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Random Walkers Cellular Automata for Diffusion Processes 

Smooth concentmtion fields and balance equations for systems of mndom walkers are obtained by using the warse- 
gmined space-time avemging method f m m  [ti] and averages over the statistical ensemble. This yields a new cellular 
automaton numerical model for diffusion processes. The number of particles and the averaging space-time scale 
needed to appmximate the concentmtion, with a given precision, are obtained. Applications were made for systems 
with small concentrations and diffusion in mndom fields. 

1. Continuous modeling by space-time averages 
Let us consider a system of N particles and a kinematic description by piece-wise analytic trajectories, pi : I e R, 
I = [0, T J  C IR, (1 5 i 5 N). It was proved [6], that the coorse-gmined space-time avemge (9) : IR3 x (7,T-r) c--$ IR, 

where V = 43ra3/3 is the volume of the sphere S(r, a) and H+ the Heaviside left continuous function, has a.e. 
continuous derivatives in IR3 x (7, T - T )  and satisfies the identity 

&(lop> + 4Y(cp5a) = (dloP/dt). ( 2 )  

If Pi(t) = vi(q(t,U)), where q = ( r l , . . . , r ~ , ~ l , ~ ~ . , ~ ~ )  are the trajectories of the stochastic process into the 
positions-velocities space we find that the ensemble averages of (cp), for a 4 O , T  + 0, give the usual 
’fine-grained’ continuous fields of statistical mechanics [3]. 
Defining the concentmtion field c(r,t) = (l)(r,t) and the Eulerian velocity field u,(r,t) = (&)(r , t ) /c(r , t ) ,  (1) 
gives the continuity equation 8tc +8,(cu,) = 0. With cu, = (dx,/dt), defining the Lagmngian velocity field 
v,(rlt) = &(z,)(r,t) + u&(za)(r, t) ,  and the diffusion tensor 

a&t)  = I(2cr)(r,t)up(r,t) - (za€p)(r,t)/c(rrt)l,  (3) 

from the continuity equation and (2 )  we obtain 8tc + B,(cv,) = S,Sp(cD,p). Thus, the positivity of coefficients (3) 
is a test for diffusive behavior as described by an advection-diffusion equation. 

2. Random walkers cellular automata 
Cellular automata describe complex systems by ”fictitious particles moving in a grid, according to simple and 
local rules, undergoing simultaneous changes of states” [2]. We consider N ndependent mndom walkers inside the 
1-dimensional grid {zk = k6t I -m 5 k m). Then the number of particles at the site k is 

(4) 
1 
2 nk(t +at)  = -[nk-l(t) + nk+l(t)] - 6nk+l(t) + ank-l(t), 

where 6nk+l and 6 n k - l  are small for large N. For nk(z , t )  = c(z,t)62, (4) becomes the finite-differences diffusion 
equation, with D = 6x2/26t, the corresponding diffusion coefficient. 
The global estimation, (C;!, Ink - c(zk,t)6zI)/N, is of order of for N = lo6 and m 2 30. Coarse-grained 
averages (1) over the trajectories of the cellular automaton give the concentration not only in knots but also in any 
( z , t ) ,  reduce the computing time and improve the approximation. By averages over an ensemble of 200 identical 
cellular automata, it waa found that the precision in all the grid is at least if a is between 62/8 and 862 and 
correspondingly, T is between lo6& and1066t. If the particles reaching the boundaries are instantaneously removed, 
one finds the mean time needed to eliminate the N particles from the grid to be At - l n N  (i.e. c - e-tl at small 
concentrations for systems placed in the previous boundary conditions ) [7]. Also, by using a variable step grid, we 
have verified that there are space-time scales 80 that (3) gives precise estimations for diffusion coefficients (defined 
aa functions on grid steps by D = 6z2/26t). 
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3. Diffusion in random fields 
In a similar manner, we built a 2-dimensional random walkers cellular automaton. On it, we superposed an advection 
given by the samples of a random field and we computed ensemble averages. For horieontal advection and constant 
velocities in each layer, we get the numerical simulation of the model proposed by Matheron and de Marsily [4], 

dz('+) ( t )  = V ( y ( t ) , w V ) d t  + Ddw ( t )  , dy ( t )  = Ddw ( t )  , 
where w is the Wiener process and w, labels the realizations of the random field. Diffusive behavior corresponds to - t ,  where uz is the longitudind dispersion, defined by mean square displacements. Using the method from 
[5] we produced several random advection fields with different correlations. The picture contains dispersions curves 
given by cellular automaton, for different random advection fields. Unbiased random walk (nubrw") obviously has 
a diffusive behavior. For Gaussian (- e-g') correlated longitudinal field we get the nondiffusive behavior reported 
by Matheron and de Marsily [3], uz - t8i2 ("ubrw+vx(y)") and a diffusive long-time behavior, when a constant 
transversal velocity is added (nubrwv"). For random fields with identical values in a given number of neighbor layers 
(the last curve correspond to 2 layesrs correlation), ui goes to CY ta dependence for increasing correlation length. 

TIME 
4. Remarks 

The agreement with 1-dimensional diffusion equation (section 2) and the model of Matheron and de Marsily (section 
3) are first proofs of the new numerical model for diffusion processes. These encourage us to use it to study more 
complex processes, as the challenging problem of transport in heterogeneous porous media. At the same time, we 
also stress here the possibility to obtain information on the behavior of disordered systems using (3) as a test for 
diffusive behavior. So, our approach belongs to the attempts to give quantitative definitions of noise and chaos in 
terms of "divergence between nearby trajectories" [l]. 
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