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a b s t r a c t

We study the local convergence of some Aitken–Steffensen–Hermite type methods of order
three. We obtain that under some reasonable conditions on the monotony and convexity of
the nonlinear function, the iterations offer bilateral approximations for the solution, which
can be efficiently used as a posteriori estimations.
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1. Introduction

As it is well known, the Steffensen, Aitken and Aitken–Steffensen methods are interpolatory methods, with controlled
nodes. More precisely, they can be obtained from the first degree Lagrange inverse interpolatory polynomial, for which
the two interpolation nodes are controlled by one or two auxiliary functions suitably chosen [1–6,9–12,17].

Some generalizations of these methods have been obtained in [12,15,16], by controlling the interpolation nodes in the
Lagrange, respectively Hermite inverse interpolatory polynomials of degree 2; the resulted methods have convergence order
3.

Moreover, in [13,15,16], were obtained conditions under which the Steffensen, Aitken or Aitken–Steffensen type methods
lead to sequences which approximate bilaterally the solution.

In this paper we propose two iterative methods of Aitken–Steffensen type, which are obtained from the inverse interpo-
latory Hermite polynomial of degree 2, and which have the q-convergence order 3. The interpolation nodes are obtained
using two auxiliary functions.

In the first section we present the two methods and we show that they have the convergence order 3. In Section 2 we
obtain convergence results depending on the monotony of the function (increasing/decreasing) and on its convexity (con-
vex/concave). In Section 3 we show how the auxiliary functions may be constructed such that they verify the convergence
results obtained in Section 2, while the last section contains some numerical examples which illustrate the results.

Consider the equation

f ðxÞ ¼ 0; ð1Þ

where f : ½a; b� ! R; a; b 2 R; a < b, and the additional two equations, equivalent to the above one:

x� pðxÞ ¼ 0;
x� qðxÞ ¼ 0; ð2Þ

where p, q : [a,b] ? [a,b]. Denote h : [a,b] ? [a,b] given by
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hðxÞ ¼ qðpðxÞÞ: ð3Þ

Here we shall study the method obtained when the nodes are controlled by p and h.
Denote F = f([a,b]) and let s; k 2 N and n = s + k. We shall make the following hypotheses on f:

(a) f 2 Cn([a,b])
(b) f0(x) – 0, "x 2 [a,b].

It can be easily seen that a) and b) imply that f is continuous on [a,b] and is invertible, therefore there exists the inverse
f�1 : F ? [a,b] and the following result holds.

Theorem 1.1. [10,12,18] If f obeys a) and b) then f�1 2 Cn(F) and for all x 2 [a,b] and j 2 N; 1 6 j 6 n we have

f�1ðyÞ
� �ðjÞ ¼X ð2j� i1 � 2Þð�1Þjþi1�1

i2!i3! . . . ij!½f 0ðxÞ�2j�1 :
f 0ðxÞ

1!

� �i1 f 00ðxÞ
2!

� �i2

. . .
f ðjÞðxÞ

j!

� �ij

; ð4Þ

where y = f(x), and the above sum extends over all nonnegative integer solutions of the system

i2 þ 2i3 þ � � � þ ðj� 1Þij ¼ j� 1;

i1 þ i2 þ � � � þ ij ¼ j� 1:

We recall below some particular cases of (4), which will be subsequently used, i.e., j = 1, 2, 3:

f�1ðyÞ
� �0 ¼ 1

f 0ðxÞ ;

f�1ðyÞ
� �00 ¼ � f 00ðxÞ

f 0ðxÞ½ �3
;

f�1ðyÞ
� �000 ¼ 3 f 00ðxÞ½ �2 � f 0ðxÞf 000ðxÞ

f 0ðxÞ½ �5
; ð5Þ

where y = f(x).
Let x1, x2 2 [a,b] be two interpolation nodes and y1 = f(x1), y2 = f(x2). Obviously f�1(y1) = x1 and f�1(y2) = x2. Moreover under

the hypotheses of Theorem 1.1 we can compute the successive derivatives of f�1 at y1, y2: (f�1(y1))0, (f�1(y1))00, . . . , (f�1(y1))(s�1)

resp. (f�1(y2))0, (f�1(y2))00, . . . , (f�1(y2))(k�1). These values determine the unique Hermite polynomial of degree n � 1, denoted
by H(y), satisfying

