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Abstract — The methods which track particles to simulate concentrations are successfully

used in problems for large scale transport in groundwater, mainly when the aquifer properties

are spatially heterogeneous and the process is advection dominated. These methods, sometimes

called “analogical Monte Carlo methods”, are not concerned with the numerical diffusion occur-

ring in finite difference/element schemes. The limitations of classical random walk methods are

due to large computation time and memory necessary to achieve statistically reliable results and

accurate concentration fields. To overcome these computational limitations a “global random

walk” (GRW) algorithm was developed. Unlike in the usual approach where the trajectory of

each particle is simulated and stored, in GRW all the particles from a given grid node are

scattered, at a given time, using a single numerical procedure, based on Bernoulli distribution,

partial-deterministic, or deterministic rules. Because no restrictions are imposed for the maxi-

mum number of particles to be used in a simulation, the Monte Carlo repetitions are no longer

necessary to achieve the convergence. It was proved that for simple diffusion problems GRW

converges to the finite difference scheme and that for large scale transport problems in ground-

water, GRW produces stable and statistically reliable simulations. A 2-dimensional transport

problem was modeled by simulating local diffusion processes in realizations of a random veloc-

ity field. The behavior over 5000 days of the effective diffusion coefficients, concentration field

and concentration fluctuations were investigated using 2560 realizations of the velocity field and

1010 particles in every realization. The results confirm the order of magnitude of the effective

diffusion coefficients predicted by stochastic theory but the time needed to reach the asymptotic

regime was found to be thousands times larger. It is also underlined that the concentration

fluctuations and the dilution of contaminant solute depend essentially on local diffusion and

boundary conditions.

1 Introduction

The solutions of the parabolic equations can be numerically obtained using random
walkers to describe the contribution of the second order space partial derivatives [Chorin,
1978]. For simple diffusion processes, the concentration is obtained by simulating the
random walk trajectories for a collection of particles and by counting the number of
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particles in a reference volume. This algorithm, equivalent to the finite difference scheme
(FD), is a analogical Monte Carlo method, where the accuracy of solutions is improved
by increasing the number of particles [Ames, 1977]. The “particle tracking method” (PT)
which generalizes the algorithm for advection-diffusion processes is suitable to simulate
the transport in heterogeneous velocity fields, as in problems related to monitoring the
fate of contaminant solutes in groundwater [Roth and Hammel, 1996]. With respect
to FD and finite element methods, PT has the advantage to be structurally stable and
without numerical diffusion but in many practical problems its applicability is limited by
the computing resources necessary to simulate the trajectories of collections of particles
large enough to ensure the required accuracy [Sun, 1996].

In [Vamoş et al., 2003] it was shown that the “global random walk” (GRW) is an
alternative tool to describe the transport in heterogeneous velocity fields. This new par-
ticles method scatters all particles lying at a given grid point simultaneously. Unlike in
usual random walk algorithms where the trajectories of the particles are simulated indi-
vidually and stored, the GRW provides the whole concentration field at each time step
and it is not concerned with limitations related to the number of tracked particles. In the
present work the GRW is used to obtain statistically reliable results in simulation of the
large time behavior of a typical transport process in groundwater. Following the usual
stochastic approach of the problem, the large scale heterogeneities of the natural porous
medium are described by a random velocity space field and the effects of erratic structure
at local scales are modeled as a diffusive process, called “pore scale dispersion”. Collec-
tion of particles are used to obtain the concentration and other quantities of interest in
given realizations of the field and averages over realizations are taken to obtain statistical
estimations.

The accuracy of results depends on the choice of space and time steps of the grid
used in the GRW algorithm, the number of particles used to simulate the transport in a
given realization and the number of realizations used to obtain the statistical estimations.
The grid steps give the lower bound of the numerical errors in simulation of the diffusion
process and, mainly, of the advective transport. Even stable, the GRW, as well as PT,
yields “overshooting” errors when particles jump over grid points with different assigned
velocities. These errors distort the advection and cannot be completely eliminated. To
reduce the overshooting, refined grids are necessary implying high computational costs. A
trade off between accuracy and the aim to obtain statistically reliable large scale simula-
tions, describing the transport during 5000 days, was achieved by choosing an acceptable
overshooting which keeps the numerical results close to those given by first order approx-
imations from stochastic theory. The stochastic convergence of the simulations of the
transport in given realization of the velocity field, towards the threshold corresponding to
the fixed diffusion and overshooting errors, was obtained using N = 1010 particles. Accu-
rate statistical estimations were obtained by simulating the transport in 2560 realizations
of the velocity field.

