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Abstract 

The usual method in nonequilibrium statistical mechanics allows the derivation of the 
balance equations only for the collision invariants (mass. momentum, energy) and only by 
a complete knowledge of the microscopic structure. In this paper the existence of the balance 
equation for an arbitrary physical quantity is proved for any corpuscular system satisfying the 
local equilibrium assumption, if the microscopic components obey the classical mechanics 
principles and can be generated or destroyed as a result of some instantaneous processes. We 
discuss the fundamental equations of the continuum mechanics for mass and momentum. 
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I. [nlroduction 

The balance equat ions are postulated relations for fundamental  physical quantities 

(mass, momentum,  energy, entropy,  etc.) valid for all cont inuous  media [1]. We take 

over the differential expression of  the balance equat ions from Ref. [2]. Let tp be an 

additive physical quant i ty  associated to a cont inuous  medium. That  is, there exists 

a function 7 ~ of space (r) and time (t), called the volume density of qg such that, for any 

volume V, the integral ~v tPdr represents the amoun t  of ~P contained in V. The 

differential form of the balance equat ion at a regular point  (i.e. without  shocks or 

other  discontinuities) is 

3 

8,~u + ~ ~%(4,~ + ~v~) - (p + s) -- 0, (1) 
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where ~, is the temporal derivative, ~3, is the derivative with respect to the c~ component 
of r, ~ is the ~ component of the flux density of 71, v~ is the ~ component of the 
velocity, p is the production density of ~P due to interior processes and s is the supply 
density of 7/controlled from the exterior of V. The quantities q~, p and s are expressed 
by the constitutive equations characterizing the considered material. 

The statistical method of derivation of the balance equations for a macroscopic 
physical system from its microscopic structure was initiated by Boltzmann [3 5]. We 
shall consider only the classical nonequilibrium statistical mechanics. This method 
relies on the evolution equation of the probability density in the phase space for the 
system consisting of all the microscopic components of the physical system (Liouville 
equation). Even for the simple case of the ideal gas, because of mathematical difficul- 
ties, the derivation of the balance equations and constitutive equations is possible only 
using certain hypotheses, approximations and simplifications [-6]. So far, these results 
have been extended to hard sphere fluids, also a very idealized molecular model [7]. 
For a more complicated microscopic structure, the existence of the balance equations 
is implicitly postulated and the problem of the statistical mechanics is reduced to the 
calculation of the constitutive equations. 

In this paper we show that the balance equations can be derived in three successive 
stages. First we prove that for an arbitrary finite number of material points, 
a spac~time average satisfying a mathematical relation of the form (1) can be defined. 
The corpuscular structure of a physical system ensures the existence of mathematical 
relations of the balance equations even if the space-time averages have discontinuous 
first order partial derivatives. In the second stage we obtain the smoothness specific to 
the continuous fields if the physical system verifies the local equilibrium assumption. 
Thus, balance equation (1) follows only from two hypotheses: the corpuscular struc- 
ture and the local equilibrium assumption. In the third stage, the information on the 
microscopic structure is used to derive the constitutive equations. 

The usual statistical approach does not allow the separation of these three stages, 
all of them being simultaneously implied in the Liouville equation. The mathematical 
form specific to balance equations is implicitly contained in the Liouville equation 
which is a probability conservation law in phase space. Tile smoothness characteristic 
to continuous fields is introduced by the probability density in phase space which is 
defined as a continuous field. The Liouville equation can be written only if the 
interaction forces of the microscopic components are known, i.e. the model of the 
microscopic structure of the physical system has to be completely described. 

A finite number of particles satisfying the classical mechanics principles is the 
physical system with corpuscular structure considered in the following. The particles 
are modelled as material points, i.e. all the physical quantities necessary to describe 
the structure of the particles are assigned to mathematical points defining the position 
of the particles. The particles can appear or disappear as a result of some instan- 
taneous processes (e.g. chemical reactions). We assume that the evolution of any 
physical quantity chacterizing the particles is given by an analytic function of time. 
Under these circumstances we shall prove that a space-time average of an arbitrary 
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physical quantity has a.e. continuous partial derivatives. Although these averages 

preserve the discontinuities associated to the particles as discontinuity surfaces, they 
satisfy a relation of the form (1). In the following, such a relation will be called "the 
discrete analogue" of a similar relation in continuum mechanics. 