HðiÞðy1Þ ¼ f�1ðy1Þ
� �ðiÞ

; i ¼ 0; s� 1;

HðiÞðy2Þ ¼ f�1ðy2Þ
� �ðiÞ

; i ¼ 0; k� 1;

We denote this polynomial by H(y1,s;y2,k; f�1jy).
It can be easily seen that under the hypotheses of Theorem 1.1 we have that

f�1ðyÞ ¼ Hðy1; s; y2; k; f�1jyÞ þ
f�1ðgÞ
� �ðnÞ

n!
ðy� y1Þ

sðy� y2Þ
k
; ð6Þ

where g 2 int(F).
If x⁄ 2 [a,b] is a solution of (1), then x⁄ = f�1(0) and by (6) we get

x� ¼ H y1; s; y2; k; f�1j0
� �

þ ð�1Þn ½f
�1ðg0Þ�

ðnÞ

n!
ys

1yk
2; ð7Þ

where g0 is an interior point of the smallest interval containing 0, y1, y2.
If in (7) we neglect the remainder, we obtain for x⁄ an approximation x3 given by

x3 ¼ Hðy1; s; y2; k; f�1j0Þ:

If x3 2 [a,b], then we can take y2 = f(x2) and y3 = f(x3) as the new interpolation nodes, and continue the process.
In general, if xm�1, xm 2 [a,b] and ym�1 = f(xm�1), ym = f(xm) then we take

xmþ1 ¼ Hðym�1; s; ym; k; f�1j0Þ; m ¼ 2;3; . . . ð8Þ

By (7) we have that

x� � xmþ1 ¼ ð�1Þn ½f
�1ðgmÞ�

ðnÞ

n!
ys

m�1yk
m: ð9Þ
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The above relation shows that if all the elements of the sequence (xm)mP1 generated by (8) remain in [a,b] and converge to x⁄,
then the r-convergence order x is given by the positive root of the following equation [7,8,12,14]:

t2 � kt � s ¼ 0;

i.e.,

x ¼ kþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4s

p
2

:

The convergence order can be higher than x if the interpolation nodes in (8) are controlled with the aid of p and h.
If, given xm 2 [a,b], we take as interpolation nodes the values ym ¼ f ðpðxmÞÞ; �ym ¼ f ðhðxmÞÞ; m P 1, then we obtain the

iterations

xmþ1 ¼ Hðym; s; �ym; k; f�1j0Þ; m ¼ 1;2; . . . ð10Þ

with error

x� � xmþ1 ¼ ð�1Þn ½f
�1ð�gmÞ�ðnÞys

m�yk
m

n!
; ð11Þ

where �gm 2 intðFÞ. We call (10) as an Aitken–Steffensen–Hermite type method with two steps.
In the following result we show that under some reasonable assumptions on functions f, p and q, the sequence (10) has

the q-convergence order at least n.

Proposition 1.2. Let M = supy2Fj(f�1(y))(n)j, m1 = supx2[a,b]jf0(x)j and assume there exist ‘1; ‘2 2 R; ‘1 > 0; ‘2 > 0 such that p and
q obey the center Lipschitz conditions

pðxÞ � pðx�Þj j 6 ‘1jx� x�j; 8x 2 ½a; b�;ð12Þ
qðxÞ � qðx�Þj j 6 ‘2jx� x�j; 8x 2 ½a; b�:

Then

jx� � xmþ1j 6
Mmn

1‘
n
1‘

k
2

n!
jx� � xmjn; m ¼ 1;2; . . . ; ð13Þ

whence the q-convergence order of the sequence is at least n.
The proof is immediately obtained from (11).
Next we shall study the convergence of the method (10) in the particular cases s = 1, k = 2 resp. s = 2, k = 1, which both

lead by (13) to q-convergence orders at least 3.
Under reasonable assumptions regarding mainly the monotony and convexity of f on [a,b], we shall show that the func-

tions p and q may be determined such that the convergence order of (10) is 3 and, moreover, we obtain sequences which
approximate bilaterally the solution.

