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Abstract

A generalized form of the random walk algorithm to simulate diffusion processes is introduced. Unlike the usual

approach, at a given time all the particles from a grid node are simultaneously scattered using the Bernoulli repartition.

This procedure saves memory and computing time and no restrictions are imposed for the maximum number of

particles to be used in simulations. We prove that for simple diffusion the method generalizes the finite difference scheme

and gives the same precision for large enough number of particles. As an example, simulations of diffusion in random

velocity field are performed and the main features of the stochastic mathematical model are numerically tested.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well known that diffusion processes can be numerically simulated with random walk (RW) algo-

rithm. For simple diffusion processes the RW algorithm is equivalent with the finite difference (FD) scheme

[1] but, as we shall discuss in the following, this equivalence is not valid for more complex diffusion pro-
cesses. The RW algorithm can be used to model the transport of arbitrary physical quantities if parts of the

transported quantity are associated with fictitious particles obeying the RW law. To reduce the compu-

tational effort and to improve the smoothness of the numerical solution, the gradient of the transported

quantity can be associated with the particles. Integrating the gradient transported by each particle over the

computation domain the simulated field is obtained with a higher accuracy [8]. The ‘‘gradient random

walk’’ algorithm was first developed by Chorin [7] for the simulation of turbulence, the transported

quantity being the vorticity. In other applications, mainly for transport in porous media, to reduce memory

and to avoid boundary effects, a grid free algorithm called ‘‘particle tracking’’ (PT) is used [22]. The
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algorithm consists in building trajectories in continuous space for each particle, by performing at discrete

time steps an advection displacement and a random Gaussian one.

The application of RW algorithm to solve some practical transport problems is relatively limited. A

good estimation of the concentration field requires a large number of particles at each grid point. For every

jump of each particle a random number should be generated implying a certain number of numerical

operations. Therefore, ‘‘if we require that the numerical solution should be identical to the analytic solution

to three significant figures, the number of tracer particles simulated must be enormous’’ [19, p. 95]. In this

paper we propose an improvement of the RW algorithm aiming to eliminate this limitation: all the particles
from a given grid node are moved simultaneously, not individually. This procedure is possible since the

number of the particles jumping from a given node to a single neighboring node obeys a Bernoulli dis-

tribution. In this way a great number of particles can be distributed generating only a single random

number and the necessary random number generations are significantly reduced. We call this algorithm

‘‘Global Random Walk’’ (GRW). A more general form of the GRW algorithm is obtained when a part of

the particles remain at the initial node and only the rest of them are scattered to the neighboring nodes

according to the Bernoulli distribution.

The number of particles jumping from a given node to a single neighboring node according to GRW
fluctuates about the mean value. These fluctuations can be eliminated if we allow the particles to be

divided into parts and exactly half of them to jump to the left and the other half to the right. We show

that for simple diffusion processes this ‘‘determinist’’ GRW algorithm (GRWD), without fluctuations, is

identical with FD algorithm. Thus, GRW can be thought as a generalization of FD algorithm. If we do

not intend to give up the particle indivisibility, then the fluctuations cannot be completely canceled. The

minimum magnitude of the particles number fluctuations is equal to a single particle. In this case a form

of GRW with reduced fluctuations, denoted GRWR, is obtained: if at a node there are an odd number of

particles, then one of the particles is randomly distributed to the left or right and the rest of them is
divided to half.

To show that the RW algorithm gives a numerical solution of the diffusion equation, let us consider an

infinite lattice given by a grid with nodes at xi ¼ idx, i 2 Z, where dx > 0 is the lattice constant or the space

step. At time tk ¼ kdt, k 2 N, where dt > 0 is the time step, the particle jumps to the left or right neighboring

node with equal probabilities. If we denote by P ðxi; tkÞ the probability distribution at tk and by P ðxi; tkjxj; tlÞ
the transition probability, then the consistency property of finite dimensional probabilities for discrete

Markov processes gives

P ðxi; tkÞ ¼
X
j

P ðxi; tkjxj; tlÞP ðxj; tlÞ; ð1:1Þ

where tk > tl. According to the RW law, the transition probabilities for successive time steps are given by

P ðxi; tlþ1jxj; tlÞ ¼
1
2

for i ¼ j� 1;
0 for i 6¼ j� 1:

�
ð1:2Þ

The Chapmann–Kolmogorov equation and (1.2) give the evolution equation for the transition probability

P ðxi; tkþ1j0; 0Þ ¼ 1
2
P ðxi	1; tkj0; 0Þ½ þ P ðxiþ1; tkj0; 0Þ�: ð1:3Þ

One can prove (see for instance [5]) that if dx ! 0 and dt ! 0, and if the limit

lim
dx;dt!0

dx2

2dt
¼ D ð1:4Þ

is finite, then the limit of the solution of (1.3) is the Gaussian transition probability with the density
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pðx; tj0; 0Þ ¼ ð4pDtÞ	1=2 exp 	x2

4Dt

� �
: ð1:5Þ

The Gaussian process is a continuous Markov process and the probability density that a particle has the

position x at time t,

pðx; tÞ ¼
Z
R

pðx; tjx0; 0Þpðx0; 0Þdx0; ð1:6Þ

is the solution of the diffusion equation

otp ¼ Do2xp; ð1:7Þ
with the initial condition p0ðxÞ ¼ pðx; 0Þ [5].

