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We introduce an Aitken–Newton iterative method for nonlinear equations, which is ob- 

tained by using the Hermite inverse interpolation polynomial of degree 2, with two nodes 

given by the Newton method. 

The local convergence of these iterates is shown to be 8, and the efficiency index is 
5 
√ 

8 ≈ 1 . 51 , which is not optimal in the sense of Kung and Traub. However, we show that 

under supplementary conditions (sometimes easy to verify) the inner and outer iterates 

converge monotonically to the solution. This aspect allows an improved control of the iter- 

ation stopping (avoiding divisions by zero) and offer an alternative way to the estimation 

of radius of attraction balls in ensuring the convergence of the iterates. Numerical exam- 

ples show that this method may become competitive and in certain circumstances even 

more robust than certain optimal methods of same convergence order. 
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1. Introduction 

In this paper, we study certain iterative methods for solving nonlinear equations 

f ( x ) = 0 , (1) 

where f : [ a, b ] → R , a, b ∈ R , a < b. The Aitken and Steffensen-type methods consider two more equations, equivalent to the 

above one: 

x − g i ( x ) = 0 , i = 1 , 2 , (2) 

where g i : [ a, b ] → [ a, b] . 

We admit that 

(A) Eq. (1) has a solution x ∗ ∈ ] a, b[ . 

The most known methods of Steffensen, Aitken, or Aitken–Steffensen type are obtained from inverse interpolation poly- 

nomials of degree 1, having the knots determined with the aid of different functions g 1 , g 2 (see, e.g., [1–5,13] ). 

More general methods of this type have been obtained by using inverse interpolation polynomials of degree 2 [11] ; 

they have led to iterative methods of q -order at least 3, and with efficiency indexes usually higher than for the case of 
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interpolation polynomials of degree 1 [15] . Obviously, the convergence order and the efficiency index of the resulted meth- 

ods depend on the functions g i . 

Here, we study a method based on the Hermite inverse interpolation polynomial of degree 2, with the nodes generated 

with the aid of the Newton iteration function, x − f (x ) / f ′ (x ) , in (2) . 

We need the following assumption on f : 

(B) f is three times derivable on [ a , b ] and f ′ ( x ) � = 0, ∀ x ∈ [ a , b ]. 

This assumption implies that function f is monotone and continuous on [ a , b ], therefore ∃ f −1 : J → [ a, b ] , J := f ([ a , b ]), 

and by (B) we have 

x ∗ = f −1 ( 0 ) . 

In order to approximate the solution x ∗ we shall consider the Hermite inverse interpolation polynomial of degree 2. 

Let a 1 , a 2 ∈ [ a , b ], denote b 1 = f ( a 1 ) , b 2 = f ( a 2 ) so that 

f −1 ( b 1 ) = a 1 , f −1 ( b 2 ) = a 2 , 

and 

f −1 ( ·) ′ | y = b 2 = 

1 
f ′ ( a 2 ) . 

The polynomial of degree 2 which satisfies 

P ( b 1 ) = a 1 

P ( b 2 ) = a 2 

P ′ ( b 2 ) = 

1 
f ′ ( a 2 ) 

is the Hermite polynomial, given by 

P ( y ) = a 1 + [ b 1 , b 2 ; f −1 ] ( y − b 1 ) + [ b 1 , b 2 , b 2 ; f −1 ] ( y − b 1 ) ( y − b 2 ) , (3) 

having the remainder 

f −1 ( y ) − P ( y ) = [ y, b 1 , b 2 , b 2 ; f −1 ] ( y − b 1 ) ( y − b 2 ) 
2 
, ∀ y ∈ J, 

where [ u, v ; h ] , [ u, v , w ; h ] denote the first, respectively the second order divided difference of the function h at the nodes 

u, v resp. u, v , w. 