2 The global random walk algorithm

The GRW algorithm was proposed as a generalization of the random walk and PT
methods, aiming to increase the speed of computations and to increase the accuracy
[Vamoş et al., 2003]. The one-dimensional GRW algorithm describes the scattering of the
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n(i, k) particles from (xi, tk) by

n(j, k) = δn(j, j + vj, k) + δn(j + vj − d, j, k) + δn(j + vj + d, j, k),

where vj are discrete displacements in a given velocity field, d describes the diffusive
jumps, and δn(j + vj ± d, j, k) are Bernoulli random variables. The distribution of the
particles at the next time (k + 1)δt is given by

n(i, k + 1) =
∑

j

δn(i, j, k).

For two and three-dimensional cases, the same procedure is repeated for all space di-
rections. The average number of particles undergoing diffusive jumps and the average
number of particles particles remaining at the same node after the displacement vj are
given by the use of the parameter r, r 6 1, trough the relations

δn(j + vj ± d, j, k) =
1

2
r n(j, k) and δn(j, j + vj , k) = (1 − r) n(j, k).

The diffusion coefficient D is related to the grid steps through

D = r
(dδx)2

2δt
. (1)

Because the total number of particles N contained in the grid is conserved the GRW
algorithm is stable and (1), with condition r 6 1, ensures that there is no numerical
diffusion.

The GRW can be implemented in several variants. The fast algorithm, which we call
simply GRW, approximates the Bernoulli distribution for N > 1020 with that correspond-
ing to 1020 particles without producing significant errors. GRW0 is the algorithm where
no approximations are made. GRWG uses the Gauss distribution (the limit of Bernoulli
distribution for N −→ ∞). GRWD, the determinist variant obtained when n are real
numbers and δn(j + vj ± d, j, k) = 1

2
rn(j, k), is shown to be equivalent to the FD scheme

for constant velocity. The “reduced fluctuations algorithm” GRWR is defined by

δn(j + vj − d, j, k) =

{

n/2 if n is even
[n/2] + θ if n is odd

,

where n = n(j, k) − δn(j, j + vj , k), [n/2] is the integer part of n/2 and θ is a variable
taking the values 0 and 1 with probability 1/2. GRWR is suitable for large scale problems
because the diffusion front do not extend beyond the limit concentration defined by one
particle at a grid point, keeping a physical significant shape (unlike in FD where a pure
diffusion front has a cubic shape of side ∼

√
Dt), and it also requires a minimum number

of calls of the random number generator.
The main difference with respect to the PT algorithm is that while the output of PT is a

single trajectory of a particle undergoing advection and random walk, the GRW algorithm
yields paths containing the trajectories of all the N particles used in simulation. Because
at every time step the whole probability density (i.e. the normalized concentration inferred
from the number of particles at grid sites) is available, the GRW, as a mathematical object
is an approximation of a discrete diffusion process. An illustration for the 2-dimensional
case is presented in Fig. 1. For a given velocity field u, from all points (i, j) containing

particles develop paths P(s)
α (i, j;u) of length α = t/δt so that at the intermediate time

step s the n(i, j) particles are spread in 4s different grid points [Vamoş et al. 2001].
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Fig. 1. The path P(2)
α (i, j;u), after 2 time steps, of particles starting at (i, j) for a realization

u of the velocity field.

In the following some results regarding the properties and performances of GRW are
quoted from [Vamoş et al., 2003].

A comparison with the PT code ”ParTrace”, on Cray T3E, for a small scale problem
(constant diffusion coefficient, no velocity, diffusion of N particle starting at the center
of a cubic grid the side of which was 20 space steps) show that while in GRW algorithm
there is practical no limitation, N > 109 particles becomes prohibitive for PT (Fig.2).