The connection between the RW process, described by (1.1) and (1.2), and the solution (1.6) of the

diffusion equation is used to build up the RW algorithm to solve the diffusion equation (1.7). One considers

N fictitious particles moving on the previously described infinite grid, their movement being governed by

the RW law. At the initial time the distribution of the N particles approximates the values of the initial

probability density p0ðxÞ. For each particle and each time step a random number taking the values )1 and
+1 with a probability equal to 1/2 is generated. If the random number is )1, then the particle moves to the

left and if it is +1, the particle moves to the right. In this way the distribution of the N particles at the time tk
approximately describes the solution pðx; tkÞ of the diffusion equation (1.7). This approximation can be

improved by increasing N and reducing dx and dt.
In Section 2 we present the GRW algorithm and discuss the connections with FD algorithm. In Sections 3

and 4 we analyze GRW simulating the Gaussian solution of the one-dimensional diffusion equation far from

the boundaries and with several boundary conditions. We show that for a large enough number of particles

N , the numerical solution obtained with GRW coincides with the FD solution, for all spatial resolutions.
In Section 5, we simulate the diffusion in random velocity fields. In this case GRW is no more equivalent

with FD algorithm. Instead of (1.7), we consider advection–diffusion equations of the form

otcþ V ðxÞoxc ¼ Do2xc; ð1:8Þ

where the advection velocity V ðxÞ is a space function and the diffusion coefficient D is a constant. The

relation between the concentration field c in (1.8) and the probability distribution p is given by

cðx; tÞ ¼ N0pðx; tÞ; ð1:9Þ

where N0 is the total number of diffusing particles,

N0 ¼
Z 1

	1
cðx; tÞdx: ð1:10Þ

If the advection velocity has large spatial variations then V ðxÞ is modeled as a random velocity field. Such

problems occur in studies of transport processes in heterogeneous porous materials. Many authors agree

that numerical simulations of diffusion in random fields are better achieved by RW algorithms than by

usual FD or finite element algorithms [13,16,20–22]. We shall show that GRW allows the simulation of the
two-dimensional diffusion in random velocity fields using moderate computing resources.

2. The GRW numerical algorithm

The GRW algorithm is identical with the RW algorithm in its mathematical principles, only the nu-

merical implementation of the particles displacement is different. Hence, first we describe the RW algorithm
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for Eq. (1.8) using the same lattice as for (1.1)–(1.3). According to (1.4), we relate the lattice constant dx to
the time step dt, for a given constant diffusion coefficient D, by

D ¼ dx2

2dt
: ð2:1Þ

The particles in xi jump either in ðxi 	 dxÞ or in ðxi þ dxÞ. Similarly, the realization of the random velocity

field is described on the grid by a set of integers vi, defined by

V ðxiÞ ¼
dx
dt

vi; ð2:2Þ

so that the movement of particles in xi due to advection field is given by ðxi þ vidxÞ. The total displacement
of particles is obtained, similarly to PT algorithm [20], as the sum of advective and diffusive displacements.

After a time step dt, the particles starting from the node i reach either the node ðiþ vi 	 1Þ or ðiþ vi þ 1Þ.
The shortcoming of this approach is that V ðxiÞ has only discrete values and if V ðxÞ has large variations, then
dx=dt must be small imposing a small space step. Therefore, in this case very large grids are needed. Also,

the velocity V ðxiÞmust be replaced by its average over a time step. For smooth variations, it was shown that

ðV ðxiÞ þ V ðxi þ dtV ðxiÞÞÞ=2 approximates the average up to second order in dt [16].
At a given time tk ¼ kdt, the N particles are distributed on the grid so that nði; kÞ is the number of

particles at the node xi ¼ idx. Moving each particle according to the RW law, the distribution of the

particles at the next time step nði; k þ 1Þ is obtained. Repeating S times the simulation under the same initial
condition, we obtain for each node i and time k a sequence of values nsði; kÞ, 16 s6 S. When S is large

enough, we can approximate the solution cðx; tÞ of the advection–diffusion equation (1.8) using the average
over the S realizations of nsði; kÞ, denoted nði; kÞ. Assuming that the particles in the node xi are assigned to

an interval consisting of l space steps, the numerical solution of (1.8) is given by

cðxi; tkÞ ¼
1

ldx
nði; kÞ: ð2:3Þ

Usually l ¼ 1, but it is possible that only half of the grid nodes can contain particles and then l ¼ 2 (see

Section 3).

The GRW algorithm moves the particles in large groups, not individually. We denote by dnði; j; kÞ the
number of particles which at time tk jump from xj to xi. Then the distribution of the particles at the next

time is obtained from the relation

nði; k þ 1Þ ¼ dnði; i; kÞ þ
X
j 6¼i

dnði; j; kÞ; ð2:4Þ

where dnði; i; kÞ is the number of particles remaining at tkþ1 at the same node xi. For every j and k, the
scattering of the particles is given by the relation

nðj; kÞ ¼ dnðj; j; kÞ þ dnðjþ vj 	 d; j; kÞ þ dnðjþ vj þ d; j; kÞ; ð2:5Þ

where the positive integer d describes the jumps of particles due to diffusion. From (2.5) it follows that the

contributions dnði; j; kÞ, j 6¼ i, in (2.4) come from all points j satisfying jþ vj � d ¼ i. The GRW algorithm

is defined if a procedure to calculate the values of the quantities in the right hand part of (2.5) is given.

We want that at a given time step only a fraction r of the number of particles jump in the neighboring

nodes, the rest of them remaining at the same node. To avoid the division of particles, r must be a positive
rational number r6 1, such that ð1	 rÞN be an integer and equal to the total number of particles remaining

at the same node at a time step. For increasing index j, we determine the number of particles remaining at a
node xj by means of the formula
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dnðj; j; kÞ ¼ ð1

2
4 	 rÞ

X
j0 6 j

nðj0; kÞ

3
5	 ð1

2
4 	 rÞ

X
j0<j

nðj0; kÞ

3
5; ð2:6Þ

where ½�� is the integer part of the expression in the brackets. Taking the average over a great number of

Monte Carlo realizations we obtain

dnðj; j; kÞ ¼ ð1	 rÞnðj; kÞ: ð2:7Þ

Since dnðj; j; kÞ is known from (2.6), (2.5) relates the random variables dnðjþ vj 	 d; j; kÞ and

dnðjþ vj þ d; j; kÞ and only one of them has independent values.

