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Newton-type iterative methods /8 ~1.51, which is not optimal in the sense of Kung and Traub. However, we show that

Inverse interpolation
(Sided) convergence domains
Monotone convergence

under supplementary conditions (sometimes easy to verify) the inner and outer iterates
converge monotonically to the solution. This aspect allows an improved control of the iter-
ation stopping (avoiding divisions by zero) and offer an alternative way to the estimation
of radius of attraction balls in ensuring the convergence of the iterates. Numerical exam-
ples show that this method may become competitive and in certain circumstances even
more robust than certain optimal methods of same convergence order.

1. Introduction

In this paper, we study certain iterative methods for solving nonlinear equations
fx)=0, 1)
where f :[a,b] - R, a,b € R,a < b. The Aitken and Steffensen-type methods consider two more equations, equivalent to the
above one:
X—gx)=0, i=1,2, (2)

where g; : [a, b] — [a, b].
We admit that

(A) Eq. (1) has a solution x* €]a, b[.

The most known methods of Steffensen, Aitken, or Aitken-Steffensen type are obtained from inverse interpolation poly-
nomials of degree 1, having the knots determined with the aid of different functions g;, g, (see, e.g., [1-5,13]).

More general methods of this type have been obtained by using inverse interpolation polynomials of degree 2 [11];
they have led to iterative methods of g-order at least 3, and with efficiency indexes usually higher than for the case of
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interpolation polynomials of degree 1 [15]. Obviously, the convergence order and the efficiency index of the resulted meth-
ods depend on the functions g;.

Here, we study a method based on the Hermite inverse interpolation polynomial of degree 2, with the nodes generated
with the aid of the Newton iteration function, x — f(x)/f’(x), in (2).

We need the following assumption on f:

(B) fis three times derivable on [a, b] and f(x) # 0, Vx < [a, b].

This assumption implies that function f is monotone and continuous on [a, b], therefore 3f~1 : ] — [a, b], ] := f([a, b]),
and by (B) we have

x* = f71(0).

In order to approximate the solution x* we shall consider the Hermite inverse interpolation polynomial of degree 2.
Let a4, a, € [a, b], denote by = f(ay), b, = f(ay) so that

fHby) =ay, [ (by) = as,
and
fi] (’),|y=bz = %~
The polynomial of degree 2 which satisfies
P(b]) =
P(bz) =a
/ _ 1
P'(b2) = 7y
is the Hermite polynomial, given by
P(y) = a1 + [b1, by; f'1(y — b1) + [b1, b, ba; f71](y — b1) (¥ — b2), (3)
having the remainder
F1 @) =P) =y, b1 by b f1 = b)) (v = b2)*, Wy el

where [u, v; h], [u, v, w; h] denote the first, respectively the second order divided difference of the function h at the nodes
u, v resp. u, v, w.
Setting y = 0 in (3) we are led to another approximation for x*:

X* ~ P(0) = aj — [by, by; f~"1by + [b1, by, by; f~']b1ba, (4)
having the error
X* = P(0) = —[0, by, by, by; f~"]b1b3. (5)

Formula (4) will be used in an iterative fashion, by setting as = P(0), and so on. However, instead of (4) and (5) we need
formulas which do not need the evaluation of the inverse function.
It is known that the divided differences satisfy the following relations (see, e.g., [12]):

1
by.by: f = ——
(b1, ba; f7] TR
[b1, by b2~f*1]=7 a1, ay. az; f]

[a1, az; ff'(az)
which lead us to a formula for az based only on the values of f and its derivatives:
. fl@) a1, 4z, a5 f1f(a1)f(az)
[a1. az; f] la1, az; fI2f'(az)

Taking into account (B) and the Mean Value Theorem on the divided differences, the error in (5) becomes

X*~a3=a

1 "
[0, by, by, by; f71] = f% n € int].
Since (see, e.g., [12])

2
3(/'0)" - S ®)
fr@?
and f is one-to-one, it follows that 3§ €]a, b[ with n = f(§) such that

3(£76)) - £ &)
6(f(§))5

@) = . with y = f(x),

[0,b1, by, by f1] =

(7)



L€ €111 111 (/) 1> VVILILLELL d>

Ef(§)
* f 2
X' —a3 = ——————-bib3. (9)
TUB(E)
As we have mentioned, the functions g; and g, in (2) are taken, with the aid of the Newton iteration function, as:
_ . f®)
g1(X)=x— o

&(X) = g1(81 (%)),
so that, setting a; =z, and a, =y, in (6), we are led to the following iterations:

_ . fxa)
Yn =Xn F (%)
o fyn)
eI f'yn) (10)
Xpi1 = Zn f(zn) [z, Yn, Yn; F1£ (2n) f (Yn) n=0.1....

