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A preliminary essential procedure in time series analysis is the separation of the deterministic component
from the random one. If the signal is the result of superposing a noise over a deterministic trend, then the first
one must estimate and remove the trend from the signal to obtain an estimation of the stationary random
component. The errors accompanying the estimated trend are conveyed as well to the estimated noise, taking
the form of detrending errors. Therefore the statistical errors of the estimators of the noise parameters obtained
after detrending are larger than the statistical errors characteristic to the noise considered separately. In this
paper we study the detrending errors by means of a Monte Carlo method based on automatic numerical
algorithms for nonmonotonic trends generation and for construction of estimated polynomial trends alike to
those obtained by subjective methods. For a first order autoregressive noise we show that in average the
detrending errors of the noise parameters evaluated by means of the autocovariance and autocorrelation func-
tion are almost uncorrelated to the statistical errors intrinsic to the noise and they have comparable magnitude.
For a real time series with significant trend we discuss a recursive method for computing the errors of the
estimated parameters after detrending and we show that the detrending error is larger than the half of the total
error.
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I. INTRODUCTION

Many observed time series are a result of the superposi-
tion of independent phenomena. If their characteristics are
different enough, then one can separate and individually ana-
lyze them. One of the most frequent situations occurring in
practice is the superposition of a stationary noise over a de-
terministic trend. In this case the noise characteristics are
determined subsequently to the detrending of the total signal.
We illustrate the diversity of the phenomena requiring de-
trending by some of the recent applications: atmospheric ra-
dioactivity �1�, the velocity of highway traffic �2�, integrated
heart interbeat intervals �3�, solar wind velocity �4�, log-
returns of financial indices �5�, mean wind in turbulent ther-
mal convection �6�, financial volatility �7�, etc.

The trend estimation is accompanied by errors which are
transferred to the estimated noise obtained by detrending. We
call detrending errors the errors affecting the statistical esti-
mators of the noise due to the differences between the esti-
mated and real trend. In applications it is important to evalu-
ate both the total error and the part due to detrending.
However, according to our knowledge, such estimations are
missing. In this paper we present a numerical method to
evaluate the detrending errors of the functions describing the
serial correlation of the noise and of the parameters derived
from these functions.

We perform Monte Carlo numerical simulations on statis-
tical ensembles composed by artificially generated time se-
ries

xn = fn + zn, �1�

where �fn ,n=1,2 , . . . ,N� is a discretized deterministic trend
and �zn ,n=1,2 , . . . ,N� is a realization of a stationary sto-

chastic process. Using only the values of the total signal �xn�
we compute the estimated trend � f̃ n� and then the estimated
noise

z̃n = xn − f̃ n. �2�

As a rule, all the quantities affected by detrending errors are
denoted with tilde. Because the estimated trend is always
different from the real trend, the estimated noise does not
coincide with the real noise. For artificial series the detrend-
ing errors can be exactly computed because we know both
�fn� and �zn�. But for observed time series we do not know
the two components and the detrending errors can be only
estimated by an iterative method for building statistical en-
sembles containing artificial time series.

The results of such simulations are useful only if the
members of the statistical ensemble have a diversity compa-
rable with that of the real time series. On the other hand, if
the number of the parameters controlling the individual time
series is too large, then the analysis of the simulation results
becomes intricate and nonintuitive. But a time series defined
by Eq. �1� is characterized at least by four parameters: one
for the trend, two for the noise �the variance and the serial
correlation�, and one for the ratio between the noise and
trend amplitude. In order to preserve the presentation clarity
we are compelled to use as simple as possible models for
trend and noise retaining in the same time the essential char-
acteristics of a real time series.

The main difficulty in building the statistical ensembles is
to generate realistic nonmonotone trends. The generation of a
large number of trends with a significant variability using a
fixed functional form requires a large number of parameters.
For example, a polynomial trend must have a large enough
degree, hence the number of its coefficients is also large. If
we consider the polynomial degree as the single parameter
characterizing the trend, then the coefficients are chosen by
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means of a random algorithm and the form of the generated
trend is difficult to be controlled. Usually the resulting trend
has only a few parts with significant monotonic variation.