As a consistency requirement, for a given diffusion process, the GRW algorithm must give the same

mean square displacement as the RW algorithm. If dxRW is the space step for the RW algorithm, then for a
time step dt the mean square displacement of the particles in the node j is nðj; kÞdx2RW, because all the

particles jump at the first neighbors. For an equal time step, in GRW algorithm only the fraction r of the
particles in the node j jump at the nodes j� d and, from (2.5) and (2.7), the mean square displacement is r
nðj; kÞðddxÞ2. Imposing the condition nðj; kÞdx2RW ¼ r nðj; kÞðddxÞ2 and using (2.1) for dxRW, the parameter r
is given by

r ¼ 2Ddt

ðddxÞ2
: ð2:8Þ

Usually the values of dx and dt are mainly determined by the necessity to describe enough accurately the

spatial variations of the velocity field V ðxÞ and by the limitations of the available memory and computing

speed. Then for any value of the diffusion coefficient D, even if it has spatial variations, the relation (2.8)

allows us to choose the values of d and r. This is not possible using only the parameter d, because it takes
discrete values. On the other hand r is a continuous parameter, but its value is restricted by the condition

r6 1. Combining the unboundedness of d and the continuity of r we can obtain any value of D.
The GRW algorithm performs the evaluation of the random variables dnðjþ vj � d; j; kÞ directly, not as

a sum of the individual jumps of the n � nðj; kÞ 	 dnðj; j; kÞ particles. Since each of the n particles can reach
the node jþ vj 	 d with a probability equal to 1=2, it follows that the probability for dnðjþ vj 	 d; j; kÞ to
take the value m, 06m6 n, is given by the Bernoulli distribution bnðmÞ ¼ 2	nCm

n . To assign to dnðjþ
vj 	 d; j; kÞ a random value satisfying the Bernoulli distribution, at each time step, a random number g with
a uniform distribution in the interval ½0; 1� is generated. If we denote by FnðmÞ ¼

Pm
l¼0 bnðlÞ, 0 < FnðmÞ6 1,

the Bernoulli repartition, then dnðjþ vj 	 d; j; kÞ takes the value m satisfying the condition Fnðm	 1Þ6
g < FnðmÞ, where we use the convention Fnð	1Þ ¼ 0.

To analyze the relation between the GRW and the FD algorithms, we consider the centered differences

and time explicit scheme for diffusion equation obtained from (1.8) when V ðxÞ � 0. Considering the ap-

proximation in the order Oðdx2Þ of o2xc in (1.8), using finite difference between ddx space steps and the

parameter r defined by (2.8), the explicit FD scheme can be written as

cði; k þ 1Þ ¼ r
2
cðiþ d; kÞ þ ð1	 rÞcði; kÞ þ r

2
cði	 d; kÞ: ð2:9Þ

The solution of (2.9) is stable if the vonNeumann stability criterion, r6 1, is fulfilled. Since from (2.8) we also

have dt ¼ Oðdx2Þ, the FD scheme (2.9) is a consistent approximation of the exact partial differential equation
within the approximation order Oðdx2Þ. The stability and consistency imply the convergence of the order

Oðdx2Þ for the initial value problem attached to (1.8) with V ðxÞ � 0 [6]. For vi � 0, the relation (2.4) becomes

nði; k þ 1Þ ¼ dnði; i; kÞ þ dnði; iþ d; kÞ þ dnði; i	 d; kÞ:
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Taking into account (2.3) and (2.7), the average of this relation is identical with (2.9) if

dnðj� d; j; kÞ ¼ 1

2
rnðj; kÞ: ð2:10Þ

But this is the RW law stating that the average number of particles jumping in a direction is equal to half

the total number of particles. This proves that the FD solution is identical with the ensemble average of the

GRW solutions. The parameter (2.8) defining the particles fraction jumping to the neighboring nodes in

(2.6) is the same as the stability parameter of the FD scheme (2.9).

One can define a modified GRW algorithm which is identical with the FD algorithm for V ðxÞ � 0, if the

particles can be divided and nðj; kÞ is a real number, not an integer. Instead of (2.6) we introduce

dnðj; j; kÞ ¼ ð1	 rÞnðj; kÞ ð2:11Þ

and in analogy with (2.10) we consider

dnðjþ vj � d; j; kÞ ¼ 1

2
rnðj; kÞ: ð2:12Þ

Then (2.5) is identically satisfied and all the quantities in (2.4) are defined. In this case, dnðjþ vj 	 d; j; kÞ is
not anymore a random variable but its value is uniquely determined by (2.12) and coincides with the mean

value of the corresponding random variable in GRW. Therefore we call this modified algorithm as a

‘‘deterministic’’ GRW (GRWD).
Another form of the GRW algorithm can be obtained by both preforming a deterministic scattering and

preserving the particles indivisibility. We use (2.6) and instead of (2.12) we introduce

dnðjþ vj 	 d; j; kÞ ¼ n=2 if n is even;
½n=2� þ h if n is odd;

�
ð2:13Þ

where n ¼ nðj; kÞ 	 dnðj; j; kÞ, ½n=2� is the integer part of n=2 and h is a random variable taking the values 0

and 1 with probability 1/2. The quantity dnðjþ vj þ d; j; kÞ is determined by (2.5). In comparison with

GRW, this algorithm reduces the particles number fluctuations at only one particle and we call it GRWR.