(20, Yn; f] Vo zns I () 7
We refer to this as the Aitken-Newton method.

We shall show in Section 2 that under some very simple conditions, this method converges locally with g-order 8. Since,
at each iteration step we need to compute 5 function evaluations (i.e., f(xn), f(xn), f(¥n), f(yn) and f(z,)), the efficiency index
is /8 ~ 1.51, which is not optimal in the sense of Kung and Traub.

There are a lot of optimal methods (see, e.g., [7,8,10,16]) but, as we shall see in the numerical examples section, the
optimal efficiency index is not a paramount by itself, since there exist situations when some optimal methods may have
very small attraction sets for certain solutions.

In Section 3 we show that if there exists a set DC[a, b] containing a solution x* such that on this set, f has monotone and
convex properties, E is positive, and the Fourier condition is verified, then for any initial approximation in D, the method
converges monotonically to x*:

X' <Xny1 <Zn <Yn <Xp, (OF Xp <Yn<2Zn<2Xp1 <X, n=0,1,...

It is important to note that the convergence holds as large as the domain D is, and this domain may extend to the left
or to the right of the solution much more than ensured by (even sharp) estimates for the radius of an attraction ball.

The above inequalities show another advantage of this method, since the stopping criterions (such as |x,_1 — X,| < tol; or
| f(xn)| < tol;) may be considered for the extended (inner) iterates Xn, ¥n, Zn, X541 (resp. for the values of f at them), avoiding
divisions by zeros.

These aspects, as well as other ones, are treated in Section 4, regarding numerical examples.

2. Local convergence

The following result holds.

Theorem 1. Under assumptions (A) and (B), the Aitken—-Newton method (10) converges locally, with g-convergence order 8:
X = Xns1 = An(X* — Xn)%, (11)
where
_Ef(%'n)f//(en)(f”(‘sn))‘lf/(,un)(f/(Vn))z
192(f7(&n))> (f (X)) f' (Yn) '
for certain &, O, 6n, Iin, Vn €la, b[. The asymptotic constant is given by
Eq(x* 1" (x* 5
A= lim A, = - ELEOTE))7
oo 192(F (x))7
Proof. We assume in the beginning that the elements of the sequences (xn); > 0, (¥n)n = 0 and (za)p > o remain in [a, b].
Assumption (B) and the first relation in (4) imply the existence of 8, €]a, b[ such that

An =

f"(n) 2
X —yp=— X" —xp)°, n=01,... 12
Y=oy & ) (12)
Analogously, the second relation in (4) attracts
x*—z,,:—f”(en) *x*—y)?: n=0,1,..., (13)
2f"(yn)

with 6, €la, b[.



Considering (9), with a3 = x,,,.1, by = f(zx) and by = f(yn). we get

* _ Ef(gn) 2 _
X' —Xpp1 = 76(f/($n))5f(zn)(f(yn)), n=0,1,...

The values f(zn) si f(yn) are easily expressed by
f(zn) = f'(un) (20 — X)),

fn) = (V) (n — X%, (14)

with n, vy €la, bl.
Relations (12)-(14) imply (11).
The induction holds if X is chosen sufficiently close to x*. O

3. Monotone convergence

We consider the following supplementary conditions on f
(C) Function E; given by (8) is strictly positive on[a, b]:
E;(x) =3(f"(0)* = f(0f"(x) >0, Vxela,b;
(D) The initial approximation xq € [a, b] satisfies the Fourier condition:

fxo)f" (x0) > 0.

Remark 1. As we shall see in the numerical examples, condition (C) may sometimes be easily verified (e.g, when f and f’
have different signs, etc.).

We obtain the following results:

Theorem 2. If f and xq satisfy assumptions (A)-(D) and, moreover:

(iy) f(x) > 0, Vx € [a, b];
(iiy) f'(x) > 0, Vx € [a, b];

then the iterates of the Aitken—-Newton method (10) satisfy:

(iX* <Xpi1 <Zn<Yn<xXxp, n=0,1,...
(ji1) limx, = limy, = limz, = x*.