In Appendix A we present the generation of a trend by
joining together monotonic semiperiods of sinusoid, i.e., the
part limited by two successive extrema, with random ampli-
tudes and lengths. In this way we obtain a large enough
variability for the generated trend using the number of its
monotonic parts as the single parameter. The trend shapes
obtained by this algorithm are much more diverse than those
used in similar Monte Carlo simulations. For example, the
study of the effects of trends on detrended fluctuation analy-
sis �DFA� is performed only for monotonic �linear, power-
law, exponential, and logarithmic� and periodic �sinusoidal�
trends �8–10�.

The noise in Eq. �1� is a realization of an AR�q� stochastic
process �autoregressive of order q�. The properties of the
autoregressive processes have been studied in detail and they
are the basis of the linear stochastic theory of time series
�11–13�. In fact, for most of the numerical simulations we
have limited ourselves to AR�1� processes because their se-
rial correlation is described by a single parameter. The analy-
sis of the detrending errors for models with more parameters
is similar to that described in this paper, although more
elaborate.

The AR�q� stochastic processes have short range correla-
tion while the most of the present researches in physics �in-
cluding those cited at the beginning of this section� model
the noise with stochastic processes with long range correla-
tion, usually of the type 1 / f . There are very few cases when
these two types of noise models are compared to establish
the optimum one. For instance, such model selection has
been performed for atmospheric temperature �14� and human
reaction time �15�. It is worth noticing that the AR model has
been successfully applied to phenomena in climatology �14�,
astrophysics �16�, hydrology �17�, finance �18�, pattern rec-
ognition �19�, etc.

Even if our method to evaluate errors using statistical en-
sembles containing numerically generated time series can
also be applied to noises with long range correlation or cha-
otic signals, the results could be different from those pre-
sented in this paper. In the case of long-range correlation the
separation of the real trend from the stochastic trend, i.e., the
long scale variations of the noise with long-range correlation,
is difficult. In Ref. �20� we have shown that for monotonic
trends the polynomial fitting gives slightly better results than
the moving average. The scaling properties of the stochastic
trend for noise with long-range correlation have been studied
in Ref. �21� and it have been used to compute the informa-
tion entropy of the noise �22�.

There are methods to analyze the noise in the time series
of the form given by Eq. �1� which avoid the explicit com-
putation of the trend. For example DFA polynomially de-
trends parts of variable length from the summed signal �23�.
Such a method is unbiased only if the detrending errors are
independent of the statistical errors intrinsic to the noise. In
this paper we show that this property holds for AR noises,
but for long range correlated noises it must be also checked.

In the following section we present the serial correlation
functions that we shall use. In Sec. III the characteristics of

the artificial time series making up the statistical ensembles
are described. Then we present the results obtained for the
detrending errors of the estimated serial correlation functions
using Monte Carlo simulations and the influence of these
errors on the estimated parameters of the AR�1� noise. In
Sec. V we study the detrending errors of an observed time
series. The last section is dedicated to conclusions. The two
appendixes contain the automatic algorithms for generating
realistic nonmonotonic trends and choosing visually accept-
able estimated trends.

II. SERIAL CORRELATION FUNCTIONS

In order to illustrate the types of the serial correlation
functions we consider the fluctuations of the relative area of
a human red blood cell freely floating in a fluid �xn�, N
=968 �Fig. 1�a��. In Sec. V we describe the experimental
method used to obtain this time series and we justify the
existence of a deterministic trend independent of the cell
fluctuations. Figure 1�a� also shows the estimated polyno-

mial trends � f̃ n� of degrees q=1,3 ,7 ,14. When the degree of
the polynomial trend increases, the shape of the trend does
not change monotonically. For the chosen degrees the trend
has significant changes, while for the other polynomial de-
grees the shape remains practically unchanged. We use poly-
nomial fitting because the polynomial trends are character-
ized by a single parameter, their degree, therefore an
automatic algorithm for trend estimation is easier to be de-
signed. A complete discussion of the detrending errors is
laborious even in this simple case and the same method can
be applied to study other more sophisticated algorithms for
trend estimation.

