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Abstract

We investigate the dependence of the optical conductivity of bilayer graphene (BLG) on the
intra and interlayer interactions using the most complete model to date. We show that the next
nearest neighbor intralayer coupling introduces new features in the low energy spectrum
significantly changing the ‘universal’ conductance. Further, its interplay with interlayer
couplings leads to an anisotropy in the conductance in the ultraviolet range. We propose that
experimental measurement of the optical conductivity of intrinsic and doped BLG will provide
a good benchmark for the relative importance of intra and interlayer couplings at different

doping levels.

(Some figures in this article are in colour only in the electronic version)

Since the isolation of single layers of graphite in 2003 [1],
a lot of exciting work on single layer graphene (SLG)
has been done [2]. For example, the prediction and
observation of electron-hole symmetry and a half-integer
quantum Hall effect [3-5], finite conductivity at zero
charge-carrier concentration [3], the strong suppression
of weak localization [6-8], universal conductance [9-11],
magnetic enhancement of optical conductance in graphene
nanoribbons [12] and a strong nonlinear response in the
terahertz frequency regime [13, 14].

More recently, attention has also been paid to SLG’s
cousin, bilayer graphene (BLG). Electrons in bilayers can
qualitatively exhibit new properties to those in single layers,
such as interlayer drag [15] and correlation [16]. The electronic
and transport properties of BLG differ significantly from SLG
in many respects, particularly at low energies in the ‘Dirac’
regime. Various models for low energy BLG exist in the
literature depending on the coupling terms included, and
whether electronic bands beyond the lowest energy subbands
are retained [17, 18]. Many interesting results were obtained
based on a model that includes only the most dominant
of the interlayer coupling terms in BLG, as well as the
usual nearest neighbor intralayer term [19]. By including
the second most dominant interlayer coupling, some unusual
properties such as a peculiar Landau-level spectrum have been
derived [18], as well as a new low energy peak in the optical
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conductance [20, 21]. By further increasing the layer numbers,
one has graphene multilayers whose energy dispersion near the
K-point can be tuned by a gate voltage [22].

The ‘universal conductance’ of graphene is both a dc
and an ac phenomenon. It is a direct result of the linear
energy dispersion of graphene. Linear subbands imply both
a constant density of states as well as consistent transition
matrix elements, which means that as long as the linear (Dirac)
approximation is valid, the conductance is a constant. In
the ac case, the value of the universal conductance of single
layer graphene is o = e?/4h. In the layered case, a
standard benchmark is simply 0, = no;. However, this is
not generally accurate, as the subband curvature caused by
interlayer coupling in the case of layered graphene leads to a
non-constant conductivity. This raises an important question:
in what energy range is 0,, = no; applicable?

The infrared conductance of BLG has been measured by
several groups [23, 24]. These results rely upon the effects of
an induced gate voltage on the bandstructure, which causes a
difference in onsite energy between the two layers. In [22],
Mak et al present the ‘expected’ IR conductance without the
latter assumption, and find that it differs markedly from their
experimental results. This demonstrates the need to assume
an energetic discrepancy between the two layers in BLG. Our
theoretical results, however, show a strong correlation to the
results in [21] and [22], demonstrating that while an energetic
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Figure 1. The three interlayer and two intralayer coupling terms
included in the BLG Hamiltonian. y5 and y, differ in that they
connect, respectively, inequivalent (e.g. A—B) and equivalent

(e.g. A—A) points in the SLG Brillouin zone. y; is a directly vertical
transition, and so the overlap of the wavefunctions is about 3 x larger
than y; and y4. The armchair (AC) direction is given by the y-axis,
and the zig-zag (ZZ) direction is given by the x-axis. The lattice
vectors a, and a_ are also shown.

discrepancy may exist, it is not necessary in describing the IR
response observed experimentally.

In this paper, we study the dependence of the optical
conductance of BLG on various intra and interlayer couplings.
It is shown that the interplay of these couplings leads to a
significant deviation in the behavior of the conductance at low
frequencies, which can, in turn, be tuned by electronic doping.
For this reason we will consider two important samples:
intrinsic (i.e. undoped and unbiased) bilayer graphene, as well
as a sample which is doped so as to drag the chemical potential
to the bands-crossing point (see figure 2). In the important
ultraviolet frequency band, this interplay leads to significant
conductance anisotropy, i.e., the absorption along the zig-zag
direction is around 50% stronger than that along the armchair
direction.