Setting y = 0 in (3) we are led to another approximation for x ∗: 

x ∗ ≈ P ( 0 ) = a 1 − [ b 1 , b 2 ; f −1 ] b 1 + [ b 1 , b 2 , b 2 ; f −1 ] b 1 b 2 , (4) 

having the error 

x ∗ − P ( 0 ) = −[0 , b 1 , b 2 , b 2 ; f −1 ] b 1 b 
2 
2 . (5) 

Formula (4) will be used in an iterative fashion, by setting a 3 = P ( 0 ) , and so on. However, instead of (4) and (5) we need 

formulas which do not need the evaluation of the inverse function. 

It is known that the divided differences satisfy the following relations (see, e.g., [12] ): 

[ b 1 , b 2 ; f −1 ] = 

1 

[ a 1 , a 2 ; f ] 

[ b 1 , b 2 , b 2 ; f −1 ] = − [ a 1 , a 2 , a 2 ; f ] 

[ a 1 , a 2 ; f ] 2 f ′ ( a 2 ) 
which lead us to a formula for a 3 based only on the values of f and its derivatives: 

x ∗ ≈ a 3 = a 1 − f ( a 1 ) 

[ a 1 , a 2 ; f ] 
− [ a 1 , a 2 , a 2 ; f ] f ( a 1 ) f ( a 2 ) 

[ a 1 , a 2 ; f ] 2 f ′ ( a 2 ) 
. (6) 

Taking into account (B) and the Mean Value Theorem on the divided differences, the error in (5) becomes 

[0 , b 1 , b 2 , b 2 ; f −1 ] = 

f −1 ( η) 
′′′ 

6 

, η ∈ int J. 

Since (see, e.g., [12] ) 

f −1 ( y ) 
′′′ = 

3 

(
f ′′ ( x ) 

)2 − f ′ ( x ) f ′′′ ( x ) 
f ′ ( x ) 5 

, with y = f ( x ) , 

and f is one-to-one, it follows that ∃ ξ ∈ ] a, b[ with η = f ( ξ ) such that 

[0 , b 1 , b 2 , b 2 ; f −1 ] = 

3 

(
f ′′ ( ξ ) 

)2 − f ′ (ξ ) f ′′′ (ξ ) 

6( f ′ ( ξ ) ) 5 
. (7) 
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Denoting 

E f ( x ) = 3( f ′′ ( x ) ) 2 − f ′ ( x ) f ′′′ ( x ) , (8) 

the error in (7) is written as 

x ∗ − a 3 = − E f ( ξ ) 

6( f ′ ( ξ ) ) 5 
b 1 b 

2 
2 . (9) 

As we have mentioned, the functions g 1 and g 2 in (2) are taken, with the aid of the Newton iteration function, as: 

g 1 ( x ) = x − f ( x ) 

f ′ ( x ) 
;

g 2 ( x ) = g 1 ( g 1 ( x ) ) , 

so that, setting a 1 = z n and a 2 = y n in (6) , we are led to the following iterations: 

y n = x n − f ( x n ) 

f ′ ( x n ) 

z n = y n − f ( y n ) 

f ′ ( y n ) 
(10) 

x n +1 = z n − f ( z n ) 

[ z n , y n ; f ] 
− [ z n , y n , y n ; f ] f ( z n ) f ( y n ) 

[ y n , z n ; f ] 2 f ′ ( y n ) 
, n = 0 , 1 , . . . 

We refer to this as the Aitken–Newton method. 

We shall show in Section 2 that under some very simple conditions, this method converges locally with q -order 8. Since, 

at each iteration step we need to compute 5 function evaluations (i.e., f ( x n ), f 
′ ( x n ), f ( y n ), f ′ ( y n ) and f ( z n )), the efficiency index 

is 
5 
√ 

8 ≈ 1 . 51 , which is not optimal in the sense of Kung and Traub. 

There are a lot of optimal methods (see, e.g., [7,8,10,16] ) but, as we shall see in the numerical examples section, the 

optimal efficiency index is not a paramount by itself, since there exist situations when some optimal methods may have 

very small attraction sets for certain solutions. 