The estimated serial correlation is measured by the esti-
mated sample autocovariance function �ACvF�

�̃�h� =
1

N − h
�
n=1

N−h

z̃nz̃n+h �3�

or by the estimated sample autocorrelation function �ACrF�
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FIG. 1. The fluctuations of the relative area of a human red
blood cell freely floating in a fluid and the estimated polynomial
trends of degrees q=1,3 ,7 ,14 �a�. The estimated sample ACvF �b�,
ACrF �c�, and RACF �d� for the estimated noise.
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�̃�h� =
�̃�h�
�̃�0�

.

These two quantities are represented for h�10 in Figs. 1�b�
and 1�c�. One can see that �̃�h� has greater variability with
respect to the degree of the estimated trend than �̃�h�. There-
fore, the detrending error of the noise serial correlation is
smaller for ACrF than for ACvF.

The variability reduction of the estimated sample ACrF
obtained by dividing with �̃�0� in Eq. �3� is not uniformly
distributed with respect to h. In order to reduce furthermore
the dependence on the degree of the estimated trend we ob-
serve that �̃ has similar shapes regardless of the degree q
�Fig 1�b��. Therefore we define the estimated sample reverse
autocovariance function �RACF�

Q̃�h� = �̃�0� − �̃�h� ,

which, for h=0, has the fixed value Q̃�0�=0. As shown in
Fig. 1�d�, this quantity has a smaller variability than �̃ and �̃
for all the values of h.

These estimated serial correlation functions must be com-
pared with those calculated using the actual values of the
noise. A measured noise �zn� is composed by the values zn
taken by the random variables Zn, respectively. These values
are affected by random fluctuations and all the statistical es-
timators computed using them differ from the theoretical
ones. Due to statistical errors, the sample ACvF

�̂�h� =
1

N − h
�
n=1

N−h

znzn+h �4�

computed with the observed values zn fluctuates around the
theoretical ACvF ��h� computed using the stochastic process
�Zn�. We measure the difference of the first H values of the
two functions by the formula

��̂�H� =
1

H + 1
��̂ − ��H, H � 0, �5�

where

��̂ − ��H = 	�
h=0

H

��̂�h� − ��h��2
1/2

is the usual square norm. We divide the norm by H+1 be-
cause we intend to compare the statistical error for different
values of H. In accordance with the usual practice �24�, we
compute ACvF only for H�N /4.

The estimated sample ACvF defined by Eq. �3� does not
coincide with the sample ACvF given by Eq. �4� because it
contains also the detrending errors besides the fluctuations
due to the random nature of the noise. Analogously to Eq. �5�
we define the detrending error of the estimated sample ACvF

��̃�H� =
1

H + 1
��̃ − �̂�H. �6�

Because for ACrF and RACF the first value is fixed, the
denominator in Eqs. �5� and �6� is equal to H. Our goal is to

analyze the relation between these two types of errors using
statistical ensembles of numerically generated time series.

III. ARTIFICIAL TIME SERIES

An AR�1� process is an infinite stationary stochastic pro-
cess �Zn ,n=0, �1, �2, . . . �, each random variable Zn satis-
fying the relation

Zn = �Zn−1 + Gn, �7�

where Gn are uncorrelated Gaussian random variables with
zero mean and variance �G

2 and � is a real parameter,
����1. The theoretical ACvF deduced from the properties
of the stochastic process �Zn� is ��h�=�2�h, where
�2=�G

2 �1−�2�−1 is the variance of the AR�1� process. For
�=0 the AR�1� process reduces to a white Gaussian noise
and as � increases the serial correlation becomes larger. The
theoretical ACrF is equal with ��h�=�h and the theoretical
RACF is Q�h�=�2�1−�h�.