Fig. 2. Comparison between the computing times required by PT and GRW for increasing N .
( c©2003 Elsevier Science B. V. All rights reserved)

The results obtained with GRW algorithm for a one-dimensional Wiener process, de-
scribed by ∂tc = D∂2

xc, limt−→0+ c = Nδ(x), where δ(x) is the Dirac function, were
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compared with the Gaussian solution trough the norm ‖c − c
Gauss

‖. The results from Fig.
3 show that the numerical solution converges to the Gaussian as O(δx2) +O(1/

√
N), i.e.

for large numbers of particles, N , the convergence order is O(δx2), the same as for FD.

Fig. 3. The convergence as function of N for δx = 0.1 (a) and δx = 0.01 (b).( c©2003

Elsevier Science B. V. All rights reserved)

The dependence of the norm on r was studied with the GRWD algorithm, equivalent
to FD scheme (Fig. 4). It was found that the best precision is obtained for r ≃ 0.3.

Fig. 4. Dependence on r. ( c©2003 Elsevier Science B. V. All rights reserved)

When N = 1 (PT procedure) the value ‖c − c
Gauss

‖ ∼= 0.01, corresponding to FD
scheme, was reached for S ∼= 106 repetitions of the simulation and the computation time
was of about 17 minutes. The same result is obtained in a single simulation, S = 1, for
N = 106, in 0.5 seconds (Fig. 5).
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Fig. 5. Convergence as function of S. ( c©2003 Elsevier Science B. V. All rights reserved)

The conclusion is that for large enough N the Monte Carlo repetitions are not necessary
to obtain the required precision in GRW algorithm.

3 Transport in heterogeneous aquifers

The transport of non-reactive solutes in heterogeneous aquifers depends on the interplay
of the following factors:

1) the local dispersion with constant coefficient D, described as a Wiener process w,
2) the initial position X

0
of solute molecules, and

3) the large scale space variability of the advection velocity field V.
The width of diffusion fronts is described by the mean square displacements

σ2
ij(t) = 〈(Xi − 〈Xi〉) (Xj − 〈Xj〉)〉 ,

where 〈· · · 〉 = 〈· · · 〉
w,X

0

denotes the average over the Wiener process and initial positions.

When the effective coefficients Deff
i,j = lim

t→∞
σ2

ij(t) / (2t) can be defined, then an ”up-

scaled” description similar to the Wiener process is possible: σ2
ij ∼ 2Deff

ij t, for t → ∞.
The structure of the effective coefficients is given by

Deff
ij = D + Dadv

ij − Dcm
ij + Mij, (2)

where

Dadv
ij = lim

t→∞

t
∫

0

〈ViVj〉 (t, t′)dt′ and Dcm
ij =

1

2
lim
t→∞

[

〈Vi〉 (t)
t
∫

0

〈Vj〉 (t′)dt′ + 〈Vj〉 (t)
t
∫

0

〈Vi〉 (t′)dt′
]

are the ”advective” and ”center of mass” components of the effective coefficients and

Mij =
1

2
lim
t→∞

[〈X
0iVj + X

0jVi〉 − (〈X
0i〉 〈Vj〉 + 〈X

0j〉 〈Vi〉)] (t)

is a ”momentum” term which vanishes for a singular initial concentration [Vamoş et al.,
2001; Suciu and Vamoş, 2003; Suciu et al., 2003].
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The stochastic approach considers realizations of a random field V = U + u, with
mean U and fluctuation u, and defines the effective coefficients as averages over the
realizations of the velocity field of the effective coefficients in single realizations,

Deff
ij =

〈

Deff
ij

〉

V

= D +
〈

Dadv
ij

〉

V
−

〈

Dcm
ij

〉

V
.

The ergodic hypothesis [Dagan, 1989] assumes that the effective coefficients in a
given realization equal their estimations, and Dcm

ii = 0, i.e.

Deff
ij = D + Dadv

ij .

The 1-st order approximation [Dagan, 1989; Fiori, 1996] yields u = O(σy) and,
for mean flow U = (U, 0, 0),

Deff
11 = D + Uλyσ

2
y , Deff

22 = Deff
33 = D, (3)

where σ2
y is the variance of the logarithm of the hydraulic conductivity y and λy is the

corresponding correlation length.

