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1. Introduction

As it is well known, the Steffensen, Aitken and Aitken-Steffensen methods are interpolatory methods, with controlled
nodes. More precisely, they can be obtained from the first degree Lagrange inverse interpolatory polynomial, for which
the two interpolation nodes are controlled by one or two auxiliary functions suitably chosen [1-6,9-12,17].

Some generalizations of these methods have been obtained in [12,15,16], by controlling the interpolation nodes in the
Lagrange, respectively Hermite inverse interpolatory polynomials of degree 2; the resulted methods have convergence order

Moreover, in [13,15,16], were obtained conditions under which the Steffensen, Aitken or Aitken-Steffensen type methods
lead to sequences which approximate bilaterally the solution.

In this paper we propose two iterative methods of Aitken-Steffensen type, which are obtained from the inverse interpo-
latory Hermite polynomial of degree 2, and which have the g-convergence order 3. The interpolation nodes are obtained
using two auxiliary functions.

In the first section we present the two methods and we show that they have the convergence order 3. In Section 2 we
obtain convergence results depending on the monotony of the function (increasing/decreasing) and on its convexity (con-
vex/concave). In Section 3 we show how the auxiliary functions may be constructed such that they verify the convergence
results obtained in Section 2, while the last section contains some numerical examples which illustrate the results.

Consider the equation

f(x)=0, (1)
where f : [a,b] — R, a,b € R, a < b, and the additional two equations, equivalent to the above one:

x—q(x) =0, (2)

where p, q : [a,b] — [a,b]. Denote h : [a,b] — [a,b] given by
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h(x) = q(p(x)). (3)

Here we shall study the method obtained when the nodes are controlled by p and h.
Denote F=f{[a,b]) and let s,k € N and n = s + k. We shall make the following hypotheses on f:

(o) fe C'([a,b])
(B) f(x)# 0, Vx € [a,b].

It can be easily seen that «) and ) imply that fis continuous on [a,b] and is invertible, therefore there exists the inverse
f':F> [a,b] and the following result holds.

Theorem 1.1. [10,12,18] If f obeys o) and ﬁ) then f~! € C'(F) and for all x € [a,b] and j € N, 1 <j < n we have

o - O ) ()

where y = f(x), and the above sum extends over all nonnegative integer solutions of the system

i2+2i3+"'+(j*1)l‘j:j7];
i1+ +-+i=j-1.

We recall below some particular cases of (4), which will be subsequently used, i.e.,,j=1, 2, 3:
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e
where y = f(x).

Let x4, X, € [a,b] be two interpolation nodes and y; = f{x;), y» = f(x2). Obviously f~!(y;) = x; and f~!(y,) = x,. Moreover under
the hypotheses of Theorem 1.1 we can compute the successive derivatives of f~' at y1, yo: (f '(y1)Y,(F ' 1)), ... (F (1))
resp. (F '(72)),(F ()Y, ... (F '(y2))* V. These values determine the unique Hermite polynomial of degree n — 1, denoted
by H(y), satisfying

HOy) = [ on)]”, i=05—T;
HOy,) = [F'0)]", =0, k=1

We denote this polynomial by H(ys,s;ya.k;f![y).
It can be easily seen that under the hypotheses of Theorem 1.1 we have that

[f—] (]7)} (n)
n!

FY) = Hypo sy, ki f 1 y) + W=y’ -y, (6)

where 7 € int(F).
If x* € [a,b] is a solution of (1), then x* =f~'(0) and by (6) we get

[f ]

:H(yl’s;.Vka;fil‘O) ysy27 (7)

where 7)q is an interior point of the smallest interval containing 0, y1, y>.
If in (7) we neglect the remainder, we obtain for x* an approximation x3 given by

= H(ylvs;y27k;f71|0)'

If x3 € [a,b], then we can take y, = f(x,) and ys = f(x3) as the new interpolation nodes, and continue the process.
In general, if x,, 1, X, € [a,b] and y,_1 = flxm_1), Ym = flxm) then we take

Xm41 :H(ym—175;ym;k;f7]‘0)7 m=2,3,... (8)
By (7) we have that

%t = (<1 0" s e 9)



The above relation shows that if all the elements of the sequence (x,;,)»~1 generated by (8) remain in [a,b] and converge to x*,
then the r-convergence order w is given by the positive root of the following equation [7,8,12,14]:

2 —kt—s=0,
ie.,

ke VK +4s
=

The convergence order can be higher than w if the interpolation nodes in (8) are controlled with the aid of p and h.
If, given x, € [a,b], we take as interpolation nodes the values y,, = f(p(xm)), ¥m = f(h(xm)), m > 1, then we obtain the
iterations

xm+l :H(.ymvs§yIﬂ7k;fil‘0)7 m= 1727--- (10)
with error
k
X — Xt = (= U‘% (1)

where 7, € int(F). We call (10) as an Aitken-Steffensen-Hermite type method with two steps.
In the following result we show that under some reasonable assumptions on functions f, p and g, the sequence (10) has
the g-convergence order at least n.

Proposition 1.2. Let M = supyep|(f”(y))(”)|, My = SUpPxefaplf (X)| and assume there exist ¢1,0, € R, ¢; > 0, ¢, > 0 such that p and
q obey the center Lipschitz conditions

P(X) — p(x)| < lx — x|, Vx e [a,b(12)
1(x) — q(x)] < alx x|, Vx e [a,b].

Then

i Mm)
X" = Xm.1| < — 2 X = x|,

l 1”)”1:1,2,...7 (13)

whence the g-convergence order of the sequence is at least n.

The proof is immediately obtained from (11).

Next we shall study the convergence of the method (10) in the particular cases s=1, k=2 resp. s = 2, k=1, which both
lead by (13) to g-convergence orders at least 3.

Under reasonable assumptions regarding mainly the monotony and convexity of f on [a,b], we shall show that the func-
tions p and q¢ may be determined such that the convergence order of (10) is 3 and, moreover, we obtain sequences which
approximate bilaterally the solution.

Ifx,y,z € [a,b] and u = f(x), v=f{y), w = f{z) then it is known that the following relations hold for the divided differences of
fand f!

1
[u,v:f '] = [xyf] (14)
ey x,y,%f]
oW = Ry Az Ay 2
where
[X yf] fYJ)/ {((X)7 [X.,y,Z;f] = D’»Zf;:)[{xs_)/;f]’

and [x,x;f] :=f(x).
Using the divided differences for the Hermite polynomial in the case s=1 and k = 2, from (10) we get for x,,.; the follow-
ing expression

fo&xn)  [PXm), h(Xm), h(Xm): f] f

0, hx)sf] p(xn), B S12F (X)) (P(Xm))f (h(xm)) (15)

Xmi1 = P(Xm) —

X1 €la,bl, m=1,2,....
In this case, the error verifies

X = Xmir = = [0, f(P(Xm)).f (h(Xm)).f (h(Xm)); [ 1f (P (xm))f* (h(Xm)). (16)



The mean value formula for the divided differences attracts the existence of a point 0,, € int(F) such that:

sy 0"
[0, f ((xm)). f (M%), f (h(Xm)): 1] = == (17)
Since f is bijective there exists &, € [a,b] such that 0,, = f{&,). Taking into account (5), by (16) and (17) it follows

30 (&)l = f ()" (Em) 2 _
61 (2" fn)f*(h(xm)), m=1,2,.... (18)

Analogously, for s =2 and k =1 we obtain the iterations

_ ~ f(hxm))  [h(Xm),p(Xm), P(Xm); ]
et =) ) p ) [h(xm)7p(xm);fff'(p(xm))f(p(xm))f(h(xm))’ 19

m=1,2,..., x; €[a,b].
In this case, for the error one holds an equality analogous to formula (18):

3G~ F ") po h 20
G[f/(ém)]s f (p(xm))f( (Xm))7 ( )

X' —Xm1 =

X — Xm1 =

m=1,2,...
2. The convergence of the iterations (15) and (19)

In this section we shall provide some conditions under which methods (15) and (19) generate sequences which approx-
imate bilaterally the solution.
We consider the following assumptions on f, p and q:

) Eq. (1) has at least one solution x* € ]a, b[;

) fe C([a,b]);

) Egs. (1) and (2) are equivalent;

) function p is derivable on ]a,b[ and 0 < p'(x) <1, Vx € ]a,b|;
)

Denote E; : [a,b] — R,

Er(x) = 3[f" (x))* = f ()" (%) (21)
It can be easily seen that
Ep(x) = E4(x). (22)

We obtain the following result when f is increasing and convex.