Since the fluctuations do not vanish, only the average of the GRWR solution is identical with the FD

solution. The algorithms without fluctuations (GRWD) and with reduced fluctuations (GRWR) can be

used to obtain numerical solutions for the advection–diffusion equation (1.8), as well as the stochastic

algorithm GRW. The GRW algorithm is expected to be more accurate when the fluctuations significantly

influence the simulated process [9].
The GRW algorithm and its modified forms GRWD and GRWR use the relation (2.4) where dnði; j; kÞ is

nonvanishing for every j satisfying jþ vj � d ¼ i. Therefore, if V ðxÞ varies in space, the evolution of the

concentration in a node is obtained, unlike in (2.9), by contributions from more than the first neighboring

nodes. The terms in (2.4) are not apriori known, because they depend on the value of V in xj. In this case,

the GRW algorithm is no more equivalent with a FD scheme.

The implementation of the GRW algorithm as a computer code, encounters some problems related to

the computation of the Bernoulli distribution bnðmÞ ¼ 2	nCm
n and of the corresponding repartition

FnðmÞ ¼
Pm

i¼0 bnðiÞ. When the number of particles is of order 106, the computation of bnðmÞ or FnðmÞ takes
too much time to be performed at each computation step. Therefore the values of FnðmÞ are computed only
once and stored in files for values n ¼ 2k with 16 k6 20. Due to the symmetry of FnðmÞ with respect to

m ¼ n=2, only the values FnðmÞ6 0:5 are stored. If n < 221, a binary representation n ¼
P20

l¼0 aðlÞ2l is used.
The 2l particles of a group with aðlÞ 6¼ 0 are scattered in dnlðjþ vj 	 d; j; kÞ and dnlðjþ vj þ d; j; kÞ, as
previously described, using a random number g uniformly generated in the interval ½0; 1�. The final result is
obtained from
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dnðjþ vj 	 d; j; kÞ ¼
X20
l¼0

aðlÞdnlðjþ vj 	 d; j; kÞ:

If nP 221, then there are several groups consisting of 220 particles and for each group the procedure from

above can be used. This method, referred to as GRW0 (first used in [23]), becomes time expensive for very

large n (see the ‘‘GRW0’’ curve in Fig. 9). In this paper a different method is used. The reduced variable

n ¼ ðm	 n=2Þ=
ffiffiffiffiffiffiffiffi
n=4

p
and the repartitions FnðnÞ are introduced. For n ! 1, the repartition FnðnÞ tends to

the normal Gaussian repartition, according to De Moivre–Laplace theorem [15]. A good approximation is

obtained when for every nP 221 one uses the repartition corresponding to n ¼ 220 as function of the re-

duced variable n. For instance, the relative error of the values dn obtained using F220 instead of F230 is of the
order 10	9. In this way, GRW can handle a number of particles equal to the maximum number of particles

that can be represented in the internal memory of the computer. For two and three-dimensional problems,

the GRW algorithms are implemented by performing the one-dimensional global scattering procedures

described in this section on x1, x2 and x3 space axes, according to the values of velocity components and

diffusion coefficients.

3. Simulation of the one-dimensional Gaussian diffusion

We verify the GRW algorithm described in the previous section for the solution of Eq. (1.8) corre-

sponding to V ðxÞ � 0; DðxÞ � 0:5 and initial condition limt!0þ cðx; tÞ ¼ N0dðxÞ, where dðxÞ is the Dirac

function. In this case the solution has a Gaussian analytic form and, from (1.5) and (1.9), it is given by

cGaussðx; tÞ ¼ N0ð2ptÞ	1=2 exp
	x2

2t

� �
: ð3:1Þ

Different numerical solutions obtained by GRW are quantitatively compared with the analytical solution

(3.1) in the space interval x 2 ½	1; 1�. The comparison is achieved at the time tf , when the number of

particles which left the interval ½	1; 1� is 1% of the total number of particles. From the condition

1

N0

Z 1

	1
cGaussðx; tfÞdx ¼ erf

1ffiffiffiffiffiffi
2tf

p
� 


¼ 0:99;

we have tf ¼ 0:15.
The numerical solution is obtained using the GRW, GRWD and GRWR algorithms, for vi ¼ 0 and

d ¼ 1. Initially N fictitious particles are introduced in the origin of the space grid. We consider a sequence

of grids with the space steps dx ¼ ð10gÞ	1, where g ¼ 1; 2; . . . ; 10. Since D ¼ 0:5, from (2.8) it follows that

the corresponding time steps are dt ¼ rdx2 ¼ rð10gÞ	2 and the numerical simulation contains kf ¼
tf=dt ¼ 15g2=r time steps. To eliminate the boundaries effect on the numerical solution we must choose a

large enough grid so that no particles may reach the boundary at time tf . A particle covers the maximum

distance if it makes all the kf jumps in the same direction. Therefore the space grid must contain at least kf
nodes on a side and on the other of the origin where all the N particles initially are located. Hence for

different values of r and g (dx) we obtain different numerical algorithms for D ¼ 0:5 and V ðxÞ ¼ 0.