Proof. We proceed by induction.

Let x, € [a, b] satisfy the Fourier condition. By (ii;) we have that f(x,) > 0, therefore x, > x*, by (i;). Relations (12) and
(13) attract y, > x* and z, > x*. The first relation in (10), together with f(x;) > 0 imply that y, < x,. Analogously, z;, < y;.
The third relation in (10) and the hypotheses imply that z, > x,,, 1 > x*. Statement (j;) is proved.

It follows that sequences (xn), (yn), (zn) are convergent to the same limit ¢, and (10) shows that f(¢) =0, i.e, ¢ =x*. O

Theorem 3. If f and xq satisfy (A)-(D) and moreover,

(i) f(x) < 0, Vx € [a, b];
(iiy) f'(x) < 0, Vx € [a, b],

then the same conclusions as those in Theorem 2 hold.

The proof is easily obtained applying Theorem 2 to the function h = —f.
The following two theorems have similar proofs.

Theorem 4. If f and xq satisfy conditions (A)-(D) and moreover,

(i3) f(x) < 0, Vx € [a, b];
(ii3) f’(x) > 0, Vx € [a, b];

then the iterates of the Aitken—-Newton method (10) satisfy

(J3) Xn <Yn <Zn <Xpp1 <X, n=0,1,...
(ji3) limx, = limy, = limz, = x*.

Theorem 5. If f and xq satisfy conditions (A)-(D) and moreover,



Table 1
Aitken-Newton iterates (10), f(x) = e* +sinx — 2.

noox Yn Zn fxn)
0 1 5.932655378778493e—1 3.446691220304792e—-1 6.2e+0
1 2.781136458347832e—1 2.739285803512798e—1 2.739153432766920e—1 1.8e-2
2 2.739153431449791e—-1 0
Table 2
Aitken-Newton iterates (10), f(x) = e* — 4x2.
noox Yn Zy f(xn)
0 1 7.573293140767846e—1 7.161639906789638e—1 —1.2e+00
1 7.148090008114115e—1 7.148059123705082e—-1 7.148059123627778e—1 —1.1e-05
2 7.148059123627779e—1 —4.4e—-16

(is) f(x) > 0, Vx € [a, b];
(iig) f'(x) < 0, Vx € [a. b],

then the iterates of (10) satisfy the conclusion of Theorem 4.

Remark 2. As we shall see in the numerical examples, even if the hypotheses of the above monotone convergence results
are not fulfilled, the iterates may converge (due to the local convergence Theorem 1) and sometimes even monotonically
(Theorems 2-5 offer sufficient but not also necessary conditions).

4. Numerical examples

In this section we shall consider some examples for which we run programs in Matlab, in double precision floating point
arithmetic (this is the setting most encountered in practice). As we shall see, the high convergence orders and the monotone
properties are properly reflected in this setting, and we do not need higher precision.

There are a lot of optimal iterative methods having the convergence order 8. We shall present only a few of them, for
which we have found a better convergence of the Aitken-Newton iterates in certain situations.

We begin with two examples, which show the rapid convergence of the Aitken-Newton iterates (10).

Example 1. Let
f(x) =e* +sinx—2, xe[0,1].

We have: f(0)=-1, f(1)=e%+sin1-2>0, f/(x)=2e*+cosx>0, xe[0,1], f’(x)=4e>*—sinx>0, f”(x)=
8e* — cosx and

Ef(x) > 32e™ —30e* +1>0, Vx>0.
Taking xy = 1, Theorem 2 applies and we obtain decreasing sequences Xy, yn, zn, as can be seen in Table 1.
Example 2. Consider
f(x) = ¥ — 4x?, xeli 1]
We have f(3)=+ve-1>0, f(1)=e—-4<0, fl(x)=e*-8x<0, f'(x)=e*-8<0, f"(x)=¢* and Ep(x)=2e* -

48e* + 8xe¥ +192 > 0, x € [ 1, 1].
Taking xo = 1, Theorem 2 applies again and we obtain the results presented in Table 2.

Next, we present two examples and we compare the studied method to other methods. In order to obtain smaller tables,
we used the format short command in Matlab. It is worth mentioning that such choice may lead to results that appear
integers, while they are not (e.g., the value of y, in Table 6 is shown to be 2, while f(y,) should be 0); the explanation
resides in the rounding made in the conversion process.