If x, y, z 2 [a,b] and u = f(x), v = f(y), w = f(z) then it is known that the following relations hold for the divided differences of
f and f�1

½u;v ; f�1� ¼ 1
½x; y; f � ; ð14Þ

½u;v ;w; f�1� ¼ � ½x; y; z; f �
½x; y; f �½x; z; f �½y; z; f � ;

where

½x; y; f � :¼ f ðyÞ � f ðxÞ
y� x

; ½x; y; z; f � :¼ ½y; z; f � � ½x; y; f �
z� x

;

and [x,x; f] :¼ f0(x).
Using the divided differences for the Hermite polynomial in the case s = 1 and k = 2, from (10) we get for xm+1 the follow-

ing expression

xmþ1 ¼ pðxmÞ �
f ðpðxmÞÞ

pðxmÞ; hðxmÞ; f½ � �
pðxmÞ; hðxmÞ;hðxmÞ; f½ �

pðxmÞ; hðxmÞ; f½ �2f 0ðhðxmÞÞ
f ðpðxmÞÞf ðhðxmÞÞ ð15Þ

x1 2 [a,b], m = 1,2, . . ..
In this case, the error verifies

x� � xmþ1 ¼ � 0; f ðpðxmÞÞ; f ðhðxmÞÞ; f ðhðxmÞÞ; f�1� �
f ðpðxmÞÞf 2ðhðxmÞÞ: ð16Þ
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The mean value formula for the divided differences attracts the existence of a point hm 2 int(F) such that:

0; f ðpðxmÞÞ; f ðhðxmÞÞ; f ðhðxmÞÞ; f�1� �
¼ ½f

�1ðhmÞ�000

6
: ð17Þ

Since f is bijective there exists nm 2 [a,b] such that hm = f(nm). Taking into account (5), by (16) and (17) it follows

x� � xmþ1 ¼ �
3½f 00ðnmÞ�2 � f 0ðnmÞf 000ðnmÞ

6½f 0ðnmÞ�5
f ðpðxmÞÞf 2ðhðxmÞÞ; m ¼ 1;2; . . . : ð18Þ

Analogously, for s = 2 and k = 1 we obtain the iterations

xmþ1 ¼ hðxmÞ �
f ðhðxmÞÞ

hðxmÞ;pðxmÞ; f½ � �
hðxmÞ; pðxmÞ; pðxmÞ; f½ �

hðxmÞ; pðxmÞ; f½ �2f 0ðpðxmÞÞ
f ðpðxmÞÞf ðhðxmÞÞ; ð19Þ

m = 1,2, . . . , x1 2 [a,b].
In this case, for the error one holds an equality analogous to formula (18):

x� � xmþ1 ¼ �
3 f 00ðnmÞ½ �2 � f 0ðnmÞf 000ðnmÞ

6½f 0ðnmÞ�5
f 2ðpðxmÞÞf ðhðxmÞÞ; ð20Þ

m = 1,2, . . .

2. The convergence of the iterations (15) and (19)

In this section we shall provide some conditions under which methods (15) and (19) generate sequences which approx-
imate bilaterally the solution.

We consider the following assumptions on f, p and q:

(a) Eq. (1) has at least one solution x⁄ 2 ]a,b[;
(b) f 2 C3([a,b]);
(c) Eqs. (1) and (2) are equivalent;
(d) function p is derivable on ]a,b[ and 0 < p0(x) < 1, "x 2 ]a,b[;
(e) function q is decreasing and continuous on [a,b];

Denote Ef : ½a; b� ! R,

Ef ðxÞ ¼ 3 f 00ðxÞ½ �2 � f 0ðxÞf 000ðxÞ: ð21Þ

It can be easily seen that

Ef ðxÞ ¼ E�f ðxÞ: ð22Þ
We obtain the following result when f is increasing and convex.