To generate a numerical series which is the realization of
a finite sample of an AR�1� process with given � and �, we
proceed as follows. Using a random number generator we
obtain a series �gn ,n=1,2 , . . . ,N� as a realization of a white
Gaussian noise with zero mean and the variance �G

2

=�2�1−�2�. The series �zn ,n=1,2 , . . . ,N� is obtained mak-
ing the transformations z1= �� /�G�g1 and zn=�zn−1+gn for
n	1. Then it can be shown that the theoretical ACvF of this
finite AR�1� process is equal to that of the infinite AR�1�
process �7� �25�. Thus the transient region at the beginning of
the numerically generated time series is eliminated. If
���
1, then the AR�1� process is causal, i.e., the random
variable Zn can be expressed using only the previous terms
Gm, m�n.

The time series obtained with the algorithm described in
Appendix A are characterized by the following parameters:
the series length N, the standard deviation of the AR�1� noise
�, the parameter describing the serial correlation of the noise
�, the minimum number of points in a monotonic part
�Nmin, the number of monotonic parts of the trend P, the
ratio between the amplitude of the trend and of the noise r.
Depending on the aim of the numerical test we generate sta-
tistical ensembles choosing different values for these param-
eters.

We impose a superior limit for the values of � to 0.9
because the AR�1� process with � closer to unit has a special
behavior, similar to the Brownian motion, which must be
analyzed with special methods �13�. Also, we consider for �
only positive values because few of the phenomena of inter-
est are characterized by an anticorrelated noise. Hence the
maximum range for the serial correlation parameter is �
� �0,0.9�. The noise standard deviation has the fixed value
�=1.

The maximum number of monotonic parts of the gener-
ated trend is limited up to 5 in order to avoid too large
degrees of the estimated polynomial trends, allowing at the
same time the numerically generated trends to take a large
enough diversity of shapes. For the minimum number of
points in a monotonic part of the trend we have chosen the
value �Nmin=20.
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The time series is dominated by noise if r� �0,1� or by
trend if r� �1,��. Since for r=0 the trend �A2� vanishes, we
eliminate the small values of r and choose the minimum
value for r equal to 0.25 because, as shown in Fig. 2�a�, in
this situation the shape of the total signal allows us to assume
the presence of a trend. The maximum value of r is 4 and
corresponds to the signal in Fig. 2�b� in which the noise still
has a large enough amplitude to allow its estimation. The
interval chosen for the variation of r� �0.25,4� contains
more signals dominated by trend because we are interested
first of all in applications for which the existence of the trend
can easily be supposed, such that its removal should be nec-
essary.

In order to choose the value of N we have calculated the
root mean square error �RMSE� 
��̂� of the sample standard
deviation �̂ on statistical ensembles of 1000 numerically
generated AR�1� time series with �=1 for given values of �
and N. It depends significantly on the length of the series N,
the statistical error being larger when the series is shorter
�Fig. 3�. Only for N=3000 the error is smaller than 5% for
all the values of �. Therefore we shall use in our numerical
simulations time series with N=3000, for shorter time series,

even for the sample standard deviation, the statistical errors
due to the noise being too large.

We call maximal statistical ensemble an ensemble con-
taining time series with the variable parameters randomly
chosen in the maximal intervals specified above. Most of the
numerical tests in this paper are run on this maximal statis-
tical ensemble. In the following we specify the intervals over
which the parameters take values only if they are reduced.

In order to construct a Monte Carlo simulation to evaluate
the detrending errors we need an automatic algorithm to de-

termine the estimated trend � f̃ n�. Such an automatic algo-
rithm is available only for monotonic trends �20�. For this
reason, in Appendix B we describe a numerical algorithm
simulating a subjective method for estimating a nonmono-
tonic trend by introducing some quantitative criteria for
choosing visually acceptable polynomial trends. Only the nu-
merically generated time series satisfying these criteria are
retained in the statistical ensembles. We generate enough
time series that in the end all the statistical ensembles should
contain exactly 1000 time series.