Example 3. Consider the following equation (see, e.g., [6])
f(x)=esinx+In(x*+1), x*=0.

The largest interval to study the monotone convergence of our method by Theorems 2-5 is [a, b] := [x*, 1.54...], since
f" vanishes at b (being positive on [a, b]). The Fourier condition (D) holds on [a, b] (and does not hold for x < a), E{x) > 0
on [a, b], while the derivatives f, f’ are positive on this interval. The conclusions of Theorem 2 apply.

The Aitken-Newton method leads to the following results, presented in Table 3.



Table 3
Aitken-Newton iterates, f(x) = e*sinx +In(x> + 1).

n Xn f(xn) Yn fyn) Zn f(zn)
0 154 5.8778 0.51233 1.0513 0.17152 0.2316
1 0.048016 0.052662 0.0039166 0.0039473 3.0245e—-05  3.0246e-05
2 34821e-09 3.4821e-09 3.6375e-17 3.6375e-17 0 0
Table 4
Cordero-Torregrosa-Vassileva iterates, f(x) = e*sinx + In(x% + 1).
n Xn f(xn) Yn fyn) Zn f(zn)
0 1.49 5.592 0.51 1.0442 0.21795 0.31529
1 —0.36451 —-0.12284 —0.87167 0.24508 —0.66891 0.052125
2 -0.57963 —0.017122 —0.60388 0.00048485  —0.60323 5.9483e-07
3 -0.60323 -1.9295e-12  -0.60323 0 —-0.60323 0
0 1.48 5.535 0.50911 1.0414 0.21622 0.31202
1 —0.32703 —0.13002 -1.258 0.67839 —0.83324 0.20558
2 0.10514 0.12758 0.015884 0.01639 4.5216e—4 4.5257e—-4
3  -6.6097e-07 —6.6097e—-07 8.7366e—13  8.7366e—13  —2.1176e-22  —2.1176e-22

Table 5
Kou-Wang iterates, f(x) = e*sinx + In(x% + 1).
no X f(xn) Yn fyn) Zn f(zn)
0 1.49 5.592 0.51 1.0442 0.21795 0.31529
1 —0.26375 —0.13301 2.4987 9.2742 1.1273 3.6088
2 —189.6439 10.4903 805.0965 Inf NaN NaN
0 1.48 5.535 0.50911 1.0414 0.21622 0.31202
1 —0.23421 —0.13021 0.68334 1.6336 0.24215 0.36247
2 1.1187 3.5648 0.41752 0.7763 0.14701 0.19107
3 —0.015069 —0.014616 4.8068e—4 4.8114e—4 4.2097e—-07 4.2097e—-07
4 7.7382e—13 7.7382e—13 1.7964e-24 1.7964e—-24 —2.7804e—-36 —2.7804e—-36

The convergence may be not very fast for initial approximations away from the solution.

It is worth noting that the method converges for —0.3 <xp <x} too (local convergence near x*=0 assured by
Theorem 1), despite the Fourier condition does not hold. For xy = —0.3 one obtains x; ~ —0.25 < 0, then y; ~ 1.7 > 0 and
the rest of the iterates remain positive, converging monotonically to xj. For xo = —0.4, the method converges to another
solution of the equation, x5 = —0.603...

The optimal method introduced by Cordero et al. [8] has a smaller convergence domain for xg > x*, since the iterates
converge for xg = 1.48 (x4 = 1.3741e — 32), while for xo = 1.49 the iterates jump over x; and converge to X3 as can be seen
in Table 4. By checking all the initial approximations between 0 and 1.48 with step 0.001, we found out that the convergence
domain is even smaller, since taking 1.442 as initial approximation does not lead to convergence.

The Kou-Wang method (formula (25) in [9]) converges for xq = 1.48 (x4 = 0) and diverges for x, = 1.49, as can be seen
in Table 5.

Example 4. Consider the following equation (see, e.g., [14])
f)=x-—2)X°+x+1)e ™1, x*=2

The largest interval to study the monotone convergence of our method by Theorems 2-5 is [a, b] :=[x*,7.9...], since f’
vanishes at b (being positive on [a, b]).

The Fourier condition (D) holds on [a, b] (and does not hold for x < a), E{x) > 0 on [a, b], while both the derivatives f,
f’ are positive on this interval. The conclusions of Theorem 2 apply.