Theorem 2.1. If x1 2 [a,b] and f, p, q verify the following conditions
i1. assumptions (a)–(e) are verified;

ii1. f0(x) > 0, "x 2 [a,b];
iii1. f00(x) P 0, "x 2 [a,b];
iv1. x1 < x⁄;
v1. h(x1) 6 b;

vi1. Ef(x) P 0, "x 2 ]a,b[.

Then the elements of (xm)mP1, (p(xm))mP1 and (h(xm))mP1 generated by (15) remain in [a,b] and, moreover the following
relations hold:

j1. xm < p(xm) < xm+1 < x⁄ < h(xm+1) < h(xm), m = 1,2, . . . ;
jj1. x⁄ � xm+1 < h(xm+1) � xm+1;

jjj1. limm?1xm = limm?1p(xm) = limm?1 h(xm) = x⁄.

Proof. By ii1 it follows that x⁄ 2 ]a,b[ is the unique solution of eq (1). Let xm 2 [a,b] be an approximation of x⁄ such that
xm < x⁄ and h(xm) 6 b. By hypothesis (d) it follows that there exists cm 2 ]a,b[ such that p(x⁄) � p(xm) = p0(cm)(x⁄ � xm) <
x⁄ � xm, whence p(xm) > xm. Since p is increasing, from xm < x⁄ it follows p(xm) < p(x⁄) = x⁄. This last relation, together with
(e) imply h(xm) = q(p(xm)) > q(x⁄) = x⁄, i.e., h(xm) > x⁄. From relations p(xm) < x⁄ < h(xm) and ii1 we get f(p(xm)) < 0 and
f(h(xm)) > 0. If in relation (15) we take into account hypotheses ii1 and iii1 and we apply the mean value formulas for the
divided differences, we get xm+1 > p(xm). If in (18) we take into account vi1, ii1 and the values of f at p(xm) and h(xm), we
get xm+1 < x⁄. Finally, from hypotheses (d) and (e) for xm < xm+1 it follows h(xm+1) < h(xm) and from xm+1 < x⁄we get h(xm+1) > x⁄,
such that relation j1 is proved by induction. Relation jj1 is implied by j1.
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The fact that the elements of (xm)mP1, (p(xm))mP1 and (h(xm))mP1 remain in [a,b] follows from j1. Moreover, these
sequences are monotone and bounded, and therefore they converge. Letting ‘ = limxm, then by (15) we have ‘ = x⁄. Since p
and q are continuous functions, we obtain jjj1.

The theorem is proved. h

Next we consider the case when f is decreasing and concave. Instead of Eq. (1) we consider equation

�f ðxÞ ¼ 0

and we take into account (22) and the fact that xm+1 given by (15) is the same if we replace f by�f; then from Theorem 2.1 we
deduce

Corollary 2.2. If x1 2 [a,b] and the functions f, p, q verify

i2. hypotheses (a)–(e) hold;
ii2. f0(x) < 0, "x 2 [a,b];

iii2. f00(x) 6 0, "x 2 [a,b];
iv2. x1 < x⁄;
v2. h(x1) 6 b;

vi2. Ef(x) P 0, "x 2 ]a,b[,

then the elements of the sequences (xm)mP1, (p(xm))mP1 and (h(xm))mP1 generated by (15) remain in [a,b] and the properties j1–
jjj1 from Theorem 2.1 hold.

The following result refers to the case when f is increasing and concave.