IV. DETRENDING ERRORS OF ARTIFICIAL DATA

The detrending error �6� can be separated from the error
intrinsic to the noise �5� using the algebraic identity

��̃ − ��H
2 = ��̃ − �̂�H

2 + ��̂ − ��H
2 + 2M��H� , �8�

where

M��H� = �
h=1

H

���̃�h� − �̂�h�����̂�h� − ��h�� .

The average on the maximal statistical ensemble of the last
term in Eq. �8� is negligible, at the most 3% in absolute value
in comparison with the left side term. This result also holds
for the other two functions, the last right side term is at the

most 4% for �̃ and 1% for Q̃. The average correlation coef-
ficient of the two types of error lies within the interval
�−0.07,0.01�, i.e., the two types of errors are uncorrelated
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FIG. 2. Numerically generated trends obtained by superposing an AR�1� noise with �=1 and �=0.9 over a deterministic trend �con-
tinuous line� composed by P=5 semiperiods of sinus with random lengths and amplitudes. The ratio between the amplitude of the trend and
of the noise is r=0.25 �a� and r=4 �b�. The dashed line is the estimated polynomial trend with the maximum resemblance with the real trend
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and the total error can be separated into the two parts of
different origin.

Figure 4 shows the average of the statistical and detrend-
ing errors on the maximal statistical ensemble for different
values H. Excepting a few small values of H, the statistical
errors of all the functions are comparable. The larger values
of ���̂
 for H
5 is a consequence of the fact that ACvF does
not have the first value fixed. The average detrending errors

���̃
 and ���̃
 are larger, while ��Q̃
 are smaller than the
intrinsic error of the noise. When H increases, ���̃
 and ���̃

decrease similarly to ���̂
 and ���̂
, but ��Q̃
 has a reverse

variation. For H
100 the values of ��Q̃
 are smaller than

the minimum values of ���̃
 and ���̃
 which shows that Q̃ is
less altered by the detrending errors.

Now we analyze the statistical errors intrinsic to noise of
the estimated AR�1� parameters in terms of the number H of
serial correlation values used to compute them. An AR�1�
model of a time series is given by the most similar theoreti-
cal ACvF ��h�=�2�h to the sample ACvF. The estimated
values of � and � are obtained using the first H values of
�̂�h� to impose the condition that the function

F���,�;H� = ��̂�h� − �2�h�H

should be minimum. Since F��� ,� ;0�= ��̂�0�−�2�, for H
=0 we can compute only the parameter � of the AR�1�
model. For H=1 we obtain the estimated parameters
��̂�0��1/2� �̂ and �̂�1� / �̂�0� such that F��� ,� ;1�=0. For H
	1 the function F��� ,� ;H� has generally a nonzero mini-
mum.

By minimizing the function

F���,�;H� = ��̂�h� − �h�H

we estimate only the value of �. Since F��� ,� ;0� vanishes
identically, the first value provided by this function is �̂�1�
which coincides with that obtained by �. For RACF we have
to minimize the function

FQ��,�;H� = �Q̂�h� − �2�1 − �h��H.

In this case as well F��� ,� ;0�=0, but for H=1 we have an
infinity of values for which the function F��� ,� ;1� vanishes.
The first nontrivial solution is obtained for H=2, �

= Q̂�1�2 / �2Q̂�1�− Q̂�2��, and �= Q̂�2� / Q̂�1�−1.
The RMSE of the estimated parameters with the fitting

method described above is presented in Figs. 5�a� and 5�c�.
The smallest error for both parameters is obtained using
ACvF with H=1. So the information on the parameters of an
AR�1� series is concentrated on the first two values of ACvF.
Introducing more values causes the increase of the error of
the estimated parameters. This property is used by the algo-
rithms of the time series theory to determine the AR models
using the first values of the ACvF �12�. Since the best esti-
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FIG. 4. The average of the statistical errors intrinsic to the noise �a� and the detrending error �b� of the functions describing the serial
correlation using their first H values.
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mation of � is the standard deviation �̂, we denote by �̂
= �̂�1� / �̂�0� the best estimation of the parameter �. We shall
use these two values as reference values for the evaluation of
the detrending errors.