At the end, the balance equation for an arbitrary physical quantity is obtained using 
the local equilibrium assumption. As an example, we prove the existence of the 
balance equations for mass and momentum. These equations have the same form as in 

continuum mechanics if the following hypotheses on the microscopic structure are 
used: there is a single type of microscopic components and the interaction of the 
particles has a spherical symmetry. The general problem of the derivation of the 
constitutive equations from the microscopic structure is briefly discussed. It will be the 
subject of future articles on physical systems with complex microscopic structure. 

2. The discrete analogue of continuous fields 

We study the evolution during the temporal interval I = [0, T ] c ~ of a discrete 
system consisting on N particles obeying the principles of classical mechanics. We 
denote by l i  = [ t + , t : ~ ]  ~ I the existence interval of the ith particle (1 ~< i ~< N). Let 
n(t)  be the number of the particles existing at the moment t e I. The variations of n(t)  

occur when some particles are generated or destroyed. It is obvious that n(t)  <~ N for 
each t ~ I, and n(t)  = N for all t e I only if li = I for each i 4 N, i.e. if no particles are 
generated or destroyed over the interval I. 

Let ~p be an arbitrary physical quantity. The values of q~ characterizing the ith 
particle are given by a function tpi: I ~ [~. If Ii ¢ I, then ~0/(t) = 0 for all t ~ l . . . l i .  We 
assume that the restriction q)~ll/can be represented as a Taylor series, i.e., it is an 
analytic function. In the interval I~ the quantity ~o/may take any real value, including 
zero (e.g., the velocity components of a motionless particle). Hence (pi is discontinuous 
at t + and t i if ~oi(t +) ~ 0 and tp~(tF) :/: 0, respectively. Similarly, the derivatives of 
~0~ at t [  and tF may be continuous or discontinuous. 

We assign to each particle a mathematical point indicating its position. The choice 
of the particle mass center is always possible; other options may be also adopted 
under the restriction that the mathematical point should be uniquely defined. To these 
mathematical points we assign the microscopic quantities ~o~ describing the evolution 
of the particles. The number and the type of these quantities depend on the properties 
and the complexity of the particles. Thus the discrete system is modelled as a finite set 
of material points. The e components of the radius vector ri, x~i: I --* R (:~ = 1 ,2 ,3 t ,  

and of the velocity ~i, ~,i: I --* N (~ = 1,2, 3) may be treated as particular cases of 
functions (p~. The functions x~ and ~i supply a kinematic description of the motion of 
the discrete system. The assumption that each particle obeys the principles of classical 
mechanics is necessary to ensure the uniqueness of the discrete system evolution and 
thus, the existence of the functions ~pl. The moments when the solutions of Hamilton's 
equations are not analytic may be considered moments when new particles are 
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generated.  Fo r  example,  an ins tantaneous  perfectly elastic collision does not change 

the type of the particles, but  the velocity discontinui ty m a y  be associated with the 
generat ion of new particles of the same type as the old ones with different velocities. 

We assume that  the ins tantaneous  discont inuous  processes are of finite n u m b e r  over  

the interval I = [0, T ]. 
We intend to characterize the mean  dis tr ibut ion of ~o abou t  the point  of radius 

vector  r at the m o m e n t  t. Therefore  we average  the values q~, cor responding  to the 

particles lying in the open sphere of  center r and radius a denoted S(r, a), over  the 
interval (t - ~, t + 27). Here  27 < T and a are a rb i t ra ry  positive real parameters .  We 
define the mean  distr ibution of ~o as a function D,:  ~3 X (27, T - 27) -* ~ with 

t + ~  

/ L ( r ,  t) = ~ - ~  ~o,(t ')/-/+ (a 2 - ( r , ( t ' )  - r i 2 ) d t  ' ,  (2) 
i = l  

where V = 4~a3/3 is the volume of S(r,a) and H + is the left cont inuous  Heavis ide 
function. Since H + (a 2 - (r,(t') - r) 2) vanishes if the ith particle is located outside the 

sphere S(r, a) and %(t ' )  vanishes if t' e 1 \  I,, then a nonvanish ing  cont r ibut ion  to D~ is 
due only to particles which lie in S(r, a) over  the interval (t - 27, t + z). 