Theorem 2.3. If x1 2 [a,b] and functions f, p, q verify

i3. hypotheses (a)–(e) hold;
ii3. f0(x) > 0, "x 2 [a,b];

iii3. f00(x) 6 0, "x 2 [a,b];
iv3. x1 > x⁄;
v3. h(x1) P a;

vi3. Ef(x) P 0, "x 2 [a,b],

then the elements of the sequences (xm)mP1, (p(xm))mP1, and (h(xm))mP1, generated by (15), remain in [a,b] and, moreover,

j3. xm > p(xm) > xm+1 > x⁄ > h(xm+1) > h(xm), m = 1,2, . . . ;
jj3. xm+1 � x⁄ < xm+1 � h(xm+1);

jjj3. limm?1xm = limm?1p(xm) = limm?1h(xm) = x⁄.

Proof. Hypotheses i3 and ii3 ensure that x⁄ 2 ]a,b[ is the unique solution of (1). If xm 2 [a,b], m P 1, obeys xm > x⁄ and
h(xm) P a then it can be easily shown that hypotheses (d) and (e) lead to relations xm > p(xm) > x⁄ > h(xm). These inequalities,
together with ii3 imply f(p(xm)) > 0 and f(h(xm)) < 0. By (15), using the previous relations and assumptions ii3 and iii3 we get
xm+1 < p(xm). From (18), ii3 and vi3 it follows xm+1 > x⁄, and therefore j3 is proved. Property jj3 is an immediate consequence of
j3. Property j3 also implies that the elements of (xm)mP1, (p(xm))mP1 and h(xm)mP1 remain in [a,b]. The proof of jjj3 is anal-
ogous to the corresponding one in Theorem 2.1. h

We obtain the following consequence of the above theorem, which is similar to the one obtained for Theorem 2.1. Now f is
decreasing and convex.

Corollary 2.4. If x1 2 [a,b] and functions f, p, q verify

i4. assumptions (a)–(e) hold;
ii4. f0(x) < 0, "x 2 [a,b];

iii4. f00(x) P 0, "x 2 [a,b];
iv4. x1 > x⁄;
v4. h(x1) P a;

vi4. Ef(x) P 0, "x 2 ]a,b[.

Then the elements of (xm)mP1, (p(xm))mP1 and (h(xm))mP1, generated by (15), remain in [a,b] and, moreover, properties j3–jjj3

of Theorem 2.3 hold.
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Now we study the convergence of the sequences (xm)mP1 given by (19). We notice that in (19) xm+1 may also be written
as:

xmþ1 ¼ pðxmÞ �
f ðpðxmÞÞ

½pðxmÞ;hðxmÞ; f � �
½hðxmÞ;pðxmÞ;pðxmÞ; f �f ðpðxmÞÞf ðhðxmÞÞ

½hðxmÞ;pðxmÞ; f �2f 0ðpðxmÞÞ
: ð23Þ

We have seen in the proof of the previous results that the hypothesis Ef(x) P 0, "x 2 [a,b] was essential. The iterates (15) and
the results concerning their convergence cannot be applied if Ef(x) 6 0, "x 2 [a,b]. We shall see in the following that in the
study of the convergence of iterations (19) or (23), the hypothesis Ef(x) 6 0, "x 2 [a,b] turns out to be essential. Therefore the
previous and the subsequent results allow us to choose in practice either method (15) or method (19), (23) depending on the
sign of Ef(x).

Theorem 2.5. If x1 2 [a,b] and functions f, p, q obey conditions i1–v1 of Theorem 2.1 and, moreover,

Ef ðxÞ 6 0; 8x 2 ½a; b�;

then the elements of sequences (xm)mP1, (p(xm))mP1 and (h(xm))mP1 generated by (23) remain in [a,b] and, moreover, satisfy rela-
tions j1–jjj1 from Theorem 2.1.