Theorem 2.1. If x; € [a,b] and f, p, q verify the following conditions
iy. assumptions (a)—(e) are verified;
iiy. f(x)>0, Vx € [a,b];
iiiy. f'(x) = 0, Vx € [a,b];
ivy. X <X%;
vi. h(x;) < b;
viy. E{x) = 0, Vx € Ja,b].

Then the elements of (Xm)m=1, (PD(Xm))m=1 and (h(xm))m=1 generated by (15) remain in [a,b] and, moreover the following
relations hold:
J1e Xm < P(Xm) < Xina1 < X" < A(Xmer) < h(Xm), m=1,2,..;
1 X = Xier <h(Xmet1) — Xmer;
Jijte imp s ocXm = iMoo p(Xm) = limy,_, oo h(Xm) = X*.

Proof. By ii; it follows that x* € |a,b[ is the unique solution of eq (1). Let x,, € [a,b] be an approximation of x* such that
xm <x* and h(x,) <b. By hypothesis (d) it follows that there exists c,, € ]a,b[ such that p(x*) — p(x;) = p'(cm)(X* — Xp) <
X* — Xm, Whence p(x,) > x,. Since p is increasing, from x,, <x* it follows p(x,;) < p(x*) = x*. This last relation, together with
(e) imply h(xn)=q(p(xm)) > q(x*) = x*, ie., h(x,)>x*. From relations p(x,)<x*<h(x,) and ii; we get f(p(xn))<0 and
flh(x)) > 0. If in relation (15) we take into account hypotheses ii; and iii; and we apply the mean value formulas for the
divided differences, we get X1 > p(x,n). If in (18) we take into account viy, ii; and the values of f at p(x,,) and h(x,,), we
get X1 < x*. Finally, from hypotheses (d) and (e) for x,, < X1 it follows h(X;;,+1) < h(x,;,) and from x,,+1 < x* we get h(X;;41) > X¥,
such that relation j; is proved by induction. Relation jj; is implied by j.



The fact that the elements of (Xp)m=1, (P(Xm))m=1 and (h(xn,))m=1 remain in [a,b] follows from j,. Moreover, these
sequences are monotone and bounded, and therefore they converge. Letting ¢ = limx,,, then by (15) we have ¢ = x*. Since p
and q are continuous functions, we obtain jjj.

The theorem is proved. O

Next we consider the case when f is decreasing and concave. Instead of Eq. (1) we consider equation

(=0

and we take into account (22) and the fact that x,,+; given by (15) is the same if we replace fby —f; then from Theorem 2.1 we
deduce

Corollary 2.2. If x; € [a,b] and the functions f, p, q verify

ip. hypotheses (a)-(e) hold;
iiy. f(x)<0, Vx € [a,b];
iiip. f'(x) <0, Vx € [a,b];
vy, X7 <X%;

Va. h(x;) < b;
vip. Efx) = 0, Vx € Ja,b],

—.

then the elements of the sequences (Xm)m=1, (P(Xm))m=1 and (h(xum))m=1 generated by (15) remain in [a,b] and the properties j;—
jij1 from Theorem 2.1 hold.
The following result refers to the case when f is increasing and concave.

Theorem 2.3. If x; € [a,b] and functions f, p, q verify

i3. hypotheses (a)-(e) hold;
iis. f(x)>0, Vx € [a,b];
iii3. f'(x) <0, Vx € [a,b];
iV3. X1 >X*,'

vs. h(x;) > a;
vis. E{x) > 0, Vx € [a,b],

then the elements of the sequences (Xm)m=1, (P(Xm))m=1, and (h(x,»))m=1, generated by (15), remain in [a,b] and, moreover,

J3 Xm > P(Xm) > Xime1 > X*> N(Xme1) > W(Xm), m=1,2,..;
3 Xme1 — X" < X1 — hW(Xime1);
Jiize limpy o ooXm = limpy, oo p(Xm) = limpy, - o ch(Xm) = X*.