We want to compare c defined by (2.3) with the analytic solution (3.1), at time tf and over the spatial

interval ½	1; 1�. For r ¼ 1 some additional problems occur. Since initially all the N particles are at a single

node, if r ¼ 1 the simulation takes place on a single numerical mode, i.e., at even time steps the particles are
distributed only on the even nodes 2pdx and the odd nodes (2p þ 1Þdx are empty, and vice versa. So, at a

given time only half of the grid nodes contains particles and in (2.3) we must consider l ¼ 2, i.e., c ¼ �nn=ð2dxÞ.
The nodes corresponding to x ¼ �1 are always even, �1=dx ¼ �10g, and we introduce the quantity
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if ¼
10g if kf is even;
10g 	 1 if kf is odd;

�

such that xf ¼ �ifdx should be the node in the interval ½	1; 1� which contains particles at tf and is the closest
to x ¼ �1. Then for r ¼ 1 we characterize the accuracy of the solution c with respect to the analytical

solution cGauss by the norm kc	 cGaussk, defined as

ck 	 cGaussk2 ¼
1

if þ 1

Xif
i¼0

1

N
cðð2i

�
	 ifÞdx; tfÞ 	

1

N0

cGaussðð2i	 ifÞdx; tfÞ
�2
; ð3:2Þ

where only the nodes containing particles at tf are taken into account. If r < 1, then the two numerical

modes are mixed by the particles remaining at the same node. In this case one can use a formula analogous

to (3.2) with if ¼ 10g, summing over all ð2if þ 1Þ nodes of the grid and with c ¼ �nn=dx, defined by (2.3) for

l ¼ 1.

First we analyze the numerical solution obtained with the GRWD algorithm described by (2.11) and

(2.12) with nði; kÞ real number. In the previous section it was proved that, for constant D and V � 0,
GRWD is identical with the explicit FD scheme (2.9), hence we denote its solution by cFDðxi; tkÞ. In Fig. 1,

the norm cFD 	 cGaussk k is represented as function of dx2 for several values of the parameter r. The linear
behavior corresponds to convergence in dx2 order of the FD scheme. From Fig. 2 it follows that the

maximum precision of the finite difference scheme is obtained for r � 0:3.
In the following, besides d ¼ 1 and D ¼ 0:5, we also fix the parameter r ¼ 1. We denote by cðxi; tkÞ the

numerical solution (2.3) obtained with the GRW algorithm described in the previous section. In fact this

solution also depends on the spatial resolution dx ¼ ð10gÞ	1, the total number of the fictitious particles N ,

Fig. 1. Convergence of order dx2.

Fig. 2. Dependence on r.
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and the number of simulations S, i.e., c ¼ cðxi; tk; dx;N ; SÞ. We successively analyze the dependence of the

solution accuracy on these parameters.

First for S ¼ 1 fixed, dx ¼ 0:1 (Fig. 3(a)) and dx ¼ 0:01 (Fig. 3(b)) we represent the norm (3.2) for the

numerical solution obtained with GRW and GRWR algorithms. Because S ¼ 1, there is a single simula-

tion, �nn is identical with n and because r ¼ 1, from (2.3), we have c ¼ n=ð2dxÞ. For a large enough number of

particles N , both GRW and GRWR approximates the analytical solution as well as the FD scheme. Since

the fluctuations in GRWR are reduced to minimum, this algorithm becomes equivalent to the FD scheme

for a smaller value of N . For this simple diffusion process the FD scheme is always more efficient, but for
complex diffusion processes as those presented in Section 5 other algorithms are needed.

To study the dependence of the precision on N , in Fig. 4 we represent for dx ¼ 0:1 the norm kc	 cFDk,
defined similarly to (3.2), where c corresponds to GRW, as a function of 1=

ffiffiffiffi
N

p
. One notices that the

dependence is linear. Then, Figs. 1 and 4 show that GRW converges to the analytical solution as Oðdx2Þ
þOð1=

ffiffiffiffi
N

p
Þ. For large N , when the condition 1=

ffiffiffiffi
N

p
¼ Oðdx2Þ is satisfied, the convergence order of GRW is

Oðdx2Þ, the same as for the finite differences scheme.
In Fig. 5 we analyze the dependence of norm (3.2) on N and S, for dx ¼ 0:1. When N ¼ 1 (the points

represented by } in Fig. 5), then the value kc	 cGaussk ffi 0:01, corresponding to FD scheme, is reached only
if S ffi 106 repetitions of the simulation are performed. In this case the GRW simulation is similar to those

produced by PT method, where the trajectory of one particle is generated S times. The same result is

Fig. 3. Dependence on N , for dx ¼ 0:1 (a) and dx ¼ 0:01 (b).

Fig. 4. GRW converges as 1=
ffiffiffiffi
N

p
to FD.
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obtained in a single realization, S ¼ 1, for N ffi 106 particles handled with GRW (points represented by � in
Fig. 5). This took only 0.5 s while for N ¼ 1 and S ¼ 106 (PT procedure) the computation time was of about

17 min. PT may be thought as an ‘‘analogical Monte Carlo method’’ where the diffusion is modeled by

averages over the diffusive behavior of individual particles. Since GRW algorithm can use large number of

particles, Monte Carlo repetitions are not necessary to obtain the required precision, and the computation

time is thousands times smaller.

4. Numerical boundary conditions

The boundary conditions for GRW algorithm depend on the values of d and vi. In this section we discuss
only the simplest case d ¼ 1 and vi ¼ 0 analyzed in the previous section. In more complicated cases the

boundary conditions can be similarly derived by means of the methods presented in the following.

To formulate the boundary conditions we use the numerical flux of particles Jðx; tÞ defined as the number
of particles crossing at time t the coordinate x. We evaluate the numerical flux during a time step dt, so that
the value obtained should be assigned to the middle of the time step. For d ¼ 1 and vi ¼ 0 the particles

jump only between the neighboring nodes, so that the numerical flux should be assigned to the middle of the

space step,

Jðiþ 1=2; k þ 1=2Þ ¼ 1

dt
dnði½ þ 1; i; kÞ 	 dnði; iþ 1; kÞ�: ð4:1Þ

For the GRWD algorithm, using (2.12) and (2.3) with l ¼ 1, the relation (4.1) becomes

Jðiþ 1=2; k þ 1=2Þ ¼ r
dx
2dt

cðxi; tkÞ½ 	 cðxiþ1; tkÞ�:

From (2.8) it follows that this is the usual FD form of the Fick law

Jðx; tÞ ¼ 	Doxcðx; tÞ: ð4:2Þ

Let us consider a finite grid with 2Lþ 1 nodes, i ¼ 	L;	Lþ 1; . . . ; L. Since vi ¼ 0 and d ¼ 1, the

boundary conditions imply only the nodes i ¼ �L. We discuss only the boundary i ¼ L, the case i ¼ 	L
being similar. A Dirichlet boundary condition can be formulated fixing the number of particles at the

boundary nðL; kÞ ¼ nbðkÞ, with nbðkÞ a given function of time. For other boundary conditions, including
those of von Neumann type, we must evaluate the boundary flux

JðLþ 1=2; k þ 1=2Þ ¼ 1

dt
dnðL½ þ 1; L; kÞ 	 dnðL; Lþ 1; kÞ�: ð4:3Þ

Fig. 5. Dependence on S.
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In this formula dnðLþ 1; L; kÞ is determined by means of the GRW algorithm from nðL; kÞ, but the number
of particles dnðL; Lþ 1; kÞ jumping from outside in the node i ¼ L is unknown. Therefore the boundary

condition can be formulated by calculating dnðL; Lþ 1; kÞ such that the flux (4.3) would have the requested
value. Consider a von Neumann boundary condition

JðLþ 1=2; k þ 1=2Þ ¼ Jbðk þ 1=2Þ; ð4:4Þ

where Jb is a given function of time. From (4.3) it follows the boundary condition

dnðL; Lþ 1; kÞ ¼ dnðLþ 1; L; kÞ 	 dtJbðk þ 1=2Þ: ð4:5Þ

For Jbðk þ 1=2Þ ¼ 0, from (4.5) we obtain the boundary condition for impermeable walls. For numerical
simulations with r ¼ 1 which use a single numerical mode, we must take into account that (4.5) mixes the

numerical modes. One can avoid the mixing of the numerical modes summing up (4.5) on two time steps.

Absorbing boundary condition corresponds to the case when all the particles leaving the grid are re-

moved, no particles being introduced from the exterior of the grid. In this case,

dnðL; Lþ 1; kÞ ¼ 0 ð4:6Þ

and the flux from the grid towards its exterior has the maximum value. The stationary boundary condition

imposes the equality of the fluxes on a side and the other of the boundary

JðLþ 1=2; k þ 1=2Þ ¼ JðL	 1=2; k þ 1=2Þ:

Using (4.1) and (2.5) we obtain the boundary condition

dnðL; Lþ 1; kÞ ¼ nðL; kÞ 	 dnðL; L; kÞ 	 dnðL; L	 1; kÞ: ð4:7Þ

Applied to GRWD (which is equivalent to the FD algorithm), this condition becomes, by means of (2.11)

and (2.12), the ‘‘transmission boundary condition’’ [12]

nðLþ 1; kÞ ¼ 2nðL; kÞ 	 nðL	 1; kÞ:

If we perform a numerical simulation on a finite grid of a nonstationary diffusion process in an un-

bounded domain after the particles reached the grid boundary, then we must formulate special boundary

conditions. A method to obtain such nonstationary conditions is to express the time derivative of the

concentration at the boundary by means of the time derivatives of the inside neighboring nodes. For
V ðxÞ ¼ 0, it follows from (1.8)

otcðx	 dx; t 	 dtÞ ¼ Do2xcðx	 dx; t 	 dtÞ ¼ Do2x ½cðx; tÞ 	 oxcðx; tÞdx	 otcðx; tÞdt þ Oðdx2Þ�
¼ otcðx; tÞ 	 Do3xcðx; tÞdxþ Oðdx2Þ;

where we used the relation dt ¼ Oðdx2Þ derived from (2.8). Then we have

otcðx; tÞ ¼ otcðx	 dx; t 	 dtÞ þ OðdxÞ: ð4:8Þ

Repeating the same argument for otcðx	 2dx; t 	 dtÞ we also obtain

otcðx; tÞ ¼ 2otcðx	 dx; t 	 dtÞ 	 otcðx	 2dx; t 	 dtÞ þ Oðdx2Þ: ð4:9Þ

For x ¼ Ldx and t ¼ ðk þ 1Þdt, these relations written in finite difference, using (2.3), give the nonstationary

boundary condition

nðL; k þ 1Þ ¼ nðL	 1; k þ 1Þ 	 nðL	 1; kÞ þ nðL; kÞ ð4:10Þ
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and

nðL; k þ 1Þ ¼ 2nðL	 1; k þ 1Þ 	 2nðL	 1; kÞ 	 nðL	 2; k þ 1Þ þ nðL	 2; kÞ þ nðL; kÞ: ð4:11Þ

These conditions are expected to give an useful approximation when the particles distribution near the

boundary is a good approximation of the solution. But when the first particles approach the boundary,
there are significant fluctuations of the particles number. Therefore at the value obtained from (4.10) and

(4.11) supplementary conditions are imposed: (a) nðL; k þ 1Þ > 0; (b) nðL; k þ 1Þ must be smaller than the

value obtained from the impermeable wall condition (4.5) with Jb ¼ 0.

As an illustration of these boundary conditions we continue the simulation of the previous section for

temporal interval three times larger than tf . We use the GRWD algorithm defined by (2.11) and (2.12) with

the parameter r ¼ 0:3. In Fig. 6 we represent the time evolution of the norm (3.2) for four different

Fig. 6. Accuracy comparison.

Fig. 7. Concentrations at the boundary.