4 A typical large scale transport problem

Two-dimensional velocity fields with constant mean U = (U, 0), U = 1 m/day, ex-
ponential correlated normal y, with correlation length λy = 1 m and variance σ2

y = 0.1
and σ2

y = 1, were generated using 640 Fourier modes by the Kraichnan procedure (as
in [Schwarze et al., 2001; Dentz et al. 2003]) on a Cray T3E computer. Because the
results of the stochastic theory in first order approximation are obtained for unbounded
domains, the grid was chosen to be larger than the maximum extension of the plume. All
the N particles were initially located at the origin of the grid and the computations were
conducted for dimensionless times t/Uλy corresponding to 5000 correlation lengths, using
the reduced fluctuations algorithm GRWR.

The transport depends on both heterogeneity of the field, described by σ2
y , and the

local dispersion coefficient D. For N = 1010, as suggested by Fig. 3, and choosing the
space and time steps δx1 = δx2 = 0.25 m and δt = 1 day, several combinations of σ2

y and
D were investigated.



160 N. Suciu, C. Vamoş, H. Hardelauf, J. Vanderborght, and H.Vereecken

0

10

20

30

40

50

60

70

80

90

100

300 400 500 600 700 800 900 1000 1100 1200 1300

x 2
 (

m
)

x1 (m)

σ2
y=1.0 and D=0.001

σ2
y=0.1 and D=0.001

σ2
y=1.0 and D=0.01

σ2
y=0.1 and D=0.01

Fig. 6. Diffusion fronts at t = 1000days.

Comparing the results presented in Fig. 6, the transport parameters σ2
y = 0.1 and

D = 0.01 m2/day were chosen, because they lead to symmetric plumes, as in first order
approximation. In this case, the theoretical values of the effective diffusion coefficients
given by (3) are Deff

11 = 0.11 m2/day and Deff
22 = 0.01 m2/day.

5 Computational parameters

In the following the number of particles is fixed at N = 1010 and because D is constant
and isotropic, one chooses δx1 = δx2 = δx. To avoid the overshooting due to the diffusive
jumps one takes d = 1. The parameters δx, δt, and d are related to r and D through the
relation (1). The structure of the velocity field is correctly reproduced when the space
step and all the displacements in a time step are smaller than the correlation length λy.
The following constraint are imposed:

δx < λy (4a)

dδx < λy (4b)

Uδt 6 λy (4c)

The space step δx = 0.25 m fulfils the condition (4a). Previous published works also
recommend to choose at least four velocity values per correlation length to obtain an
accurate description of the velocity field [Bellin et al., 1992]. The condition (4b) being
met for d = 1, it remains to choose the time step δt satisfying (4c). The test for different
values Uδt/δx in Fig. 7 shows that the minimum time step which gives effective coefficients
close to the theoretical values is δt = 1 day, corresponding to Uδt/δx = 4. From (1) one
obtains a value r = 0.32, which is closed to the optimum in Fig 4.
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Fig. 7. Asymptotic coefficients, defined as time averages between t = 4900 and t = 5000days,

for δx = 0.25 m.

Larger values, Uδt/δx > 4, infringes the condition (4c). A choice Uδt/δx < 4 yields
unrealistic effective coefficients and do not describe the diffusion fronts (Fig. 8). Thus for
fixed δx = 0.25 m, the only possible choice is δt = 1 day.
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Fig. 8. Effective coefficients and diffusion fronts for δx = 0.25m andUδt/δx = 1.

For fixed Uδt/δx = 4, the choice δx > 0.25 (i.e. less than 4 velocity values per
correlation length), do not reproduce the structure of the velocity field (Uδt > λ) and the
effective coefficients become larger than the theoretical values (Fig. 9).
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Fig. 9. Effective coefficients, defined as time averages between t = 4900 and t = 5000 days,

for Uδt/δx = 4.

Because smaller space and time steps become prohibitive as computing resources, the
choice δx = 0.25 m, δt = 1 day, and d = 1 is a trade off on accuracy which permits
the simulation of the asymptotic effective diffusion coefficients and the comparison with
theoretical results.