Proof. Hypotheses i; and ii; ensure that x* € |a,b[ is the unique solution of (1). If x,, € [a,b], m > 1, obeys x,,, >x* and
h(x,) > a then it can be easily shown that hypotheses (d) and (e) lead to relations x,, > p(x,;) > X* > h(x;,). These inequalities,
together with iis imply f{p(x,,)) > 0 and f{h(x,,)) < 0. By (15), using the previous relations and assumptions iiz and iii; we get
Xm+1 < P(Xm). From (18), iiz and vis it follows x,,+1 > x*, and therefore js is proved. Property jjz is an immediate consequence of
j3. Property js; also implies that the elements of (X;;)m=1, (D(Xm))m=1 and h(x;)m =1 remain in [a,b]. The proof of jjj; is anal-
ogous to the corresponding one in Theorem 2.1. O

We obtain the following consequence of the above theorem, which is similar to the one obtained for Theorem 2.1. Now fis
decreasing and convex.

Corollary 2.4. If x; € [a,b] and functions f, p, q verify

i4. assumptions (a)-(e) hold;
iig. f(x)<0, Vx €[a,b];
ilig. f'(x) = 0, Vx € [a,b];
Vg X7 > X%
V4. h(x1) = a;
vig. E(x) > 0, Vx € Ja,b|.

Then the elements of (Xm)m=1, (P(Xm))m=1 and (h(x;))m=1, generated by (15), remain in [a,b] and, moreover, properties js—jjjz
of Theorem 2.3 hold.



Now we study the convergence of the sequences (X;;)m>1 given by (19). We notice that in (19) x,,+; may also be written
as:

) [h(Xm), PGm), PO FIF (PG (X))
Xt = PO = 1o ) R ) () D) F PP (PGn) 3)

We have seen in the proof of the previous results that the hypothesis E{x) > 0, Vx € [a,b] was essential. The iterates (15) and
the results concerning their convergence cannot be applied if E{x) < 0, Vx < [a,b]. We shall see in the following that in the
study of the convergence of iterations (19) or (23), the hypothesis E{x) < 0, Vx € [a,b] turns out to be essential. Therefore the
previous and the subsequent results allow us to choose in practice either method (15) or method (19), (23) depending on the
sign of E{x).

Theorem 2.5. If x; € [a,b] and functions f, p, q obey conditions i;-v; of Theorem 2.1 and, moreover,
Ef(x) <0, Vxeab]

then the elements of sequences (Xm)m>1, (P(Xm))m=1 and (h(x;,))m> 1 generated by (23) remain in [a, b] and, moreover, satisfy rela-
tions j;—jjj; from Theorem 2.1.

Proof. By i; and ii; it follows that the solution x* is unique in ]a, b[. Let x,, € [a,b] be an approximation for x*, which satisfies
ivy and v4. From the proof of Theorem 2.1 it follows that x,; < p(x,;) < X* < h(X,,). These relations, together with ii; imply that
fip(xm)) <0 and flh(x,,)) > 0. Applying the mean value formulas for divided differences and using ii; and iii;, by (23) we get
Xm+1 > P(xm). Using E{x) < 0, the signs of f at p(x,,) and h(x,) and assumption iiy, by (20) we get X;,+1 < X*. Inequality X, < X+
implies h(X;+1) < h(x;;), which shows that j; is true. The proof of Theorem 2.1 shows that properties jj; and jjj; are
obvious. O

The following result is similar to Corollary 2.2, we state it without proof.

Corollary 2.6. Ifx; < [a,b], f, p, q verify conditions i>-v, from Corollary 2.2 and, moreover, E{x) < 0 Vx € [a,b] then the elements
of (P(xm))m=1 (Xm)m=1 and (h(xm))m=1, generated by (23), remain in [a,b] and the conclusions j;—jjj; of Theorem 2.1 are true.
The next result is analogous to Theorem 2.3.

Theorem 2.7. If x; € [a,b], and functions f, p, q verify hypotheses i3-v; of Theorem 2.3 and moreover Ef(x) < 0, Vx € [a,b], then
(Xm)m=1 (PXm))m=1, (h(Xm))m=1, generated by (23) remain in [a,b] and the conclusions js3-jjj; of Theorem 2.3 hold true.