The errors of the parameters estimated with RACF have a
different behavior: they decrease when H increases reaching
a stationary value for H	100. The minimum error of � is
equal to that of �̂, but the minimum error of � is greater than
that of �̂. Hence, the statistical information is also concen-
trated at the beginning of the time series for RACF, but on a
much longer length.

We also notice that the difference between the average
parameters evaluated by means of the three functions and the
value used to generate the time series is with an order
smaller than the errors in Fig. 5 �result not presented here�.
So all the estimators described above are unbiased.

If we apply the same method to the estimated noise �2�
and not to the real noise, then the error of the estimated
parameters is larger because of the addition of the detrending
error to that intrinsic to the noise. As shown above, the ref-
erence values with the smallest error for the noise without
trend are given by the sample standard deviation �̂ and �̂
= �̂�1� / �̂�0�. Then, for a given realization s from a statistical
ensemble, we can separate the detrending error �̃s�H�− �̂s

�̃s�H� − � = ��̃s�H� − �̂s� + ��̂s − �� , �9�

where �=1. In contrast with �̂s and �, the estimated value �̃s
depends on the type of the serial correlation function and on
the number of values H used for fitting. By squaring and
summing up on the entire statistical ensemble, we obtain the
decomposition of the mean square error


2��̃�H�� = 
2��̃�H�;�̂� + 
2��̂� + 2M��H� , �10�

where the detrending error of �̃ is defined as


2��̃�H�;�̂� =
1

S
�
s=1

S

��̃s�H� − �̂s�2

and the last term is given by

M��H� =
1

S
�
s=1

S

��̃s�H� − �̂s���̂s − �� .

As discussed above, the terms in Eq. �10� cannot be com-
puted for �. The detrending and the noise errors of �̃ for the
other functions �� and Q� on the maximal statistical en-
semble are represented in Fig. 5�b�. In contrast with the noise
intrinsic error which has a monotonic variation with respect
to H �Fig. 5�a��, the detrending error 
��̃ ; �̂� in Fig. 5�b� has
a minimum for the two functions. The minimum detrending
error for Q is several times smaller than that for � and also
than the error due to the noise.

In comparison with the left side term, the last term in Eq.
�10� is on average at most 4%, hence the total error has the
same form as the detrending error to which the constant
value of the noise error is added. The absolute value of the
correlation coefficient of the two types of errors is less than
0.1 showing that they are slightly correlated and the errors
due to detrending are not influenced by the randomness in-

troduced by the noise. We notice that the estimators �̃ and �̂
are unbiased since the averages of the terms in Eq. �9� are
several times smaller than the corresponding terms in Eq.
�10� �results not presented here�.

A relation similar to Eq. �10� is also valid for �̃ with the
single modification that the actual value �s is not fixed, but it
varies with the realization s and the reference value is equal
to �̂= �̂�1� / �̂�0�. In Fig. 5�d� the same analysis as in Fig.
5�b� is presented, but for �̃ which can be calculated by
means of all the three functions of the serial correlation,
including �. The main conclusions drawn from Fig. 5�b� re-
main valid. For �̃ as well, the two types of error are slightly
correlated and the estimators �̃ and �̂ are unbiased. In con-
trast with the detrending error of �̃, for �̃ the detrending
error calculated by means of � and � has the same behavior
as the error intrinsic to the noise �Fig. 5�c��, their variation is
monotonic increasing and the error for � is smaller than that
for �. The minimum detrending error for Q is smaller than
that for � and �.

The maximal statistical ensemble on which we have ob-
tained the previous results contains time series depending on
three parameters ��, r, and P� taking random values over
their variation intervals. Therefore, it is necessary to analyze
the dependence of the detrending error on the three param-
eters separately considered. From the results not presented
here it follows that the detrending error does not depend
significantly on the number P of monotonic parts of the sig-
nal.