To estimate the numerical errors produced with these parameters, the effect of over-
shooting should be analyzed. Even if there is no recognized non-dimensional parameter
for overshooting, a meaningful description can be obtained using the ratio between the
mean square differences of the velocity over a mean displacement in a time step and
the square mean velocity. For statistically homogeneous velocity fields, this parameter,
hereinafter called Ov, can be computed as it follows:

Ov =

〈

[V(x) −V(x + Uδt)]2
〉

U2
=

2σ2
V

U2
[1 − ρ(Uδt)] , (5)
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where σ2
V

is the velocity variance and ρ
V
(Uδt) = [〈V(x)V(x + Uδt)〉 − U2]/σ2

V
the cor-

responding correlation function evaluated at Uδt. For the exponential correlation of the
logarithm of the hydraulic conductivity considered here, and in the 1-st order approxima-
tion of the flow, one obtains σ2

V
= U2σ2

y and ρ
V
(|x|) = exp(− |x| /λy). Considering (4c)

and the first order of the Taylor expansion in |x| /λy, one obtains

Ov = 2
σ2

yUδt

λy

. (6)

Thus the overshooting parameter introduced here depends on mean velocity, U , veloc-
ity variance σ2

V
, and correlation ρ

V
. The shape of the correlation function is impor-

tant for the value of the overshooting coefficient. For instance, when the logarithm
of the hydraulic conductivity has a Gaussian correlation, then in 1-st approximation
ρ

V
(|x|) = exp(− |x|2 /λy), and instead of (6) one obtains Ov = 4σ2

yUδt/λy. It is also
to be noticed that for large d the diffusive displacements becomes important and the
maximum overshooting is described when ρ(Uδt + dδx) is considered in (5).

For the previously chosen parameters, δx = 0.25 m, δt = 1 day, and d = 1, the
overshooting coefficient is Ov = 0.2. One remarks that even if the overshooting errors are
reduced when reducing δt, for fixed δx, the quality of numerical results do not improve,
moreover it is worse (see Fig. 7 and 8). This can happen, first, because the parameter
r also modifies, according to (1), and departure from the optimum r = 0.3 increases the
numerical errors related to diffusion, and, second, due to an inaccurate representation
of the variability of the velocity for small values Uδt/δx. The numerical errors can be
reduced by reducing both δt and δx, choosing d so that (1) gives a value r close to 0.3, and
keeping a small Ov and a large enough Uδt/δx. Results of preliminary tests are presented
in Fig. 10, where computations of the effective coefficients, for a fixed realization of the
velocity field, are compared for the set of chosen parameters (δx = 0.25 m, δt = 1 day,
Uδt/δx = 4, d = 1) and for three sets of parameters corresponding to δx = 0.1 m.
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Fig. 10a. Comparison of longitudinal effective coefficients for different δx and δt.
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Fig. 10b. Comparison of transverse effective coefficients for different δx and δt.

One remarks that, for δx = 0.1 m and almost the same overshooting Ov, the numerical
results are closer to the theoretical predictions (i.e. Dcm

11 is smaller and Deff
22 closer to

D = 0.01 m/day) in the last two cases in Fig. 10a and 10b, corresponding to the values
Uδt/δx > 4. Then the accuracy is less sensitive to the parameter r and mainly depends on
the discretization of the velocity field. It was also checked that correcting the overshooting
by replacing the actual velocity with its mean over a time step (as proposed in [Roth and
Hammel, 1996]), do not significantly change the results for δx = 0.1 m and Uδt/δx = 5
[Suciu et al., 2002]. Thus the difference between the first and the last two cases in Fig. 10
could be considered as an estimation of the order of magnitude for the numerical errors
due to the discretization used in the following computations.

6 Stochastic convergence for given velocity realiza-

tion

In the case of the Wiener process, presented in Fig. 3, the stochastic convergence of
GRW simulations towards the Gaussian solution was quantified by a norm (defined by
means of the global variance with respect to the exact solution) and compared to the
convergence of the FD scheme, quantified by the same norm. It was found that, for the
same space-time discretization, the norm of the GRW solution cannot be smaller than
the norm of the FD scheme, regardless how large N is. Thus, the accuracy of the FD
solution defines a threshold for the GRW, corresponding to a given discretization. For
the transport in realizations of a random velocity field, considered here, there is neither
analytical solution nor other numerical solution available. Thus the stochastic convergence
cannot be investigated in the same way.