Proof. The uniqueness of the solution x* is obvious by assumption iis. If x,, € [a,b], for some m > 1, obeys ivs then from the
properties of functions p and q one obtains x,,, > p(x,,) > x* > h(x,,), which, together with ii3 lead to f{h(x;,)) < 0 and f(p(x,,)) > O.
By considerations analogous to those in the proof of Theorem 2.3, by (23) we obtain Xpm.1 < p(Xs). Using hypothesis E{x) < 0,
by (20) it follows that x* — X;;,41 <0, i.e., X;p+1 > X*. Since X, > X+ We get h(x,) < h(Xm+1), which proves js. The conclusions jjz
and jjjs are immediately obtained as in the previous results. Conclusion js; also attracts that (Xp)m=1, (P(Xm))m=1
(h(xm))m=1 C la,b]. O

The following result is analogously obtained as Corollary 2.4.

Corollary 2.8. Ifx; € [a,b] and the functions f, p, q verify hypotheses i,—v,4 of Corollary 2.4, and moreover E{x) < 0 Vx € [a,b] then
(Xm)m=1, (P(Xm))m=1, (h(xm))m=1, generated by (23), remain in [a,b] and conclusions j3-jjjz of Theorem 2.3 hold true.

3. Determining the auxiliary functions

In this section we present a concrete way how one can construct the auxiliary functions p and g such that hypotheses (c),
(d), (e) as well as, depending on the case, conditions h(x;) < b or h(x;) > a to be verified.
Let p and q be given by
px) =x—I1f(x), 21 >0
q(x) =x— 2of (x), 22 >0. (24)
Obviously, p and q verify (c). We shall determine the parameters 4; and 4, such that the other conditions are verified.
Assume that f verifies the hypotheses of Theorem 2.1, i.e. f(x) > 0 and f'(x) > 0 Vx € [a,b]. This means that f is increasing,
i.e.
flla) <f'(x)<f(b), Vxelab] (25)
The above relation, for A; > 0 implies
1-Af(b) <T-ifx) <1-Af(a), Vxelab].



In order that condition (d) is verified, it suffices that a < 4; < %
Since 0 <p(x)<1, it follows that for x € [a,x*], p(x) € ]x,x*[, while for x € [x*,b], p(x) € ]x*,x[. Since p(x*)=x", we have
p(x) € |a,b], Vx € [a,b].

In order that q verifies condition (e) it suffices that q'(x) <0 Vx € [a,b]:
qx)=1-4f"(x)<0.

Since q"(x) < 0 it follows that ¢’ is decreasing and therefore q'(x) < q’(a). From ¢q'(a) < 0 we get i, > fg—a) From such a value of
/2> we have that function q decreases: q(x) < q(a), Vx € [a,b].
Since for x € [a,b] we have p(x) € ]a,b[, then h(x) = q(p(x)) < q(a). Therefore, if g(a) < b then for x; < x* we have h(x;) <b.
Relation g(a) < b leads us to

a—J>f(a) < b,
where f(a) < 0. The above relation implies in turn

a-b
lp < ——.

fl@

lfﬁ < ﬂ;af; then any value 4, € L,(lw ,}‘(;aﬂ can be taken such that function q defined by (24) verifies hypothesis of Theorem 2.1.

Theorem 3.1. If f obeys hypotheses of Theorem 2.1 and moreover,
f(b) —f(a) < f'(a)(b—a)

then one can choose 1, € }O,ﬁbg and 7, € ]ﬁ#ﬁﬂ such that functions p and q defined in (24) verify the hypotheses of Theo-
rem 2.1, respectively Theorem 2.5.
We consider in the following the functions p, g given by

pX) =x+ f(x), 4 >0;
q(x) =x+ Aof (x), 42 >0. (26)

If we take g(x) = —f(x) we obtain

px) =x— hg(X);

qx) = x — 78(x).

The following consequence of Theorem 3.1 can be easily proved:

Corollary 3.2. If f obeys hypotheses of Corollary 3.2 and, moreover,
fla) <=f(a)(b-a),

then there exist 7, € ]O,ﬁ], Ja € [ﬁ,%} such that functions p and q given by (26) verify hypotheses of Corollary 2.2, resp.
Corollary 2.6.
Similarly to Theorem 3.1, we can prove the following results.