The  function H + ( a  2 - (ri(t) - r) 2) in (2) takes only the values 0 and 1. The  j umps  

occur  when the ith particle enters or  leaves the open sphere S(r, a). These momen t s  are 
a m o n g  the solutions u, of the equat ion  

h i ( r ,  u i )  - ( r i ( u i )  - r )  2 - a 2 = O, (3) 

where Ih,(r,t)l 1/2 is the distance at the m o m e n t  t between the ith particle and the 
surface OS(r, a) of the sphere S(r, a). Since x~,, and hence h,, are analytic functions with 

respect  to u,, and li is closed interval, then either Eq. (3) has a finite n u m b e r  of 
solutions or  h, vanishes identically [8]. 

In the lat ter  case the particle moves  a long the surface of S(r, a) and does not  enter 
the sphere, hence H + ( a  2 - ( r , ( t ) -  r) 2) is identically zero and has no jumps.  Since 

ri(u,) is a known function, then the isolated zeros of(3) are implicit functions u,(r). The 
implicit  function theorem can be applied only at interior points  and it does not  ensure 

the existence of u,(r) for u, = t, + , i.e. r e  OS(r,(t,+-),a). This case will be discussed 
separately.  Fo r  u, ~ (t/+ , t{), if 

Ohi/Oui = 2(ri(ui) - r) .  ~i(ui) # O, i4) 

then the function u,(r) exists in a ne ighborhood  of r and has the derivatives 

ou, Oh, ~Oh, _ x,, u,l - x ,  
Ox, - Ox~/  Ou, (ri(u,) - r) .~i(ui)  ' ~ = 1,2,3,  (5) 

where x ,  are the componen t s  of r. According to (4), the function ui(r) is not different,- 
able at the points  of the discr iminant  surface of the family {OS(r,(t),a); t ~ Ii}. 
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We denote the moments  when the ith particle enters (leaves) the sphere S( r ,a )  by 
t t t tp t /  

t + < Uil < u~2 < "" < u~,, < t f  (t + < u~  < ui2 < "'" < u~,,, < t { ) .  Since the sphere 

S(r,  a) is open, H + (a 2 - (ri(t) - r) 2) as a function of t is left (right) cont inuous  when the 

particle enters (leaves). Hence for t e I~, we have 

H + (a 2 - (rift) - - r ) : )  = H + (a 2 - (ri(t +) - r) 2) 

n '  n "  

+ ~ H+( t  - u i~,) -  ~', H (t--u',~,,,), (6~ 
k , = l  k " = l  

where H is the right cont inuous  Heaviside jump  function. The first term in the 

r ight-hand side of (6) vanishes if the ith particle is generated in the exterior of S(r,  ai 

and equals 1 otherwise. If u~ = t + , then the particle can only enter the sphere after its 

generation, hence u'~ = t + and relation (6) holds. If ui = t/-, then the particle could 

only leave the sphere before its disappearance,  hence u'[,,, = t~ and relation (6) holds 

again. So (6) contains all the possible situations if we take t + ~< ui~ and u'{,,, ~< t~. The 

following notat ion will be used: 

u ,  { , , , u , : ,  .. ,u , . , } ,  u ,  = {u,l,u,,_ . . . .  " 
t = t ! . ! t t  t t  t¢  , ~ i n "  ] " (7) 

To study the differentiability of D~, we consider the function gi: E 3 x (r, T r) ~ R 

t + r  

gi(r,t) = f qgi(t')H+ (a 2 - ( r i ( t ' ) -  r)2)dt  '. 

t - r  

For  a fixed r, the integrand 

Gdr,  t) = q)i(t)H + (a 2 - (ri(t) - r) 2) 

is a cont inuous  function, except a 

(8) 

{ t{ ,  tF l w U'; w U'i'. Hence Gi is Riemann integrable and gi has partial derivative with 

respect to t a.e. in (r, T - r), equal to 

~,,q~(r,t) = Gdr ,  t + z) - G~(r,t  - r) .  (10) 

The discontinuities of 3tg~ with respect to (r, t) are related to those of G~. F rom (9) it 

follows that  G; is discont inuous when ~oi is discont inuous and H + nonvanishing,  or 

conversely, when H + is discont inuous and ~o~ nonvanishing. In the first case the ith 

particle appears or disappears in S(r ,a) ,  i.e. t = t~ + and r ~ S(ri(t~ +-),a), and in the 

second case the ith particle lies in the surface of S(r ,a) ,  i.e. t ~ li and r ~ ? S ( r A t ) , a L  

Hence the derivative (10) is not  cont inuous  over 

f2'i = { ( r , t ) l t  ~ {ti  + - r, ti + + z } c N z ,  T - ~) and r ~ S(r i ( t i+) ,a)}  

u { ( r , t ) l t ~ [ t ~ -  ++_z, t y  + + _ r ] c ~ ( r , T - ~ ) a n d r e ~ S ( r d t T - r ) , a ) } .  (11) 

The set f2'i has null Lebesgue measure in ~3 × (r, T - z), hence Otgi is a.e. continuous.  