We compare the magnitude of the detrending errors ob-
tained using different serial correlation functions for particu-
lar values of � and r on statistical ensembles containing
1000 time series with P random in �1,…,5�. We estimate the
AR�1� parameters with H=Hmin for which the detrending
error is minimum. Because the value �̃ estimated by means
of � is identical to that estimated using �, Fig. 6 shows the
difference of the minimum detrending errors computed with
� and Q

����,Q� = 
���̃�Hmin�;�̂� − 
Q��̃�Hmin�;�̂� .

The detrending error of �̃ is always smaller for Q, but that of
�̃ depends on the values of � and r. Therefore, the two serial
correlation functions are complementary and for every par-
ticular time series we have to establish the most suited to
model the noise.

V. DETRENDING ERRORS OF OBSERVATIONAL DATA

Unlike the numerically generated time series, in the case
of observational time series the trend and the stochastic pro-
cess generating the noise are unknown. Therefore we cannot
set up with the same precision the statistical ensemble used
to evaluate the errors affecting the estimated parameters. In-
stead we have to resort to a method of successive approxi-
mations. In the following we exemplify the computation of
the detrending and total errors in the case of the time series
in Fig. 1�a� �26�.

Cell membrane undulation is a common phenomenon in
the world of living cells. By far, the red blood cell shape
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fluctuations, also known as flickering �27–29�, is the best
known. Such fluctuations consist of submicron and out-of-
plane displacements of the cell membrane in the frequency
range of 0.3–30 Hz. Usually the investigations are per-
formed on red blood cells adhering firmly and irreversibly to
glass substratum. The mechanical restrictions imposed by the
substratum can be eliminated if the cells are freely floating,
but then the various motions of the cell induce nonstationary
contributions on which the fluctuations of the flickering itself
are superposed. The time series in Fig. 1�a� represents the
time evolution of the relative area of a selected free erythro-
cyte photographed at a rate of ten images per second, the
images being numerically processed.

The minimum flickering frequency �min=0.3Hz implies a
semiperiod of 16 time steps. From a visual inspection of Fig.
1�a� one notices that the time series has at least P=7 mono-
tonic parts lasting longer than a flickering semiperiod. These
fluctuations are caused by phenomena of greater scale than
the cell flickering, probably by the movement of the floating
cell. Hence, they must be included in the deterministic trend
independent on the noise produced by the membrane undu-
lations.

For trend estimation one could utilize various methods
�30�, however, we limit ourselves to the polynomial fitting
discussed in the previous sections. Only for degrees q̃�14
the polynomial trends have P=7 well defined monotonic
parts. For smaller degrees the maximums in the first half of
the series are cut off. There are many situations when such
indications on the nature of the analyzed phenomenon are
not available, therefore we evaluate the detrending errors for
all the estimated polynomial trends of degrees q̃� �1,3P�.

For each degree q̃, the corresponding polynomial trend

� f̃ n
�0�� and the estimated noise �z̃n

�0�� are determined as the zero
order approximation. We have applied the Durbin-Levinson
algorithm �11� to determine the AR�10� model of the esti-
mated noise. In all cases the first coefficient is the dominant
term, its value being contained in the interval �1
� �0.586,0.654�. The next most significant coefficient is �5
� �0.109,0.124�, much smaller than �1, proving that the
AR�1� approximation is acceptable for the noise in the flick-
ering data.

We compute the detrending and total errors of the AR�1�
parameters for each polynomial trend in the same way as in

Sec. IV. However, the results obtained on the maximal sta-
tistical ensemble presented in the previous sections charac-
terize the average behavior of the detrending error useful to
optimize the automatic processing of a large number of time
series having diverse characteristics. In order to obtain infor-
mation for a single observational time series, the maximal
statistical ensemble must be reduced and adapted to the mea-
sured data by limiting the variation intervals of the param-
eters of the numerically generated time series.