Proof. By i1 and ii1 it follows that the solution x⁄ is unique in ]a,b[. Let xm 2 [a,b] be an approximation for x⁄, which satisfies
iv1 and v1. From the proof of Theorem 2.1 it follows that xm < p(xm) < x⁄ < h(xm). These relations, together with ii1 imply that
f(p(xm)) < 0 and f(h(xm)) > 0. Applying the mean value formulas for divided differences and using ii1 and iii1, by (23) we get
xm+1 > p(xm). Using Ef(x) 6 0, the signs of f at p(xm) and h(xm) and assumption ii1, by (20) we get xm+1 < x⁄. Inequality xm < xm+1

implies h(xm+1) < h(xm), which shows that j1 is true. The proof of Theorem 2.1 shows that properties jj1 and jjj1 are
obvious. h

The following result is similar to Corollary 2.2, we state it without proof.

Corollary 2.6. If x1 2 [a,b], f, p, q verify conditions i2–v2 from Corollary 2.2 and, moreover, Ef(x) 6 0 "x 2 [a,b] then the elements
of (p(xm))mP1, (xm)mP1 and (h(xm))mP1, generated by (23), remain in [a,b] and the conclusions j1–jjj1 of Theorem 2.1 are true.

The next result is analogous to Theorem 2.3.

Theorem 2.7. If x1 2 [a,b], and functions f, p, q verify hypotheses i3–v3 of Theorem 2.3 and moreover Ef(x) 6 0, "x 2 [a,b], then
(xm)mP1, (p(xm))mP1, (h(xm))mP1, generated by (23) remain in [a,b] and the conclusions j3–jjj3 of Theorem 2.3 hold true.

Proof. The uniqueness of the solution x⁄ is obvious by assumption ii3. If xm 2 [a,b], for some m P 1, obeys iv3 then from the
properties of functions p and q one obtains xm > p(xm) > x⁄ > h(xm), which, together with ii3 lead to f(h(xm)) < 0 and f(p(xm)) > 0.
By considerations analogous to those in the proof of Theorem 2.3, by (23) we obtain xm+1 < p(xm). Using hypothesis Ef(x) 6 0,
by (20) it follows that x⁄ � xm+1 < 0, i.e., xm+1 > x⁄. Since xm > xm+1 we get h(xm) < h(xm+1), which proves j3. The conclusions jj3

and jjj3 are immediately obtained as in the previous results. Conclusion j3 also attracts that (xm)mP1, (p(xm))mP1,
(h(xm))mP1 � [a,b]. h

The following result is analogously obtained as Corollary 2.4.

Corollary 2.8. If x1 2 [a,b] and the functions f, p, q verify hypotheses i4–v4 of Corollary 2.4, and moreover Ef(x) 6 0 "x 2 [a,b] then
(xm)mP1, (p(xm))mP1, (h(xm))mP1, generated by (23), remain in [a,b] and conclusions j3–jjj3 of Theorem 2.3 hold true.

3. Determining the auxiliary functions

In this section we present a concrete way how one can construct the auxiliary functions p and q such that hypotheses (c),
(d), (e) as well as, depending on the case, conditions h(x1) 6 b or h(x1) P a to be verified.

Let p and q be given by

pðxÞ ¼ x� k1f ðxÞ; k1 > 0;

qðxÞ ¼ x� k2f ðxÞ; k2 > 0: ð24Þ

Obviously, p and q verify (c). We shall determine the parameters k1 and k2 such that the other conditions are verified.
Assume that f verifies the hypotheses of Theorem 2.1, i.e. f0(x) > 0 and f00(x) P 0 "x 2 [a,b]. This means that f0 is increasing,

i.e.

f 0ðaÞ 6 f 0ðxÞ 6 f 0ðbÞ; 8x 2 ½a; b�: ð25Þ

The above relation, for k1 > 0 implies

1� k1f 0ðbÞ 6 1� k1f 0ðxÞ 6 1� k1f 0ðaÞ; 8x 2 ½a; b�:
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In order that condition (d) is verified, it suffices that a < k1 <
1

f 0 ðbÞ.
Since 0 < p(x) < 1, it follows that for x 2 [a,x⁄], p(x) 2 ]x,x⁄[, while for x 2 [x⁄,b], p(x) 2 ]x⁄,x[. Since p(x⁄) = x⁄, we have

p(x) 2 [a,b], "x 2 [a,b].
In order that q verifies condition (e) it suffices that q0(x) < 0 "x 2 [a,b]:

q0ðxÞ ¼ 1� k2f 0ðxÞ < 0:

Since q00(x) 6 0 it follows that q0 is decreasing and therefore q0(x) 6 q0(a). From q0(a) < 0 we get k2 >
1

f 0 ðaÞ. From such a value of
k2 we have that function q decreases: q(x) 6 q(a), "x 2 [a,b].