Theorem 3.3. If f obeys hypotheses of Theorem 3.1 and, moreover,
f(b) < (b—a)f'(b),

then there exist 4, € ]O,f,g—u)[ and /, € ]ﬁ}(;b‘;] such that functions p, q defined by (24) verify hypotheses of Theorem 2.3, respec-
tively Theorem 2.7.

Corollary 3.4. If f verifies the hypotheses of Corollary 3.4 and, moreover,
f(b) = (b—a)f(b),

then there exist 2, € ]0, —fg—a)[ and 1, € } _f'(Lm’ —f"<;b‘;] such that functions p and q given by (26) obey hypotheses of Corollary 2.4
resp. Corollary 2.8.

4. Numerical examples

Example 4.1. Consider

fX)=e"—4x* =0, xe Bl} (27)



One can easily see that f'(x) < 0, f"(x) <0, ¥ € x[1,1]. Since f(}) > 0 and f{1) < 0 if follows that Eq. (27) has a unique solu-
tion x* € 1, 1[. We also have that E¢(x) > 0, Vx € [1,1], and therefore the hypotheses of Corollary 2.2 are verified. Corollary
3.2 shows that one can take 4; = and 7, =1, such that p(x) =x+4(e*—4x*) and q(x) =x-+1(e*—4x?), with
O0<p(x)<1,q(3) <landq(x) <0Vvxe [} 1]

Taking x; = 1 and using (15) we obtain the following values for x,, p(x,) and q(x,), which are presented in Table 1.

Example 4.2. Consider

f(x) =x*—2cos(x) = 0. (28)
x € [Z,7]. One can easily see that f'(x) > 0, f"(x) > 0, Ef(x) >0, Vx € [Z,Z], and therefore the hypotheses of Theorem 2.1 are

verified. The auxiliary functions p and q from (24) for x; =%, 7, =1, are given by

_ 6x —x? + 2 cos(x)

P(X)—f7
42
q(x):2x X ;2cos(x).

Since f'(x) > 0 Vx € [£,7], f(%) <0, f(Z) > 0 it follows that Eq. (28) has a unique solution x* € [Z,%].

6
Consider in (15) x; = Z and we obtain the values in Table 2.

Example 4.3. Consider
fx):=e+6x-5=0. (29)

x €[0,1], having a unique solution in ]0,1[. Since f(x)> 0, f'(x) > 0 and E{x) = 2e*(e* — 3) <0, Vx € [0,1], the hypotheses of
Theorem 2.5 are verified. Applying Theorem 3.1, we can take 4; =5, %, =1 and by (24) we get

(X)_4xfe"+5

P ="9g
5-—x—¢*

g0 =>—%—.

Let x; = 0, which implies g(x;) = 2 < 1. By (23) we obtain the results presented in Table 3.

Table 1
Numerical results in solving fx) = e* — 4x*=0, x € [1,1].
n Xn p (%) h(xa) h(xa) — %
1 5.000000000000000e—1 6.621803176750321e—1 7.547224706745652e—1 2.547224706745652e—01
2 7.146918975140570e—1 7.147966292104280e—1 7.148136852840175e—1 1.217877699604131e—04
3 7.148059123627770e—1 7.148059123627778e—1 7.148059123627780e—1 9.992007221626409e—-16
Table 2

Numerical results in solving f(x) = x*-2cos(x) = 0, x € [£,Z].

=1

Xn

p(xn)

h(x) h(xn) — Xn

6.694454281495906e—-01

1 5.235987755982988e—1 7.665812972251055e—1 1.193044203747889¢e+0
2 1.018804247227570e+0 1.020605393992001e+0 1.022637703168053e+0 3.833455940482455e—03
3 1.021689953697528e+0 1.021689953944147e+0 1.021689954221672e+0 5.241440614867088e—10
4 1.021689954092185e+0 1.021689954092185e+0 1.021689954092185e+0 —2.220446049250313e—-16
Table 3
Numerical results in solving fix) = e*+6x — 5=0, x € [0, 1].
n Xn p(xn) h(xy) h(xy) — xn
1 0 4.000000000000000e—1 6.216350604717459%¢e—1 6.216350604717459¢e—1

2
3

5.456771482503846e—1
5.456979250249538e—1

5.456931999594989e—1
5.456979250249538e—1

5.457005009495495e—1
5.456979250249538e—1

2.335269916486915e—5
0
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