For the fixed parameters δx = 0.25 m, δt = 1 day, Uδt/δx = 4 and d = 1, the
number of particles N was progressively increased until the effective coefficients reach
stable values. Once the effective coefficients remain unchanged when N is increased, the
threshold corresponding to the fixed diffusion and overshooting errors is reached. It was
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found that for N > 1010 the values of all the coefficients (2) are identical in the limit of
double precision (Fig. 11). Thus, for the large scale transport problem considered, the
convergence of simulations for a given realization of the velocity field requires numbers of
particles of the order N = 1010.
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Fig.11. Convergence as function of N of the effective coefficients, defined as time averages

between t = 4900 and t = 5000 days.

The Fig. 12 shows that small numbers of particles induce large numerical errors in
simulation of time behavior of the coefficients.
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Then, one can assess that the large scale computations with PT procedure, reported
in the literature, did not ensure the convergence because a too small number of particles
was used (N = 4 in [Schwarze et al., 2001] and N ∼ 100 in [Dentz et al., 2002 and 2003]).
Moreover, as shown by Fig. 2, the PT algorithm is not able to handle N = 1010 particle
even if efficient parallel computes are used. The convergence of large scale transport
simulation in given realizations of the velocity field seems to be a new result, for the first
time presented here.

7 Ensemble averages of the effective coefficients

The convergence of the ensemble averages (more precisely, of the advective coefficients
< Dadv

ii >
V
, neglecting the local dispersion, using the PT procedure with a single particle

in every realization of the velocity field and 1500 realizations) was obtained in the past,
for tens of correlation lengths [Bellin et al., 1992]. Here, the convergence of the statistical
estimation of effective coefficients (2) is investigated for large scales, corresponding to 5000
correlation lengths. For every realization of the transport (i.e. diffusion process in a fixed
realization of the velocity field) the statistical convergence was ensured using N = 1010

particles. With the chosen grid steps, δx = 0.25 m and δt = 1 day, it was possible to
obtain a convergent transport computation on a single processor of the parallel machine
Cray T3E and 256 realizations of the transport in a single run, using a GRW code.
Repeating the job 10 times, an ensemble of 2560 realizations was obtained.

The mean values and the standard deviations of the longitudinal and transverse coef-
ficients Deff

11 and Deff
22 given by (2), as well as for the corresponding advective and center

of mass coefficients, were computed at every time step. The relative errors presented in
Fig. 13, computed as averages over the time interval between 4900 days and 5000 days,
show that the estimation of the stochastic averages with a precision between 1 and 5%
requires more than S = 2500 realizations of the velocity field.
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Fig. 13. Convergence of the stochastic averages of the effective coefficients as function of

number of realizations S.

The averaged longitudinal coefficients are of the same order as predicted by the first
order approximation (3) but the ergodic behavior does not occur (the center of mass
coefficient < Dcm

11 >
V

does not vanish) (Fig. 14a). The ergodicity of the transverse
coefficients occurs at travel times of thousands days and their asymptotic values are
larger than D (Fig. 14b).
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Fig. 14b. Ensemble averaged transverse effective diffusion coefficients.

The non-ergodicity of the longitudinal coefficients is due to the nonvanishing value of
the center of mass coefficient in the average of (2). The average value of this coefficient
monotonically decreases with S, for S > 512, as shown in Fig. 15. After S = 2048 it
reaches a quasi constant value < Dcm

11 >
V
≃ 0.02 m2/day estimated, according to Fig. 13,

with a precision of about 5%.
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The average < Dcm
22 >

V
reaches a constant value two orders of magnitude smaller than

the local coefficient D, after S = 1024 realizations (Fig. 15b), with the same precision of
5%. The effective coefficient < Deff

22 >
V
≃ D+ < Dadv

22 >
V
≃ 0.014 m2/day is estimated,

according to Fig. 13, with a precision ≃ 1%. This result is at variance with the 1-st order
approximation (3) which predicts a vanishing advective coefficient, < Dadv