Since for x 2 [a,b] we have p(x) 2 ]a,b[, then h(x) = q(p(x)) < q(a). Therefore, if q(a) 6 b then for x1 < x⁄ we have h(x1) 6 b.
Relation q(a) 6 b leads us to

a� k2f ðaÞ 6 b;

where f(a) < 0. The above relation implies in turn

k2 6
a� b
f ðaÞ :

If 1
f 0 ðaÞ <

a�b
f ðaÞ then any value k2 2 1

f 0 ðaÞ ;
a�b
f ðaÞ

i i
can be taken such that function q defined by (24) verifies hypothesis of Theorem 2.1.

Theorem 3.1. If f obeys hypotheses of Theorem 2.1 and moreover,

f ðbÞ � f ðaÞ < f 0ðaÞðb� aÞ

then one can choose k1 2 0; 1
f 0 ðbÞ

i i
and k2 2 1

f 0 ðaÞ ;
a�b
f ðaÞ

i i
such that functions p and q defined in (24) verify the hypotheses of Theo-

rem 2.1, respectively Theorem 2.5.
We consider in the following the functions p, q given by

pðxÞ ¼ xþ k1f ðxÞ; k1 > 0;

qðxÞ ¼ xþ k2f ðxÞ; k2 > 0: ð26Þ

If we take g(x) = �f(x) we obtain

pðxÞ ¼ x� k1gðxÞ;
qðxÞ ¼ x� k2gðxÞ:

The following consequence of Theorem 3.1 can be easily proved:

Corollary 3.2. If f obeys hypotheses of Corollary 3.2 and, moreover,

f ðaÞ < �f 0ðaÞðb� aÞ;

then there exist k1 2 0; 1
�f 0 ðbÞ

i i
; k2 2 1

�f 0 ðaÞ ;
a�b
�f ðaÞ

h i
such that functions p and q given by (26) verify hypotheses of Corollary 2.2, resp.

Corollary 2.6.
Similarly to Theorem 3.1, we can prove the following results.

Theorem 3.3. If f obeys hypotheses of Theorem 3.1 and, moreover,

f ðbÞ < ðb� aÞf 0ðbÞ;

then there exist k1 2 0; 1
f 0 ðaÞ

i h
and k2 2 1

f 0 ðbÞ ;
b�a
f ðbÞ

i i
such that functions p, q defined by (24) verify hypotheses of Theorem 2.3, respec-

tively Theorem 2.7.

Corollary 3.4. If f verifies the hypotheses of Corollary 3.4 and, moreover,

f ðbÞP ðb� aÞf 0ðbÞ;

then there exist k1 2 0;� 1
f 0 ðaÞ

i h
and k2 2 � 1

f 0 ðbÞ ;� b�a
f ðbÞ

i i
such that functions p and q given by (26) obey hypotheses of Corollary 2.4

resp. Corollary 2.8.