A typical BLG sheet consists of two SLG layers stacked
in the orientation shown in figure 1. Several forms of the
Hamiltonian for BLG are used in the literature depending on
the approximations used and the relative orientations of the two
layers. The original consideration was given by Slonczewski—
Weiss—McClure which included all three interlayer coupling
terms [25, 26]. The most prominent interlayer term is the A—B
and B—A coupling between sites which are directly above (or
below) each other. Here we define this term as y; = 0.36 eV.
The other two interlayer coupling terms are the A—B and B—
A coupling between inequivalent sites which are not directly
above or below each other, but offset by an amount b = 1.42 A,
and the A—A and B-B terms which are similarly offset from
one another, but represent equivalent sites in the SLG Brillouin
zone. These coupling terms are defined here as y; = 0.10 eV
and y4 = 0.12 eV, respectively. We have also included the next
nearest neighbor A—A and B-B coupling which we define as
t" = 0.10 eV. Finally, as usual, the nearest neighbor A-B and
B-A coupling is included, which is given here by r = 3.0 eV.
All energies will be normalized relative to the nearest neighbor
coupling term 7.
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Figure 2. The k, dependence of the bandstructure near the K/K’
points. The effect of the NNN coupling is to shift the Fermi level
(here eg = 0) off the bands-crossing points. The other noticeable
effect here is that of the dominant interlayer coupling y; which
causes the gap of A & y; between similar bands. The red dashed
arrow represents a transition which is permitted in an intrinsic bilayer
calculation if NNN coupling is neglected in the model, but becomes
forbidden when it is included. The black solid arrow is the opposite:
a previously forbidden transition becomes allowed when NNNs are
included in the model. The effect of doping is to raise or lower the
Fermi level, making the inclusion of NNNs partly equivalent to
doping.

The full Hamiltonian matrix for the BLG system is

t'H' tH* vaH Y1
tH tH y;H* yH
H, = . 1
BLG wH* yH (H tH* |’ S
Y1 ]/4]‘1"< tH t'H'

where H = eha/V3(1 4 ekar 4 eka-) and H' = 2(cos(k -
a,)+cos(k-a_)+cos(k-(a; —a_))). Here as = a(+1, L)
are the two lattice vectors shown in figure 1. The eigenvalues
and eigenvectors in the absence of y4 are readily solved. With
y4 included, however, the form of the solution is unwieldy. The
eigenvalues in the simpler case are given by the (relatively)
concise form

+
€y =1(edc—3)+ s\/eéL + % +5'VT (2)

where

—\2

+ 2y1y3€3 Re(H). 3)

Also y5 = yed £y, with s, s’ = £1, and e, are the
regular eigenvalues for the SLG system given as

esig = 1 (1 + 4 cos(ak, /2) cos(ak,/2+/3)

+ 4cos?(ak,/3))2. (4)
From this result we see that there are two conduction bands and
two valence bands which are confined above and below the line

€. — ' (€2 — 3) ~ 3¢’ near the K points. This simple result
will form the basis for much of the discussion to follow.
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Figure 3. The k, dependence of the two inner bands near the K/K'
points zoomed in to see the effects of the intralayer next nearest
neighbors (NNN), and interlayer coupling terms y; and 4. The NNN
interaction has shifted these features well below the Fermi level. y;
causes a second Dirac point to emerge, and y, skews the
bandstructure, causing one of the two Dirac points to be pushed
down to a lower energy.

The electron field operators can be constructed from the
eigenvectors Vg » (K) such that W (r) = (1/47%) Y . as.¢ (K)
wsﬁsr(k)e“"‘", where a; ¢ (k) (a; +(K)) denotes the annihilation
(creation) operator for an electron in the s or s’ subband with
momentum K.

The band structure of BLG near the K points varies
dramatically depending on the coupling terms included in the
Hamiltonian. The effect of the various coupling terms are as
follows.

The next nearest neighbor term ¢’ breaks the electron hole
symmetry. The effect is small at low energies, but becomes
significant at higher energies. In particular, the NNN induced
anisotropy shifts the Fermi energy away from the bands-
crossing points. This makes the lower conduction band fill
at sufficiently low energies, drastically altering the behavior
of interband-transition-dependent properties. The shift of the
Fermi energy relative to the bands-crossing points can be seen
in figure 2 where € = 0 corresponds to the Fermi energy.

The term y; represents the dominant interlayer A-B and
B-A coupling. This term causes an energy gap to form
between the two conduction bands, and an identical gap
between the two valence bands of y;/t &~ 0.13. y; also
removes the linear dispersion at low energies. The electron
hole symmetry is retained, and no lateral warping occurs. The
effect of y; is apparent in figure 2.

The second interlayer coupling term y;3 restores the linear
lowest energy subband. This term causes what is usually
referred to as ‘trigonal warping’ [18, 28]. A second set of Dirac
points near the K/K' points emerges with y3 included, as can
be seen in figure 3.