22 >
V
= 0, and

an effective coefficient equal to the local coefficient, < Deff
22 >

V
= D = 0.01 m2/day.
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These results are statistically reliable but the discretization errors, estimated from
Fig. 10, are of the same order of magnitude as the differences with respect to the 1-st
approximation. Even if the prediction of the 1-st order stochastic theory concerning the
ergodicity and the values of the asymptotic coefficients cannot yet be verified, the results
on ensemble averages of the effective coefficients presented in Fig. 14 clarify some other
aspects. First, because the GRW numerical approach permits the computation of the
terms composing the effective coefficients (2), the explanation of the significant difference
in the behavior at intermediate times of effective and advective transverse coefficients,
already noted in [Dentz et al., 2002], becomes evident in Fig. 14b. The difference <
Dadv

22 > − < Deff
22 > is just the < Dcm

22 > coefficient, due to the randomness of the
plume center of mass. The maximum of the advective coefficient < Dadv

22 > at about ten
dimensionless times, predicted by stochastic theory [Dagan, 1989], is an artifact due to the
ensemble averaging and do not describe the behavior of the transport in given aquifers.
The estimated effective coefficient < Deff

22 > behaves almost monotonically. A second
conclusion, statistically reliable and not affected by the discretization errors is that the
upscaled Fickian behavior can be expected to occur only after thousands of dimensionless
times. This reinforces previous numerical results, obtained by averaging over transport
realizations that were not convergent [Schwarze et al., 2001; Dentz et al. 2002, 2003], and
contradicts the theoretical predictions saying that the asymptotic coefficients are reached
after the plume have traveled tens correlations lengths [Dagan, 1989; Fiori, 1996].

8 Concentration fluctuations and dilution

The normalized concentration is the probability density of molecules moving on the
trajectories X (t,x

0
) of the transport process described in Section 3 and it is given by the

general definition c(x, t) = 〈δ(x −X (t,x
0
))〉

w,x
0

[van Kampen, 1981]. The average of the

concentration over the realizations of the velocity field can be written

〈c(x, t)〉
V

=
〈

〈δ(x −X (t,x
0
))〉

w,x
0

〉

V

=

∫

V0

〈δ(x −X (t,x
0
))〉

w,V
c(x

0
)dx

0
, (7)

where V0 is the domain occupied by the initial plume and c(x
0
) is the initial concentration

field. The average of the square concentration is

〈

c2(x, t)
〉

V

=

∫

V0

∫

V0

〈

〈δ(x −X (t,x
01))〉w 〈δ(x − X (t,x

02))〉
w

〉

V

c(x
01)c(x02)dx01dx02

(8a)

=

∫

V0

∫

V0

〈δ(x −X (t,x
01))δ(x −X (t,x

02))〉
w,V

c(x
01)c(x02)dx01dx02 (8b)

=

∫

V0

∫

V0

p(x, t;x
01, 0;x, t;x

02, 0)c(x
01)c(x02)dx01dx02, (8c)

where (8a) and (8b) are identical because the trajectories of the Wiener process starting
in two different points x

01 and x
02 are independent. The function p in (8c) is the joint

density of four events (x, t) laying on two trajectories, sometimes called “two particles
probability density” [see e.g. Lundgren, 1981]. This joint density is used to build up two-
trajectory estimators for correlation function and variance, introduced in [Sabelfeld and
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Mikhailov, 1980], which are useful tools in Monte Carlo methods for turbulent transport
in random velocity fields [Sabelfeld, 1991].

From (7) and (8), the variance of the concentration is σ2
c = 〈c2(x, t)〉

V
− (〈c(x, t)〉

V
)2.

In the Lagrangian approach [Dagan and Fiori, 1997] first order results are provided, for
which probability density factorizes, p = p

V
p

w
, and both p

V
and p

w
are Gaussian. In the

Eulerian approach [Kapoor and Gelhar, 1994, Kapoor and Kitanidis, 1998], σ2
c is derived

by taking the moments of an advection-diffusion equation supposed to be valid at the
Darcy scale.

