x1 are chosen in such a manner to verify the relations

(a’) and (b’), where α = (q (p))−1/p and d0 ∈ (0, 1) , then, for every

n ∈ N, xn ∈ U = {x ∈ X1| ‖x− x∗‖ < α} and the following inequality

holds:

(14) ‖xn+1 − x∗‖ ≤ αd
tn+1
1
0 , n = 0, 1, . . .

Remark. The inequality (14) contains in its right-hand side a number

substantially smaller than that yielded by relation (11).
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