Finally, y4 causes one of the Dirac points to be plunged
below the NNN line, also seen in figure 3. When the next
nearest neighbor term couples with y4, however, the low energy
x—y isotropy is substantially weakened. While y;3 causes the
well known anisotropic ‘trigonal warping’, the energy range
of this effect is in the order of /10000 ~ 0.0003 eV. On its
own, the effect of y; is similarly small. Here, however, y4 and
t" both couple equivalent sites, which causes a compounding
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Figure 4. The optical conductance (in units of o; = e /h) versus the
normalized frequency 2 = fiw/t for bilayer graphene. Generally,

o, (the zig-zag direction) has a larger optical response than oy, (the
armchair direction). When NNN and y, are neglected, and at low
energies, 0., = 0,,. This is no longer the case here, with NNNs and
y4 included. The gray shaded area indicates the low energy region
plotted in figure 5.

of their individual effects on the electronic dispersion relation.
The effect is quite a large deviation from isotropy. The effect of
this deviation is most noticeable in the low energy conductance
anisotropy shown in figure 5.

We now evaluate the optical conductivity of BLG in the
absence of disorder or impurities, over all relevant photon
energies. By using the Kubo formula, the optical conductivity
is given as [29],

L[>, .
opv(@) = ;/0 dr e ([J,. (), Ju(0)]). (&)

The components of the current operator can be calculated from
o) = €], (0)e " where J, ,(0) = ¥ (r)D, W),
in which v,, = 9H/dk, ,, and v, u = x,y. These values
are calculated numerically, but we note that for each band
there are three types of interband transitions, and also intraband
transitions. In the case of no disorder and no intermediate
interactions, it is found that intraband transitions cannot occur.

In figure 4 we examine the optical conductance of intrinsic
bilayer graphene. Near the higher energy valley points, the
optical conductance exhibits two extrema, similar to the single
peak found in single layer graphene [27, 30]. These peaks
correspond to the two dominant vertical transitions between
the two symmetric pairs of saddle points. The joint density
of states in these valleys reaches a cusp-like maximum which
leads to the extrema in the conductance. These two energy
peaks are separated by an amount iw = 2y, as expected
from the bandstructure calculations. Finally note that the
conductance along the zig-zag direction is generally larger than
that along the armchair direction, especially at larger energies.

Figure 5 shows the low energy optical conductivity of
the intrinsic sample from the gray shaded region of figure 4,
as well as a sample doped to shift the Fermi level to the
bands-crossing point. The longitudinal conductance varies
greatly when including a non-zero NNN interaction in the
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Figure 5. The low energy optical conductance at two different
doping levels. The blue dash—dot and black dashed lines are the
optical conductance of intrinsic BLG along the x and y directions
respectively. The black solid and blue dotted lines represent the
optical conductance of a sample which is doped such that the
chemical potential is shifted to the bands-crossing point. The
NNN-y, coupling causes a new peak to emerge, and suppresses the
previously reported one. This new peak is much larger and shifted to
a lower photon energy. In a suitably doped sample, however, the

t" = 0 (no NNN) peak has been retrieved by an effective shifting of
the Fermi level. The inset shows the sensitivity of the intrinsic
zig-zag peak to the Fermi energy. A is the bands-crossing point. If
the Fermi energy lies at least 0.6¢ from the bands-crossing points (in
either direction), the peak conductance lies within about 10% of our
result.

model, and the effect is equivalent to doping when NNN
interactions are included. The effect of the dominant interlayer
term y; (i.e. setting y3 = 4 = t = 0) at low
energies has been reported recently [20]. This result has
been retrieved in our NNN inclusive result by doping the
sample so as to force the Fermi energy to coincide with the
bands-crossing points. In the intrinsic case, however, the
previously reported result is entirely suppressed, and replaced
by an approximately 2x larger, rounded peak, followed by
a significant trough. This correlates well with the behavior
observed in IR experiments [23, 24], although without the
added effects of an induced gate voltage. In the doped
sample, electron transitions from either valence band into
either conduction band are allowed, which is equivalent to
intrinsic bilayer graphene calculations with NNN coupling
neglected, as shown in figure 2. The intrinsic bilayer
sample with NNN interactions included in the model, however,
suppresses transitions from the upper valence band to the lower
conduction band, since they are both filled, and yet a new
set of transitions become allowed between the two conduction
bands. These similar bands are separated by an approximately
constant factor of y;, which leads to the large peak centered
at iw ~ y; in the intrinsic bilayer sample. The feature is in
striking contrast with that of SLG. For SLG, the effect of the
NNN coupling is to suppress the universal conductance at low
frequencies [30]. As is clearly seen in figure 5, for BLG the
interplay of the interlayer coupling and the NNN coupling can
suppress the conductance at low frequencies. However, it also

induces a strong absorption peak in the far infrared before the
onset of the universal conductance.