(9) 

finite number  of j u m p  discontinuities 
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Although (6) holds only for t • li, it m a y  be subst i tuted in (8) because q)~ vanishes for 

t • I \ I~. The  obta ined  expression allows the s tudy of the differentiability with respect 
to r of  the function g,. There  exist three possible situations, namely:  23 ~< t£ - t +, 

< tF - t + < 23 and t£ - ti + ~< 3. Fo r  each of them the discussion, a l though elemen- 
tary, is ra ther  long and involved [9]. Here  we give only the result. The  set where the 
function gi is not  differentiable with respect to r is 

QI' = { (r , t ) l  t e ( t  [ - 3, t[- + 3] c~(r, T - 3) and r •  aS(r i ( t i~ ) ,a )  } 

u {(r, t)[ t • [ t i  - 3, t i  + r) a(3,  T - r) and r • c?S(ri( t[) ,  a) } 

u { ( r , t ) l t  • ( t [  + r, tF _+ 3 ) n ( z , T -  3) and r e  OS(ri( t  T- 3),a)} 

w{(r, t)[  t e ( r , r  - 3), exists t '  e ( t  - r , t  + z)c~I i  such that  

r • OS(ri( t ' ) ,  a) and (r i ( t ' )  - r ) .  ~i(t') = 0}, (12) 

and it is of  null Lebesgue measure  in 1~ 3 x (r, T -- r). The  derivat ive of g~ with respect 
to x~, denoted by ~?~gi, is 

c~,g,(, ' , t)  = y~ ,p,(u) x , , ( u )  - x ,  
.~v, I(ri(u) --  r ) -¢ i (u) ]  ' (13) 

where Ui = ( U i w U i ' ) c ~ ( t  - z , t  + z). 

Using definition (2) and relations (10)-(13), it follows the a.e. cont inui ty of  the 
part ial  derivatives of Do, given by 

a, Do(r ,  t) = f ~  [Gi(r ,  t + T) - Gi(r,  t - 3)], 
i = 1  

(14) 

for (r , t )  • ~3 x (r, T - 3)\  U/N= 1 Q'i, and 

~Do(",  t) = ~-W Y, q)i(u) 
i= 1 u~Ui 

x~i(u) - x~ 

I(*,(u) - r ) ' ¢ i ( u ) l '  
(15) 

for (r, t ) e  N 3 x  (v, T -  3)\U/~= 1 (21 '. The a.e. cont inui ty  of  the part ial  derivatives en- 
sures the cont inui ty  of  D o with respect to ( r , t ) •  N a x  (r, T -  3) and then D o is 
a cont inuous  field. 

3. The discrete analogue of the balance equation 

In the following we shall derive the relat ion satisfied by D o. We use a theorem 
stat ing that  every function with bounded  var ia t ion m a y  be uniquely split into a sum of 
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two functions: one continuous and a jump function [10]. We apply this theorem to 

G~ given by (9) considered as a function of t. But except a finite number of jump 
discontinuities, Gi is analytic on I and then its continuous part G'~ is also absolutely 
continuous. Hence we may write Gi = G'i + GI', where GI' is the jump function. 
Replacing this relation in (14), it follows that g,D,p can also be written as a two-term 
s u m  

~tD,p = (O,D~o)' + (O, Dq,)". (16) 

According to the Lebesgue theorem, the absolutely continuous part of G; is equal to 
the integral of the derivative of G~ 

t + r  

f ~Gi a'i(r,  t + r) - a i ( r ,  t - ~) = ~ -  (r, t ' )  dt '  

t - r  

t+~ 
t'* 

(g i ( t ' )H+ (a z - -  (r i ( t ' )  - r ) Z ) d t  '. (17) 
Id 

t 

Dividing (17) by 2rV, summing up with respect to i, taking into account (9), (14) and 
(2) we obtain the part of ~?tD~ resulting from G'i, 

(OtD,p)' = D+. (18) 