4. Numerical examples

Example 4.1. Consider

f ðxÞ ¼ ex � 4x2 ¼ 0; x 2 1
2
;1

	 

: ð27Þ
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One can easily see that f 0ðxÞ < 0; f 00ðxÞ < 0; 8 2 x 1
2 ;1
� �

. Since f 1
2

� �
> 0 and f(1) < 0 if follows that Eq. (27) has a unique solu-

tion x� 2 1
2 ;1
� �

. We also have that Ef ðxÞ > 0; 8x 2 1
2 ;1
� �

; and therefore the hypotheses of Corollary 2.2 are verified. Corollary
3.2 shows that one can take k1 ¼ 1

4 and k2 ¼ 1
2, such that pðxÞ ¼ xþ 1

4 ðex � 4x2Þ and qðxÞ ¼ xþ 1
2 ðex � 4x2Þ; with

0 < p0ðxÞ < 1; q 1
2

� �
< 1 and q0ðxÞ < 0 8x 2 1

2 ;1
� �

.
Taking x1 ¼ 1

2 and using (15) we obtain the following values for xn, p(xn) and q(xn), which are presented in Table 1.

Example 4.2. Consider

f ðxÞ ¼ x2 � 2 cosðxÞ ¼ 0: ð28Þ

x 2 p
6 ;

p
2

� �
. One can easily see that f 0ðxÞ > 0; f 00ðxÞ > 0; Ef ðxÞ > 0; 8x 2 p

6 ;
p
2

� �
, and therefore the hypotheses of Theorem 2.1 are

verified. The auxiliary functions p and q from (24) for x1 ¼ 1
6 ; k2 ¼ 1

2, are given by

pðxÞ ¼ 6x� x2 þ 2 cosðxÞ
6

;

qðxÞ ¼ 2x� x2 þ 2 cosðxÞ
2

:

Since f 0ðxÞ > 0 8x 2 p
6 ;

p
2

� �
; f p

6

� �
< 0; f p

2

� �
> 0 it follows that Eq. (28) has a unique solution x� 2 p

6 ;
p
2

� �
.

Consider in (15) x1 ¼ p
6 and we obtain the values in Table 2.

Example 4.3. Consider

f ðxÞ :¼ ex þ 6x� 5 ¼ 0: ð29Þ

x 2 [0,1], having a unique solution in ]0,1[. Since f0(x) > 0, f00(x) > 0 and Ef(x) = 2ex(ex � 3) < 0, "x 2 [0,1], the hypotheses of
Theorem 2.5 are verified. Applying Theorem 3.1, we can take k1 ¼ 1

10 ; k2 ¼ 1
5 and by (24) we get

pðxÞ ¼ 4x� ex þ 5
10

;

qðxÞ ¼ 5� x� ex

5
:

Let x1 = 0, which implies qðx1Þ ¼ 4
5 < 1. By (23) we obtain the results presented in Table 3.

Table 1
Numerical results in solving f(x) = ex � 4x2 = 0, x � 1

2 ;1
� �

.

n xn p (xn) h(xn) h(xn) � xn

1 5.000000000000000e�1 6.621803176750321e�1 7.547224706745652e�1 2.547224706745652e�01
2 7.146918975140570e�1 7.147966292104280e�1 7.148136852840175e�1 1.217877699604131e�04
3 7.148059123627770e�1 7.148059123627778e�1 7.148059123627780e�1 9.992007221626409e�16

Table 2
Numerical results in solving f(x) = x2-2cos(x) = 0, x � p

6 ;
p
2

� �
.

n xn p(xn) h(xn) h(xn) � xn

1 5.235987755982988e�1 7.665812972251055e�1 1.193044203747889e+0 6.694454281495906e�01
2 1.018804247227570e+0 1.020605393992001e+0 1.022637703168053e+0 3.833455940482455e�03
3 1.021689953697528e+0 1.021689953944147e+0 1.021689954221672e+0 5.241440614867088e�10
4 1.021689954092185e+0 1.021689954092185e+0 1.021689954092185e+0 �2.220446049250313e�16

Table 3
Numerical results in solving f(x) = ex+6x � 5 = 0, x 2 [0, 1].

n xn p(xn) h(xn) h(xn) � xn

1 0 4.000000000000000e�1 6.216350604717459e�1 6.216350604717459e�1
2 5.456771482503846e�1 5.456931999594989e�1 5.457005009495495e�1 2.335269916486915e�5
3 5.456979250249538e�1 5.456979250249538e�1 5.456979250249538e�1 0
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