It is interesting to note that in [14, Remark 6] Petkovic observed that the methods studied there have a small convergence
domain to the left of the solution: the choice of x; = 1.8 caused a bad convergence behavior of those iterates. We believe
that this behavior may be explained by the fact that the derivative of f vanishes at x = 1.78...

The Aitken-Newton method leads to the results presented in Table 6. The iterates converge even for xy > 7.9 (and to the
left of the solution as well, but for xy higher than 1.72). Of course the convergence may be not very fast when the initial
approximations are away from the solution.

The optimal method introduced by Cordero et al. [8] converges to x* for xo = 6.46 and it does not for xy = 6.47, as shown
in Table 7.

The optimal method introduced by Liu and Wang (formula (18) in [10]) converges to x* =2 for xy = 2.359 (it needs 5
iterates) but for xo = 2.36 it converges to another solution, x; = 1512.626.. .. The results are presented in Table 8.



Table 6

Aitken-Newton iterates, f(x) = (x —2)(x° +x+ 1)e*"1.

n Xn f(xn) Yn fyn) Zn f(zn)
0 7.9 761907.1334 5.6028 148982.786 4.6615 44837.6641
1 4.0818 16594.4155 3.5637 5385.3696 3.1548 1769.5473
2 2.8568 655.665 2.5841 215.3342 2.3658 69.4249
3 2.2125 24.0727 2.0909 6.6087 2.0232 1.3004
4 2.0026 0.13254 2 0.0013264 2 1.3712e-07
5 2 —1.1353e-14 2 0
Table 7
Cordero, Torregrosa and Vassileva iterates, f(x) = (x —2)(x'® +x + 1)e*"1.
n Xn f(xn) Yn fyn) Zn f(zn)
0 6.46 324955.0041 5.165 89878.025 43634 27700.9456
1 1.8472 —4.1246 2.3095 48.8543 2.0877 6.3062
2 1.9112 -3.155 2.053 3.3344 2.0049 0.25362
3 1.9998 —0.0091403 2 6.5281e—-06 2 1.9074e—12
4 2 0
0 6.47 327469.2878 5.1701 90456.4068 43678 27912.268
1 1.8136 —4.336 2.9391 879.3346 2.3777 74.4975
7 —56.4878 —2.424e+43
Table 8
Liu-Wang iterates, f(x) = (x —2) (x'0 +x+ 1)e*"1.
n Xn f(xn) Yn flyn) Zn f(zn)
0 2.359 66.6580 2.1929 20.3973 2.0620 4.0392
1 1.8237 —4.2901 2.6406 277.0720 2.2353 28.8601
2 2.7206 387.8421 2.4745 126.5702 2.2432 30.6641
3 2.1785 17.9263 2.0697 46753 2.0103 0.5496
4 2.0009 0.0449 2.0000 1.5555e—-04 2.0000 1.0885e—09
5 2 0
0 2.36 67.0603 2.1937 20.5289 2.0624 4.0706
1 1.7919 —4.3898 5.5436 1.3980e+05 3.6678 6.9018e+03
2 1.5126e+03 0

Among the optimal methods in [14] (the methods with convergence orders higher than 8 were corrected in a subsequent
paper), the modified Ostrowski and Maheshwari methods behave very well for this example (we have studied the conver-
gence only to the right of the solution). The modified Euler-like method has a small domain of convergence (in R), since it
converges to x* for xo = 2.15, while for xo = 2.16 it generates square roots of negative numbers. Matlab has the feature of
implicitly dealing with complex numbers, and the iterates finally converge (in C) to the solution (see Table 9).

Conclusions

The Aitken-Newton method studied in this paper present, under certain circumstances, some advantages over the op-
timal methods; the obtained sufficient conditions for guaranteed convergence may theoretically lead to larger convergence
domains (especially sided convergence intervals) than from estimates of attraction balls, while a few examples shown that

Table 9
Petkovi¢-Euler-like iterates, f(x) = (x —2)(x10 +x + 1)e~*~"1,
noox f(xn)
215 13.5861
2.0016 0.082608
2 0
2.16 15.0282

wN = O N = O

2.0053-0.0052421i
2+1.7364e—15i
2

0.27199-0.2795i

1.0672e—12+8.8785e—14i

0

the attraction domain of the method is larger than for some optimal methods.
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