In Section 3 we show that if there exists a set D ⊆[ a , b ] containing a solution x ∗ such that on this set, f has monotone and 

convex properties, E f is positive, and the Fourier condition is verified, then for any initial approximation in D , the method 

converges monotonically to x ∗: 

x ∗ < x n +1 < z n < y n < x n , ( or x n < y n < z n < x n +1 < x ∗) , n = 0 , 1 , . . . 

It is important to note that the convergence holds as large as the domain D is, and this domain may extend to the left 

or to the right of the solution much more than ensured by (even sharp) estimates for the radius of an attraction ball. 

The above inequalities show another advantage of this method, since the stopping criterions (such as | x n −1 − x n | < tol 1 or 

| f ( x n )| < tol 2 ) may be considered for the extended (inner) iterates x n , y n , z n , x n +1 (resp. for the values of f at them), avoiding 

divisions by zeros. 

These aspects, as well as other ones, are treated in Section 4 , regarding numerical examples. 

2. Local convergence 

The following result holds. 

Theorem 1. Under assumptions (A) and (B), the Aitken–Newton method (10) converges locally, with q-convergence order 8: 

x ∗ − x n +1 = A n ( x 
∗ − x n ) 

8 
, (11) 

where 

A n = −E f ( ξn ) f ′′ ( θn ) ( f ′′ ( δn ) ) 4 f ′ ( μn ) ( f ′ ( νn ) ) 2 

192( f ′ ( ξn ) ) 5 ( f ′ ( x n ) ) 4 f ′ (y n ) 
, 

for certain ξn , θn , δn , μn , νn ∈ ] a, b[ . The asymptotic constant is given by 

A = lim 

n →∞ 

A n = −E f ( x 
∗) ( f ′′ ( x ∗) ) 5 

192( f ′ ( x ∗) ) 7 
. 

Proof. We assume in the beginning that the elements of the sequences ( x n ) n ≥ 0 , ( y n ) n ≥ 0 and ( z n ) n ≥ 0 remain in [ a , b ]. 

Assumption (B ) and the first relation in (4) imply the existence of δn ∈ ] a, b[ such that 

x ∗ − y n = − f ′′ ( δn ) 

2 f ′ ( x n ) 
( x ∗ − x n ) 

2 
, n = 0 , 1 , . . . (12) 

Analogously, the second relation in (4) attracts 

x ∗ − z n = − f ′′ ( θn ) 

2 f ′ ( y n ) 
( x ∗ − y n ) 

2 
, n = 0 , 1 , . . . , (13) 

with θn ∈ ] a, b[ . 
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Considering (9) , with a 3 = x n +1 , b 1 = f ( z n ) and b 2 = f ( y n ) , we get 

x ∗ − x n +1 = − E f ( ξn ) 

6( f ′ ( ξn ) ) 5 
f ( z n ) ( f ( y n ) ) 

2 , n = 0 , 1 , . . . 

The values f ( z n ) ş i f ( y n ) are easily expressed by 

f ( z n ) = f ′ ( μn ) ( z n − x ∗) , 

f ( y n ) = f ′ ( νn ) ( y n − x ∗) , (14) 

with μn , νn ∈ ] a, b[ . 

Relations (12) –(14) imply (11) . 

The induction holds if x 0 is chosen sufficiently close to x ∗. �

3. Monotone convergence 

We consider the following supplementary conditions on f 

(C) Function E f given by (8) is strictly positive on [ a , b ]: 

E f ( x ) = 3( f ′′ ( x ) ) 2 − f ′ ( x ) f ′′′ ( x ) > 0 , ∀ x ∈ ] a, b[ ;
(D) The initial approximation x 0 ∈ [ a , b ] satisfies the Fourier condition: 

f ( x 0 ) f 
′′ ( x 0 ) > 0 . 

Remark 1. As we shall see in the numerical examples, condition (C) may sometimes be easily verified (e.g, when f ′ and f ′′ 
have different signs, etc.). 