From (14), the discontinuous part of ~tD,p can be written as 

(~,D~)"(r, t) = ~ [61 ' ( r ,  t + r) - Gi'(r,  t - ~ ) ]  119) 
i = l  

It contains the discontinuous variations of G~ during the temporal interval 
[t -- r, t + r]. As proved in the preceding section, gtD~ exists if Gi is not discontinuous 
at t + r and t - r (see expression (11)), therefore we consider only the jumps occurring 
at the interior points of [t - r, t + r], i.e. in (t - r, t + r). From (9) it follows that such 
a variation can take place if the particle is generated inside the sphere S(r ,  a) during the 
temporal interval (t - r, t + r). Hence the jump of G~ is equal to 

A+ Gi = (p i ( t+)H+ (a 2 - (ri(t  +)  - r ) 2 ) ( H +  (t + z - t +)  - H -  (t - r - t? )). 

Similarly, the discontinuous variation of G~ related to the distruction of a particle is 

A - G ~  = - q ) i ( t T ) H + ( a  2 - (r~( t i  ) - r ) Z ) ( H + ( t  + ~ - tT ) - H - ( t -  r - t ~ ) ) .  

The function G~ also has discontinuous variations when the particle enters or leaves 
the sphere S(r ,  a), 

GT(r , t  + z ) -  G ; ( r , t -  z) = A+G, + A-Gi + ~ q)i(u)-  ~ ~oi(u), (201 
u~W~ uEW" 
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where W'i = U~n( t  - z, t + z) and W'i' = Ui' c~(t - z, t + z). The  sign of qgi(u) is posi- 
tive (negative) if the particle enters (leaves) the sphere S(r, a), and it is given by the sign 
of the expression - (r~(u) - r) .  ¢i(u) which is propor t iona l  to the interior normal  
componen t  of ~ to the surface of S(r, a) at the moment  u. Hence we may use a single 
sum in (20) if we denote,  as in (13), U~ = W'~wW' f .  Replacing (20) in (19) we obtain 

1 N (ri(u) - - r ) . ~ i ( u )  
(a'Dr)" =(a 'Dr )g  -- 2z~  ~ ~ ¢pi(u) (21) 

i=1  . ~ ,  I(ri(u) - r ) ' ¢ i ( u ) l '  

where 

1 N 

(a'Dr)° - 2rV y '  (A+Gi + A-Gi).  (22) 
i = 1  

Relation (15) for the physical quant i ty  ~ i  reads 

1 N .¥~i(u) - x~ 

i= u~U i I(ri(u) - r ) .  ¢i(u)i 

Compar ing  this relation with (21) we obtain 

3 

(a,Dr)" = - ~ a~Dr¢ ~ + (#tDr)g. (23) 

F rom (16), (18) and (23) follows the relation 

3 

~,D r + ~ 0~Dr¢ ~ = D~ + (0,Dr)g. (24) 
a = l  

This relation holds only when the derivatives (14) and (15) exist. 
In contrast  to balance equat ion (1), relation (24) does not  contain a quant i ty  

equivalent to the velocity v. The velocity is not  a volume density, but an average 
quantity.  To  define a discrete analogue, we must  divide D r by the number  of the 
particles contr ibut ing to D r. Let D1 be the density D r corresponding to ¢pi(t) = 1 for 
all t e Ii and i ~< N. Since D1 characterizes the average number  of particles per unit 
volume, the discrete average of q~ is defined as 

q3(r, t) = Dr(r,  t ) /D l ( r ,  t) (25) 

if D~(r , t )¢ :O ,  and it vanishes if D l ( r , t ) = O .  It is easy to show that q3=q3, 

(/91 -[- (/)2 = (~1 -[- (,02 and 2q~ = ,~0, where 2 is a real function of r and t. 
The  mean mot ion  of the particles is given by the discrete average of the velocity 
with the components  ~ .  To  introduce ~-~ in (24), we write 

Dr~ ~ = DrtL+(¢ ~ ¢~)1 = ~-~D r + (~b~,)~, 

where q ~  is the discrete analogue of the kinetic part  of the flux density 

3 

~'r  = ~ D~o~¢ _ ~,)e~, 
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e~ being the unit vectors in ordinary three-dimensional space. Then (22) becomes 

~,D~ + V.(D,p~) + V.O'~ = D+ + (~,D~) o. (26) 

This is the discrete analogue of the balance equation (1). 