For this reason, the low energy approximations of the
behavior of bilayer graphene are generally more relevant to
carefully doped samples, with the intrinsic bilayer properties
being drastically affected by the next nearest neighbor hopping
and additional interlayer terms. Whilst the existing low energy
formalisms are capable of accurately reproducing the low
energy bandstructures with these terms, in intrinsic bilayer
graphene those bands will be completely filled, and predicted
effects will be suppressed. In order to empty one of the two
inner bands, the system must be doped (or biased) in some way,
and to a very specific level. Furthermore, when using existing
theories to explain experimental results, it needs to be noted
that an energetic discrepancy between layers, as well as the
inclusion of a gate voltage, both cause some similar effects to
the inclusion of the NNN interaction. All of these will therefore
need to be accounted for when explaining any experimental
result.

Furthermore, the conductance anisotropy observed in
figures 4 and 5, which is prominent even in the IR region
when y4 and ¢’ are both included, makes the polarization
of the photon beam in experiments a relevant parameter.
This orientation dependence of the optical conductance makes
determination of the orientation of a BLG flake possible, and
also makes BLG a potential partial polarizer. The doping
dependence of the low energy conductance anisotropy makes
this feature quite versatile. We note, however, that this
anisotropy is stronger when the chemical potential lies above
the Fermi level than when it is below it. This partly explains
the effect noticed by Li et al [23] which is that the bias of the
gate voltage breaks electron-hole symmetry.

Finally, as we have already mentioned, the value of
the ‘universal’ conductivity is a topic of great interest at
the moment. According to these results, which have been
calculated from the most robust interlayer and intralayer model
adopted to date, the value of the universal conductivity for
bilayer graphene is 0 = 20| where o1 = e?/4h is the
universal optical conductivity of single layer graphene defined
earlier. The range over which this value is applicable is
greatly affected by the inclusion of the NNN interaction
in numerical calculations, and is strongly dependent on the
electronic doping of a real sample. In particular, the NNN
interaction causes the very low energy optical response to
become negligible, and around the observed peak, the optical
conductance is Opeax ~ 5.607.

From our results, it is clear that the universal conductivity
is an approximation that applies only within certain energy
ranges and is strongly dependent on sample doping. For
intrinsic BLG, the energy ranges where 0, & 207 is i > 0.4¢.
However, this quickly becomes inaccurate with increasing
energy, especially for oy,. For a doped sample however, the
approximation can be much more appropriate. In this case the
applicable energy ranges are fiw < 0.13¢, and hw > 0.257.

Before concluding, we mention in passing that the exact
location of the Fermi energy is not widely agreed upon as
its determination involves many factors. In this work we
choose the natural ¢ = 0 point that arises from the tight-
binding formalism adopted. This choice is somewhat arbitrary.
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The breaking of electron hole symmetry induced by NNN
interactions assures that the Fermi energy will not coincide
with the bands-crossing points by at least an amount of
the order of 7. For Fermi energies above or below the
neighborhood of these points, the low energy peak conductance
reported here is not sensitive to the position of the Fermi level,
varying in magnitude by around 10% (shown in the inset of
figure 5) and the variation of the peak position is undetectable
within acceptable numerical accuracy. For example, one
method to approximately determine the Fermi level is by half-
filling the  orbitals via the DOS. The peak conductance so
calculated changes from around 5.6 to around 6.1 and the peak
position remains unchanged. Doped samples where the Fermi
energy does not coincide with the bands-crossing points have
very similar optical responses to intrinsic BLG.

In conclusion, we have studied the longitudinal optical
conductivity of BLG with the inclusion of all relevant
interlayer coupling terms and next nearest neighbor intralayer
interactions. The optical conductivity exhibits double peak
resonance separated by an amount 2y, and is centered around
hwo = 2t. At low energies, the NNN interaction leads
to entirely new behavior of the optical conductivity. The
results obtained without NNN coupling, however, can be
retrieved by appropriate electronic doping. The interplay of
the NNN-y4 couplings were found to lead to a significant
low energy conductance anisotropy which is strongly doping
dependent. Finally, the value of the universal conductivity
with the most robust formalism used to date has also been
determined, and is given by 0, = 207. The applicability of
this approximation, however, is restricted to certain energy
ranges and is strongly doping dependent. These results will
be crucial to the experimental testing of accepted theories on
bilayer graphene, and will be useful for potential low energy
electronic and photonic applications of bilayer graphene.
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