We obtain the following results: 

Theorem 2. If f and x 0 satisfy assumptions (A)–(D) and, moreover: 

(i 1 ) f 
′ ( x ) > 0, ∀ x ∈ [ a , b ]; 

(ii 1 ) f 
′ ′ ( x ) > 0, ∀ x ∈ [ a , b ]; 

then the iterates of the Aitken–Newton method (10) satisfy: 

(j 1 ) x 
∗ < x n +1 < z n < y n < x n , n = 0 , 1 , . . . 

(jj 1 ) lim x n = lim y n = lim z n = x ∗. 

Proof. We proceed by induction. 

Let x n ∈ [ a , b ] satisfy the Fourier condition. By (ii 1 ) we have that f ( x n ) > 0, therefore x n > x ∗, by (i 1 ) . Relations (12) and 

(13) attract y n > x ∗ and z n > x ∗. The first relation in (10) , together with f ( x n ) > 0 imply that y n < x n . Analogously, z n < y n . 

The third relation in (10) and the hypotheses imply that z n > x n +1 > x ∗. Statement ( j 1 ) is proved. 

It follows that sequences ( x n ), ( y n ), ( z n ) are convergent to the same limit � , and (10) shows that f ( � ) = 0 , i.e., � = x ∗. �

Theorem 3. If f and x 0 satisfy (A)–(D) and moreover, 

(i 2 ) f 
′ ( x ) < 0, ∀ x ∈ [ a, b] ;

(ii 2 ) f 
′ ′ ( x ) < 0, ∀ x ∈ [ a, b] , 

then the same conclusions as those in Theorem 2 hold. 

The proof is easily obtained applying Theorem 2 to the function h = − f . 

The following two theorems have similar proofs. 

Theorem 4. If f and x 0 satisfy conditions (A)–(D) and moreover, 

(i 3 ) f 
′ ( x ) < 0, ∀ x ∈ [ a , b ]; 

(ii 3 ) f 
′ ′ ( x ) > 0, ∀ x ∈ [ a , b ]; 

then the iterates of the Aitken–Newton method (10) satisfy 

(j 3 ) x n < y n < z n < x n +1 < x ∗, n = 0 , 1 , . . . , 

(jj 3 ) lim x n = lim y n = lim z n = x ∗. 

Theorem 5. If f and x 0 satisfy conditions (A)–(D) and moreover, 
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Table 1 

Aitken–Newton iterates (10) , f ( x ) = e 2 x + sin x − 2 . 

n x n y n z n f ( x n ) 

0 1 5.932655378778493e −1 3.446691220304792e −1 6.2e+0 

1 2.781136458347832e −1 2.739285803512798e −1 2.739153432766920e −1 1.8e −2 

2 2.739153431449791e −1 0 

Table 2 

Aitken–Newton iterates (10) , f ( x ) = e x − 4 x 2 . 

n x n y n z n f ( x n ) 

0 1 7.573293140767846e −1 7.161639906789638e −1 −1.2e+00 

1 7.148090 0 08114115e −1 7.148059123705082e −1 7.148059123627778e −1 −1.1e −05 

2 7.148059123627779e −1 −4.4e −16 

(i 4 ) f 
′ ( x ) > 0, ∀ x ∈ [ a, b] ;

(ii 4 ) f 
′ ′ ( x ) < 0, ∀ x ∈ [ a, b] , 

then the iterates of (10) satisfy the conclusion of Theorem 4 . 

Remark 2. As we shall see in the numerical examples, even if the hypotheses of the above monotone convergence results 

are not fulfilled, the iterates may converge (due to the local convergence Theorem 1 ) and sometimes even monotonically 

( Theorems 2 –5 offer sufficient but not also necessary conditions). 

4. Numerical examples 

In this section we shall consider some examples for which we run programs in Matlab, in double precision floating point 

arithmetic (this is the setting most encountered in practice). As we shall see, the high convergence orders and the monotone 

properties are properly reflected in this setting, and we do not need higher precision. 

There are a lot of optimal iterative methods having the convergence order 8. We shall present only a few of them, for 

which we have found a better convergence of the Aitken–Newton iterates in certain situations. 

We begin with two examples, which show the rapid convergence of the Aitken–Newton iterates (10) . 