Fig. 8. Concentrations at tf .
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boundary conditions. In these simulations dx ¼ 0:1 and the computational interval contains the spatial

interval ½	1; 1�. The points BC1 correspond to the impermeable wall boundary condition given by (4.5) with
Jb ¼ 0, BC2 and BC3 to the nonstationary boundary conditions (4.10) and (4.11), and BC4 to the absorbing

condition (4.6). The nonstationary condition (4.10) do not improve the accuracy with respect to (4.5) and

(4.6). The condition (4.11) keeps the norm under 0.02, which proves that it is suitable to be used in sim-

ulation of nonstationary diffusion. The same conclusion can be drawn from the evolution of the boundary

concentration (Fig. 7) and from the spatial variation of the concentration at the final time (Fig. 8).

5. Numerical simulation of diffusion in random velocity field

The transport in a random velocity field is a complex process consisting in diffusive movements of

particles and their transport along the stream lines of the velocity field. A mathematical description of this

process is given by Eq. (1.8) where D is a local diffusion coefficient and V ðxÞ a random field. Such models

are used to describe the transport of pollutants in natural porous media. In this section we consider the

numerical simulation of the transport of a contaminant substance in a saturated aquifer, for a punctual
injection case. The heterogeneity of the advection velocities is described by realizations of a random field.

Under these conditions, traditional methods (finite difference/element) are restricted at simplified aquifer

models [21]. Better results in simulation of field experiments were obtained by means of the stochastic

models based on PT method [20,22]. For instance, when the simulations of the contaminant transport at

field scale are performed with PT, the numerical diffusion and dispersion problems occurring in finite el-

ement/difference methods are completely eliminated [13].

In PT algorithm, the diffusion process is described by the movement of an ensemble of fictitious particles

in continuous space. For each particle the change of the position x in the time interval ðtkþ1 	 tkÞ, due to the
realization V ðxÞ of the random velocity field and the local diffusion with coefficient D, is described, in one-

dimensional case by the discrete form of the Itôo equation

xðtkþ1Þ 	 xðtkÞ ¼ V ðxðtkÞ; tkÞdt þ G
ffiffiffiffiffiffiffiffiffiffi
2Ddt

p
; ð5:1Þ

where G is a Gaussian random variable with mean zero and unit variance. For large number of particles

one expects that their number density gives an approximation of the concentration field cðx; tkÞ satisfying an
advection–diffusion equation [22]. This assertion is based on the relation between the Itôo equation and the

Fokker–Planck equation for the probability density of particle position [5]. According to (1.9) the prob-

ability density is proportional to the concentration, so that (1.8) is in fact the Fokker–Planck equation. The

accuracy of the solution strongly depends on the number of tracked particles. As it is mentioned in liter-

ature [19], and we also have seen in Fig. 5, where the first curve (N ¼ 1) corresponds to PT procedure, a

trade off should be made to reduce the computation time without affecting the accuracy. Although im-
provements of the algorithm have been made, the high computational costs of PT simulations is still an

open problem [8]. That is why sometimes a ‘‘semianalytical’’ evaluation of diffusive movement is used [17].

In [24] for instance, on the basis of some numerical tests, the last term in (5.1) was taken as 4
ffiffiffiffiffiffiffiffi
Ddt

p
.

The computational effort in the PT method is due to the fact that every particle is separately displaced

and all the trajectories must be stored. That is why the GRW method, where groups of particles are si-

multaneously displaced, saves time and memory. In the following we show that GRW allows a faster and

more complete simulation of the diffusion in random fields. To illustrate the advantage of our method when

large numbers of particles are necessary, the computing time for GRW was compared with the computing
time for a PT method (‘‘ParTrace’’ code described in [14]). The same problem was solved using the same

computing platform (Cray T3E). In Fig. 9 we present the simulation of an isotropic diffusion, with D ¼ 0:5,
into a cube the side of which consisted of 21 nodes, for 10 time steps and for different number of particles

injected at the initial moment into the center of the cube.
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GRW needs less than one second and only one Cray computing node while the computing time for

‘‘ParTrace’’ linearly increases with the number of particles and more Cray nodes are required (we stopped

the computation at 109 particles and 256 Cray nodes). The middle curve in Fig. 9 corresponds to GRW0

algorithm, where no approximations of binary repartitions are used (see Section 2). In this case the

computing time still remains orders of magnitude smaller than that of PT but, for N > 109 the time in-

creases with N .
For the simulation of two-dimensional diffusion in random fields we consider an advection–diffusion

equation similar to (1.8) and use the same procedure to generate the field as in [18]. The velocity field is
divergence free and has the form Vðx1; x2Þ ¼ Uþ uðx1; x2Þ, where U ¼ ðU ; 0Þ is the mean velocity and

uðx1; x2Þ the fluctuation. The correlation coefficients

Rll ¼ hulðx1; x2Þulðx1 þ a; x2Þi=hulðx1; x2Þulðx1; x2Þi;

where l ¼ 1; 2 and h�i denotes the average over the realizations of the random field, decay as shown in Figs.

10 and 11, corresponding to an exponential correlated logarithm of the hydraulic conductivity, with cor-

relation length k ¼ 1 m. For our simulation, the parameters are the same as those used in simulations

represented in Figs. 11 and 14 of [18], i.e., U ¼ 1 m/day, and local diffusion coefficient D ¼ 0:01 m2=day.
Because the movement due to velocity fluctuations is much larger than diffusive motion, only the

spreading of the plume over regions with different velocities is important and not the fluctuations of the

number of particles. That is why the simulations were performed with the reduced fluctuations algorithm

Fig. 9. Comparison of computing times

Fig. 10. Longitudinal correlation.
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GRWR with r ¼ 1. The GRWR algorithm requires reduced computing resources with respect to GRW and

GRWD algorithms. Unlike in GRW algorithm, only one random number will be generated (at every time

step and when at a given node there is an odd number of particles). Because the indivisibility of particles is

preserved, the plume has a smaller extension than in the case of GRWD algorithm and, consequently,

smaller grids are necessary.