4. The continuous modelling 

The discrete analogues of continuous fields (2) and of balance equations (26) have 
an intermediate status between the microscopic discrete description of a physical 
system and its macroscopic description by means of continuous fields, having charac- 
teristics in common with both. 

As in the microscopic discrete description, we imposed no limits on the number of 
particles, whereas it is known that the continuous modelling is possible only for 
a large number of particles. Then, the complete knowledge of the function D,p given by 
(2) {including the points where it is not differentiable) is equivalent to the knowledge of 
the evolution of the microscopic state for all the N particles. On the contrary, the 
macroscopic continuous fields are characterized by smearing out the discontinuities of 
microscopic nature. 

The main similarities between our results and the macroscopic continuous descrip- 
tion are the following. Using only microscopic physical quantities, we have construc- 
ted a physical quantity satisfying relation (26), formally identical with the macroscopic 
balance equation (1). Moreover, relation (26) has the same generality as its macro- 
scopic correspondent, being valid for any physical quantity and for any physical 
system with corpuscular structure. 

In order to obtain the balance equation (1), we have to eliminate from (26) the 
discontinuities specific to the microscopic scale. In statistical physics these discon- 
tinuities are eliminated from the very beginning, since the probability density in phase 
space has the smoothness properties of a continuous field. The usual statistical 
average may be applied to relation (26) and the balance equation (1) is obtained for 
T --* 0 and a --* 0. In this article we do not present this approach, but a shorter and 
more intuitive one, although less rigorous. 

The linear thermodynamics of irreversible processes can be applied to far-from- 
equilibrium states if the local equilibrium assumption is satisfied [11]. Then at any 
time and for any point there exists a microscopic part of the macroscopic body acting 
as a near-equilibrium thermodynamic system. In our case we choose the parameters 
a and r such that over the interval (t - r, t + T) the particles in the sphere S(r, a) should 
form the near-equilibrium thermodynamic system. It is obvious that the space time 
average (2) and the discrete average (25) become the corresponding continuous fields 
and the relation (26) becomes a balance equation. The local equilibrium assumption 
eliminates the microscopic discontinuities due to the large number of particles 
contributing to the value of D,p. This condition was also used by Murdoch [12] to 
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smooth the microscopic discontinuities by a space-time averaging. The main differ- 
ence is that in our approach the smoothing is made after a relation of the form (1) was 
obtained. Similarly to the usual statistical method, Murdoch obtains at the same time 
both the mathematical form of the balance equation and the smoothness character- 
istic to macroscopic continuous fields. 

On the o ther  hand, the parameters a and z must be smaller than the spatial and 
temporal characteristic magnitude of the considered physical process. Otherwise the 
modelled process is distorted. For  example, in the case of a plane wave, the 
wavelength and the period must be much larger than a and z, respectively. 

Thus the existence of the balance equation for any physical quantity has been 
proved, but its explicit form depends on the microscopic structure of the physical 
system. As an example, in the following we derive the fundamental equations of 
continuum mechanics, the balance equation for mass and momentum, in the simple 
case of identical particles. Otherwise the equations would become much more in- 
volved because of additional diffusive terms. Since there is only one type of particles, 
processes like chemical reactions are excluded. Thus the appearance or disappearance 
of the particles may be related only to the discontinuous variations of certain physical 
quantities as velocity, momentum, etc. This situation occurs, for example, if the 
collisions of the particles can be modelled as instantaneous processes of discontinuous 
variations of the momentum or if the particles interact instantaneously with exterior 
fields (e.g., photons in the Compton effect). 

First, for each microscopic component we must uniquely define the mathematical 
point determining its position and the physical quantities necessary to describe its 
state. The relation (26) can be written for each of these physical quantities. Whatever 
the structure of the microscopic components, their mass and position are always 
uniquely defined, and hence their momentum too. Thus the balance equations for 
mass and momentum exist for any corpuscular physical system. 