Example 1. Let 

f ( x ) = e 2 x + sin x − 2 , x ∈ [0 , 1] . 

We have: f ( 0 ) = −1 , f ( 1 ) = e 2 + sin 1 − 2 > 0 , f ′ ( x ) = 2 e 2 x + cos x > 0 , x ∈ [0 , 1] , f ′′ ( x ) = 4 e 2 x − sin x > 0 , f ′′′ ( x ) = 

8 e 2 x − cos x and 

E f ( x ) > 32 e 4 x − 30 e 2 x + 1 > 0 , ∀ x > 0 . 

Taking x 0 = 1 , Theorem 2 applies and we obtain decreasing sequences x n , y n , z n , as can be seen in Table 1 . 

Example 2. Consider 

f ( x ) = e x − 4 x 2 , x ∈ [ 1 
2 
, 1] . 

We have f 
(

1 
2 

)
= 

√ 

e − 1 > 0 , f ( 1 ) = e − 4 < 0 , f ′ ( x ) = e x − 8 x < 0 , f ′′ ( x ) = e x − 8 < 0 , f ′′′ ( x ) = e x and E f ( x ) = 2 e 2 x −
48 e x + 8 xe x + 192 > 0 , x ∈ [ 1 2 , 1] . 

Taking x 0 = 1 , Theorem 2 applies again and we obtain the results presented in Table 2 . 

Next, we present two examples and we compare the studied method to other methods. In order to obtain smaller tables, 

we used the format short command in Matlab. It is worth mentioning that such choice may lead to results that appear 

integers, while they are not (e.g., the value of y 4 in Table 6 is shown to be 2, while f ( y 4 ) should be 0); the explanation 

resides in the rounding made in the conversion process. 

Example 3. Consider the following equation (see, e.g., [6] ) 

f ( x ) = e x sin x + ln (x 2 + 1) , x ∗ = 0 . 

The largest interval to study the monotone convergence of our method by Theorems 2 –5 is [ a, b] := [ x ∗, 1 . 54 . . . ] , since 

f ′ ′ vanishes at b (being positive on [ a , b ]). The Fourier condition (D) holds on [ a , b ] (and does not hold for x < a ), E f ( x ) > 0 

on [ a , b ], while the derivatives f ′ , f ′ ′ are positive on this interval. The conclusions of Theorem 2 apply. 

The Aitken–Newton method leads to the following results, presented in Table 3 . 
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Table 3 

Aitken–Newton iterates, f (x ) = e x sin x + ln (x 2 + 1) . 

n x n f ( x n ) y n f ( y n ) z n f ( z n ) 

0 1.54 5.8778 0.51233 1.0513 0.17152 0.2316 

1 0.048016 0.052662 0.0039166 0.0039473 3.0245e −05 3.0246e −05 

2 3.4821e −09 3.4821e −09 3.6375e −17 3.6375e −17 0 0 

Table 4 

Cordero–Torregrosa–Vassileva iterates, f (x ) = e x sin x + ln (x 2 + 1) . 

n x n f ( x n ) y n f ( y n ) z n f ( z n ) 

0 1 .49 5 .592 0 .51 1 .0442 0 .21795 0 .31529 

1 −0 .36451 −0 .12284 −0 .87167 0 .24508 −0 .66891 0 .052125 

2 −0 .57963 −0 .017122 −0 .60388 0 .0 0 04 84 85 −0 .60323 5 .9483e −07 

3 −0 .60323 −1 .9295e −12 −0 .60323 0 −0 .60323 0 

0 1 .48 5 .535 0 .50911 1 .0414 0 .21622 0 .31202 

1 −0 .32703 −0 .13002 −1 .258 0 .67839 −0 .83324 0 .20558 

2 0 .10514 0 .12758 0 .015884 0 .01639 4 .5216e −4 4 .5257e −4 

3 −6 .6097e −07 −6 .6097e −07 8 .7366e −13 8 .7366e −13 −2 .1176e −22 −2 .1176e −22 

Table 5 

Kou–Wang iterates, f (x ) = e x sin x + ln (x 2 + 1) . 