The computation domain is a rectangular grid with 107 nodes, 06 i6 10 000 and 06 j6 1000, the space

step is dx ¼ dy ¼ 0:1 m and the time step dt ¼ 0:5 day. In two different realizations of the velocity field,

N ¼ 1010 particles were released at the point ði0; j0Þ ¼ ð50; 500Þ. We checked that for greater values of N the
simulation results remain unchanged. A period of 800 days was simulated, so that in this interval the

particles travel a mean distance of 800 correlation lengths. The computations were performed with a PC

(Pentium III, 600 MHz, 64 Mb RAM) and lasted about 3 h for each simulation. In Fig. 12 we represent, at

different times, the number of particles summed up over transversal sections of the plume, nðx1; tÞ, for one
realization of the velocity field.

In PT approach the diffusion in random fields is analyzed indirectly by means of the so called ‘‘effective

diffusion coefficient’’. For a given realization of the random field, the average of ðxl 	 �xxlÞ2 over the real-
izations of the local diffusion process, described by the second term from (5.1), defines the variance of
displacements r2

llðtÞ ¼ x2l 	 �xxl
2
. Let hr2

llðtÞi be its average over the realizations of the random field. The

process has asymptotic diffusive behavior if there is a finite limit called effective diffusion coefficient

lim
t!1

r2
llðtÞ

� �
t

¼ 2D�
ll; ð5:2Þ

where D < D�
ll < þ1. When the limit (5.2) is infinite one says that the asymptotic behavior is superdiffusive.

Processes with diffusive behavior also have the self-averaging property

Fig. 12. Distribution of particles across the plume.

Fig. 11. Transversal correlation.
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lim
t!1

r2
llðtÞ
t

¼ 2D�
ll; ð5:3Þ

i.e., the coefficient defined by a single realization is the same as that defined as ensemble average [3].

In Figs. 13 and 14 the evolution of D�
11ðtÞ and D�

22ðtÞ, for the two-dimensional GRWR simulations, are

represented for the two realizations of the random field. The coefficients D�
11 and D�

22 are closed to the

constant values predicted by theory presented in [18].

The basic assumption of stochastic approach of diffusion in random media is that for large times the
process behaves asymptotically diffusive and, correspondingly, the self-averaging property (5.3) holds. Then

one expects that the stochastic model may have predictive force for individual realizations of the porous

medium [2]. ‘‘A major motivation of stochastic analysis of transport in a heterogeneous porous medium has

been to derive an effective equation for the concentration that may be used to make decision in real life

contamination events’’ [10]. First, the existence of effective diffusion coefficients (5.2) and self-averaging

property (5.3) must be checked. Further, the fluctuations of concentration in individual realizations should

be studied, in order to find the superior bound which delimits the ‘‘unsafe zone’’ [11]. Both problems are

difficult to be solved and they imply high computing resources. In [18], to obtain the approach to as-
ymptotic value of longitudinal effective diffusion coefficient, 3200 particle trajectories were simulated with

PT for times corresponding at 5000 correlation lengths. In other studies [17], the reliability of the com-

putations is achieved using 20,000 trajectories (500 realizations of the field and 40 particles in each reali-

zation), up to 20 correlations lengths but the asymptotic regime is not reached. The computational effort

needed to obtain statistically significant results ‘‘has serious implication’’ when the behavior in a single

realization is studied [4]. The limitations imposed to maximum number of particles also make it difficult to

obtain simulations of concentration fields and concentration fluctuations. Although the use of GRW

Fig. 13. Longitudinal effective diffusion coefficient.

Fig. 14. Transversal effective diffusion coefficient.
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method requires large grids, unlike PT which is a grid free method, such simulations can be obtained using

large number of particles. The results from Figs. 12–14 indicates that GRW could be an alternative tool in

modeling contaminant transport in groundwater.

6. Conclusions

The GRW algorithm moves groups of particles, unlike the usual random walk algorithm where for each
particle a random number generation is necessary. Hence, important saving of memory and computing time

are achieved. The number of particles is limited only by the maximum number that can be represented on

each computing machine. For simple diffusion processes, GRW generalizes the FD scheme and for great

enough number of particles their precision is the same. In this case, the determinist algorithm GRWD is

identical with FD algorithm.

The GRWR algorithm, where the fluctuations of the number of particles are reduced to a single particle,

can be used, as well as the GRWD algorithm, when the fluctuations do not influence the process essentially.

A version of GRWR also can be used to avoid the approximation of the binary repartitions for n > 220,
described in Section 2, if only groups with n6 220 particles are scattered using binary repartitions while the

group exceeding this number is scattered by the determinist rule given by (2.12). Another GRW algorithm

can be obtained when the Gaussian repartition and reduced variable is used instead of binary repartitions.

The GRW method is useful for complex diffusion processes, when the usual finite difference/element

methods become inefficient. In this paper we have presented the simulation of diffusion in random velocity

field. While the usual simulations uses tens of thousand of particles, the GRWR presented in this paper

contains 1010 particles. This enables us to get informations about the asymptotic diffusive behavior and

concentration fluctuations. When no effective diffusion coefficients are computed and we are mainly in-
terested in concentration simulations, the boundary conditions discussed in Section 4 make it possible to

save more computing time and memory, because smaller grids can be used.

GRW can describe other complex diffusion processes. As an example, the simulation presented in

Section 5 can be completed for 3-dimensions, random space variable coefficient DðxÞ, chemical reactions
between several species of particles and radioactive decay. The modeling of chemical reactions and ra-

dioactive decay can be achieved if, at each time step, the variation of the number of particles is introduced

as described, respectively, by the kinetic formula for chemical reaction and the law of radioactive decay.
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