The relation (26) for mass is obtained if ~oi(t)  = m for all t ~ I i and i ~< N, where m is 
the mass of the particles. Then D~ = D,, = m D 1  is the discrete analogue of the mass 
density. Since there is only one type of particles, the appearance or disappearance of 
the particles does not imply mass variations, hence (~tD,,)o = 0. Moreover, q5 = m, 
q~, = 0, ~bi = 0 and (26) becomes 

O t D , ,  + V°(Om~) = 0. (27) 

This is the discrete analogue of the continuity equation. 
For  the ~ component of momentum we have ~oi = p , i =  m~,~ and Dp, = 

Dine,  = D m ( ~ .  The discrete analogue of the kinetic part of the flux density takes the 
form of a symmetric tensor 

/ + r  

T ~ p  (~ 'p~)~ 2 r V  ( ~ i ( t  ) - -  - ' - -  
i = 1  

t - ' c  

x H + (a 2 -- ( r i ( t ' )  - -  r ) 2 ) d t  ' . (28) 
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The derivative ~bi is the ~ component of the force Z acting on the ith particle and 

relation (26) becomes 

3 3 

~,(Dmf,) + ~ O,(Dm~-~-p) - ~. ~,T' ,p = Dy, + (,?,D,,) o . (29) 

This relation takes a form identical with the balance equation for momentum in 
continuum mechanics only if additional hypotheses on the microscopic structure are 

made. 
As discussed above, the parameters a and z are chosen so that the local equilibrium 

assumption should hold and space-time average (2) should not distort the modelled 
process. Then the space-time averages D1 and D m become the concentration c(r, t) and 
the mass density p(r,t), respectively, which are continuous fields and the discrete 
average of the velocity ~- becomes the continuous field of velocity v(r, t). Then from 

relation (27) we obtain the continuity equation 

~,p + V.(pv)  = 0.  (30) 

The symmetric tensor (28) becomes the kinetic contribution to stress tensor a'~, [13]. 
The force term in (29) is the sum of the contributions due to the external potential 
U(r, t) and interaction forces between the particles. Since the values of a and ~ were 
chosen so that the variation of U in the sphere S(r,a) over the interval (t - r, t + r) 
should be negligible, the first contribution equals - c VU. Then relation (29) becomes 

3 3 

~t(pv~) + ~ ~.p(pv,vp) -- ~ (~pa',~ -- cF~ = -- c<~U + P~, (31) 
B = I  /~=1 

where F(r, t) is the continuous field representing the mean force acting at the moment t 
on a particle placed at r due to the interaction with the other particles, and P(r, t) is the 
momentum production at the time t and the point r. 

The number of the continuous fields in the balance equations (30) and (31) can be 
decreased if further hypotheses on the microscopic structure are introduced. For 
example, if the interaction potential is a continuous function, then the momentum 
variations of the particles are continuous and P = 0. If, in addition, the interparticle 
forces have spherical symmetry, then the term cF in (31) is the divergence of a symmet- 
ric tensor [13] and (31) becomes the usual momentum balance equation of continuum 

mechanics. 

5. Conclusion 

The existence of balance equations has been proved for corpuscular physical 
systems satisfying the local equilibrium assumption. We have obtained this result 
under circumstances similar to the most general ones in continuum mechanics: the 
microscopic components can be generated or destroyed as a result of some instan- 
taneous processes (chemical reactions, collisions, etc.) and the balance equation is 
derived for an arbitrary physical quantity. 
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As in kinetic theory, we have assumed that  the microscopic componen ts  obey the 

classical mechanics principles, but  in kinetic theory the balance equat ions are derived 

under  more  restrictive condit ions [3 5]. The derivation of the Bol tzmann equat ion 

from the Liouville equat ion requires a series of assumptions:  the molecular  chaos 

hypothesis,  biparticle collisions, central interaction forces, etc. Besides, the balance 

equat ions can be obtained only for the collision invariants (mass, momentum,  energy). 

We avoided these limitations since not  all the information on the microscopic 

structure was in t roduced from the very beginning. In the first stage we have showed 

that  for a finite number  of material points the space time average (2) satisfies 

a mathemat ical  relation of the same form as the balance equations. In the second stage 

we have used the local equilibrium assumption which ensures the necessary smooth-  

ness for the cont inuous  fields. Only  in the last stage the particular microscopic 

structure of the physical system has been taken into account.  In this article the 

microscopic structure has been specified only as far as to obtain the fundamental  

m o m e n t u m  balance equat ion of  the con t inuum mechanics, i.e. we have considered 

only one type of  particles with spherical symmetry.  

The method  exposed above may present a supplementary interest in the case of  

a complex microscopic structure. The more  complex the microscopic structure, the 

more  numerous  are the simplifications and approximat ions  necessary to obtain the 

constitutive equations. The discrete analogue of  the balance equat ion (26) is a frame 

for the verification of the compatibi l i ty and the completeness of these approximations.  
This problem will be the subject of one of our  future papers. 
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