The concentration statistics is usually described by the variance σ2
c , the concentration

coefficient of variation CV = σc/ 〈c(x, t)〉
V
, computed at the plume center of mass, and the

global variance ||σ2
c || =

∫

σ2
cdx1dx2. Besides the averages over the ensemble of realizations

given by (7-8), the risk of contamination in a given aquifer should also be quantified by
the space mean concentration and variance [Kapoor and Gelhar, 1994]. The dilution of
the contaminant solute in given realization of the transport is described by the “dilution
index” E [Kapoor and Kitanidis, 1998],

E = exp

(

−
∫

c(x, t) ln c(x, t)dx

)

, (9)

where the expression under the exponential is the entropy of the process and the integral
extends over the entire problem domain.

The simulations of the two-dimensional transport in unbounded domain and point
source from previous sections were supplemented with simulations for extended initial
plumes, with and without local dispersion, and with a simulation of the transport in a
confined aquifer (for initial plume uniformly distributed over the vertical direction and
no flux at upper and lower boundaries, similar to [Kapoor and Kitanidis, 1998]). In
all computations the initial plume contained 1010 particles and the concentration was
computed as the relative number of particles in a square meter. Space statistics were
inferred from averages over the transverse dimension of the computation domain and, for
the point source case, averages over 500 realizations of the velocity were used to estimate
the ensemble averages.

The results for unbounded domains from Fig. 16 are similar to ones published in the
past and underline the crucial role played by the local dispersion (unbounded increase of
global variance an CV in absence of local dispersion). In Fig. 16b the ensemble averaged
numerical values σ2

c/ 〈c(x, t)〉
V

are represented by the points “+”. They correspond to
the theoretical CV inferred from the statistics over realizations given by (7-8) and are
smaller than the space average CV . To avoid the underestimation of the incertitude of
the spatial distribution of the contaminant in a given realization of the aquifer the space
averages should be considered. Further, the statistical CV accounts for the incertitude of
the aquifer’s parameters (hydraulic conductivity).
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The dilution index (9), normalized by Emax, corresponding to Gaussian distribution,
for unbounded domains, and Gaussian distribution on longitudinal direction and uniform
on transverse direction, for confined aquifer, is presented in Fig. 17. For both, the
behavior is similar, towards E/Emax = 1 (occurrence which is called “complete dilution”
in [Kapoor and Kitanidis, 1998]), while in the absence of a local dispersion mechanism
there is no dilution.
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Fig. 18 shows that for both boundary problems the dilution index E is proportional
to the apparent dimension of the plume σx1

σx2
.
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Fig. 18a. Time behavior of the dilution index E compared to the apparent dimension of the

plume, for unbounded domain.
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Since the apparent plume behaves at large times as ∼ t for unbounded domains (Fig.
18a) and as ∼ t0.5 for confined aquifer (Fig. 18b), the observation of Pannone and
Kitanidis [1999] that the results in [Dagan and Fiori, 1997] are in variance with those in
[Kapoor and Kitanidis, 1998] is not really surprising. The two results are not comparable
because they are derived from different boundary problems. For both transport processes
there is no thermodynamic equilibrium, because the entropy increases unboundedly.

9 Conclusions

The GRW algorithm is able take over the limitations of classic particles methods and
to track very large numbers of particles necessary to achieve the statistical convergence
and to compute accurate concentrations in large scale transport simulations.

The computation parameters used made possible the simulation of the asymptotic
diffusive behavior of the transport in given realizations of the velocity field and the com-
putation of statistically reliable averages of the effective coefficients over large ensembles
of realizations.

The simulated effective coefficients are close to the prediction of the first order approx-
imation in the stochastic theory of transport. Reinforcing previously published results,
the time necessary to reach the asymptotic Fickian regime of transport was found to be
thousands times larger than the theoretical prediction. The numerical errors are still to
large to test the validity of the ergodic hypothesis and the prediction of vanishing advec-
tive contribution to the transverse effective coefficient in the first order theory. It was
shown that the results can be improved by decreasing the space and time steps so that
the overshooting is kept at small values and the numerical resolution of the velocity field
is improved.

The mean concentration field and fluctuations were accurately described by space and
ensemble averages. The comparison between simulations in different initial and boundary
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conditions shows the determinant role of the local dispersion mechanism in fluctuations
extinction. As shown by the long time behavior of the entropy, the transport process has
no equilibrium state and the contamination approaches a state of complete dilution.
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