n x n f ( x n ) y n f ( y n ) z n f ( z n ) 

0 1 .49 5 .592 0 .51 1 .0442 0 .21795 0 .31529 

1 −0 .26375 −0 .13301 2 .4987 9 .2742 1 .1273 3 .6088 

2 −189 .6439 10 .4903 805 .0965 Inf NaN NaN 

0 1 .48 5 .535 0 .50911 1 .0414 0 .21622 0 .31202 

1 −0 .23421 −0 .13021 0 .68334 1 .6336 0 .24215 0 .36247 

2 1 .1187 3 .5648 0 .41752 0 .7763 0 .14701 0 .19107 

3 −0 .015069 −0 .014616 4 .8068e −4 4 .8114e −4 4 .2097e −07 4 .2097e −07 

4 7 .7382e −13 7 .7382e −13 1 .7964e −24 1 .7964e −24 −2 .7804e −36 −2 .7804e −36 

The convergence may be not very fast for initial approximations away from the solution. 

It is worth noting that the method converges for −0 . 3 ≤ x 0 < x ∗1 too (local convergence near x ∗ = 0 assured by 

Theorem 1 ), despite the Fourier condition does not hold. For x 0 = −0 . 3 one obtains x 1 ≈ −0 . 25 < 0 , then y 1 ≈ 1.7 > 0 and 

the rest of the iterates remain positive, converging monotonically to x ∗
1 
. For x 0 = −0 . 4 , the method converges to another 

solution of the equation, x ∗
2 

= −0 . 603 . . . 

The optimal method introduced by Cordero et al. [8] has a smaller convergence domain for x 0 > x ∗1 , since the iterates 

converge for x 0 = 1 . 48 ( x 4 = 1 . 3741 e − 32 ), while for x 0 = 1 . 49 the iterates jump over x ∗
1 

and converge to x ∗
2 

as can be seen 

in Table 4 . By checking all the initial approximations between 0 and 1.48 with step 0.001, we found out that the convergence 

domain is even smaller, since taking 1.442 as initial approximation does not lead to convergence. 

The Kou–Wang method (formula (25) in [9] ) converges for x 0 = 1 . 48 ( x 4 = 0 ) and diverges for x 0 = 1 . 49 , as can be seen 

in Table 5 . 

Example 4. Consider the following equation (see, e.g., [14] ) 

f ( x ) = (x − 2)(x 10 + x + 1) e −x −1 , x ∗ = 2 . 

The largest interval to study the monotone convergence of our method by Theorems 2 –5 is [ a, b] := [ x ∗, 7 . 9 . . . ] , since f ′ ′ 
vanishes at b (being positive on [ a , b ]). 

The Fourier condition (D) holds on [ a , b ] (and does not hold for x < a ), E f ( x ) > 0 on [ a , b ], while both the derivatives f ′ , 
f ′ ′ are positive on this interval. The conclusions of Theorem 2 apply. 

It is interesting to note that in [14, Remark 6] Petkovi ́c observed that the methods studied there have a small convergence 

domain to the left of the solution: the choice of x 0 = 1 . 8 caused a bad convergence behavior of those iterates. We believe 

that this behavior may be explained by the fact that the derivative of f vanishes at x = 1 . 78 . . . 

The Aitken–Newton method leads to the results presented in Table 6 . The iterates converge even for x 0 > 7.9 (and to the 

left of the solution as well, but for x 0 higher than 1.72). Of course the convergence may be not very fast when the initial 

approximations are away from the solution. 

The optimal method introduced by Cordero et al. [8] converges to x ∗ for x 0 = 6 . 46 and it does not for x 0 = 6 . 47 , as shown 

in Table 7 . 

The optimal method introduced by Liu and Wang (formula (18) in [10] ) converges to x ∗ = 2 for x 0 = 2 . 359 (it needs 5 

iterates) but for x 0 = 2 . 36 it converges to another solution, x ∗
1 

= 1512 . 626 . . . . The results are presented in Table 8 . 
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Table 6 

Aitken–Newton iterates, f (x ) = (x − 2)(x 10 + x + 1) e −x −1 . 

n x n f ( x n ) y n f ( y n ) z n f ( z n ) 

0 7 .9 761907 .1334 5 .6028 148982 .786 4 .6615 44837 .6641 

1 4 .0818 16594 .4155 3 .5637 5385 .3696 3 .1548 1769 .5473 

2 2 .8568 655 .665 2 .5841 215 .3342 2 .3658 69 .4249 

3 2 .2125 24 .0727 2 .0909 6 .6087 2 .0232 1 .3004 

4 2 .0026 0 .13254 2 0 .0013264 2 1 .3712e −07 

5 2 −1 .1353e −14 2 0 

Table 7 

Cordero, Torregrosa and Vassileva iterates, f (x ) = (x − 2)(x 10 + x + 1) e −x −1 . 

n x n f ( x n ) y n f ( y n ) z n f ( z n ) 

0 6 .46 324955 .0041 5 .165 89878 .025 4 .3634 27700 .9456 

1 1 .8472 −4 .1246 2 .3095 48 .8543 2 .0877 6 .3062 

2 1 .9112 −3 .155 2 .053 3 .3344 2 .0049 0 .25362 

3 1 .9998 −0 .0091403 2 6 .5281e −06 2 1 .9074e −12 

4 2 0 

0 6 .47 327469 .2878 5 .1701 90456 .4068 4 .3678 27912 .268 

1 1 .8136 −4 .336 2 .9391 879 .3346 2 .3777 74 .4975 

�

7 −56 .4878 −2 .424e+43 

Table 8 

Liu–Wang iterates, f (x ) = (x − 2)(x 10 + x + 1) e −x −1 . 

n x n f ( x n ) y n f ( y n ) z n f ( z n ) 

0 2 .359 66 .6580 2 .1929 20 .3973 2 .0620 4 .0392 

1 1 .8237 −4 .2901 2 .6406 277 .0720 2 .2353 28 .8601 

2 2 .7206 387 .8421 2 .4745 126 .5702 2 .2432 30 .6641 

3 2 .1785 17 .9263 2 .0697 4 .6753 2 .0103 0 .5496 

4 2 .0 0 09 0 .0449 2 .0 0 0 0 1 .5555e −04 2 .0 0 0 0 1 .0885e −09 

5 2 0 

0 2 .36 67 .0603 2 .1937 20 .5289 2 .0624 4 .0706 

1 1 .7919 −4 .3898 5 .5436 1 .3980e+05 3 .6678 6 .9018e+03 

2 1 .5126e+03 0 

Table 9 

Petkovi ́c–Euler-like iterates, f (x ) = (x − 2)(x 10 + x + 1) e −x −1 . 

n x n f ( x n ) 

0 2 .15 13 .5861 

1 2 .0016 0 .082608 

2 2 0 

0 2 .16 15 .0282 

1 2 .0 053 −0.0 052421i 0 .27199 −0.2795i 

2 2 + 1 .7364e −15i 1 .0672e −12 + 8.8785e −14i 

3 2 0 

Among the optimal methods in [14] (the methods with convergence orders higher than 8 were corrected in a subsequent 

paper), the modified Ostrowski and Maheshwari methods behave very well for this example (we have studied the conver- 

gence only to the right of the solution). The modified Euler-like method has a small domain of convergence (in R ), since it 

converges to x ∗ for x 0 = 2 . 15 , while for x 0 = 2 . 16 it generates square roots of negative numbers. Matlab has the feature of 

implicitly dealing with complex numbers, and the iterates finally converge (in C ) to the solution (see Table 9 ). 

Conclusions 

The Aitken–Newton method studied in this paper present, under certain circumstances, some advantages over the op- 

timal methods; the obtained sufficient conditions for guaranteed convergence may theoretically lead to larger convergence 

domains (especially sided convergence intervals) than from estimates of attraction balls, while a few examples shown that 

the attraction domain of the method is larger than for some optimal methods. 
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