The statistical ensembles for flickering data are composed
of time series � f̃ n

�0�+zn
�1��, where the estimated trend � f̃ n

�0�� is
kept fixed for a given degree q̃. The noise �zn

�1�� is numeri-
cally generated as an AR�1� process with the same charac-
teristics as the zero order estimated noise �z̃n

�0��, i.e., its pa-
rameters are equal to the reference values defined in Sec. III
computed for �z̃n

�0��, �̃�0�= �̂, and �̃�0�= �̂. We also must take
into account that the length of the observed series is N
=968, unlike N=3000 as it was in the previous simulations.

Because the trend � f̃ n
�0�� is kept fixed, the ratio of the trend

and noise amplitudes r is no more a variable for these statis-
tical ensembles.

We estimate the first order polynomial trend � f̃ n
�1�� of the

same degree q̃ as the degree of the zero order polynomial

trend � f̃ n
�0�� for each time series � f̃ n

�0�+zn
�1��. The two trends

differ from each other because � f̃ n
�1�� is influenced by the

fluctuations of the numerically generated noise �zn
�1��. Be-

cause the ratio r and the parameter � have now fixed values,
the detrending errors of the first order approximation of the

noise z̃n
�1�= f̃ n

�0�+zn
�1�− f̃ n

�1� depend only on the number H of the
values of the sample serial correlation used in the fitting
computation. Figure 7 shows the minimum with respect to H
of the detrending errors 
��̃�1� ; �̂�1�� and 
��̃�1� ; �̂�1�� for
ACvF and RACF. These errors measure the difference be-
tween the order one estimated and generated noise z̃n

�1�−zn
�1�

= f̃ n
�0�− f̃ n

�1�. For small degrees �q̃
14� the order zero esti-

mated trend � f̃ n
�0�� cannot follow the fluctuations due to the

cell movement and the detrending errors are strongly under-
estimated. Therefore the minimum detrending error is in-
creasing with respect to q̃.

According to Eq. �10�, the total error is obtained by add-
ing the error intrinsic to the noise and the term proportional
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FIG. 6. The difference between the minimum detrending error of the estimated AR�1� parameters computed with ACvF and RACF for
different values of the serial correlation � and the ratio r.
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to the covariance of the two types of errors to the detrending
error. For small degrees q̃ the long-range fluctuations due to
the real trend are incorrectly ascribed to the estimated noise
�z̃n

�0��, but the two additional terms in the total error formula
could compensate the underestimated detrending error. In-
deed, the minimum total error of the noise standard deviation

��̃�1� ; �̃�0�� in Fig. 7�a� becomes decreasing, but the varia-
tion of the minimum total errors of the serial correlation
parameter 
��̃�1� ; �̃�0�� in Fig. 7�b� remains similar to the
detrending error.

From information inaccessible through statistical methods
we know that only for q̃�14 the polynomial trend describes
all the fluctuations which cannot be attributed to the cell
flickering. For these trends the minimum total errors reach an
almost stationary value, except the minimum total error of �
for � which is increasing. If we assume that the best model
for the flickering time series is given by that with the mini-
mum total error for the noise parameters, then the optimum
degree of the estimated trend is q̃=14. In this case the order
one approximation of the noise standard deviation is ob-
tained by RACF which has a smaller total error than ACvF
�Fig. 7�a��, ��̃�1�=0.0015. The smallest total error for the
serial correlation parameter is obtained for ACvF �Fig. 7�b��,

��̃�1�=0.038. Using the functions and the number of values
H for which the total errors are minimum, we compute the
estimated noise parameters from z̃n

�1� and we obtain �̃�1�

=0.0354�0.0015 and �̃�1�=0.681�0.038.
These estimations could be improved if more extended

statistical ensembles were constructed such that the number
of the monotonic part of the trend P and the ratio r would be
allowed to vary or if approximations with higher order were
be used. For example, Fig. 8 shows the total error of the two
coefficients of an AR�5� process with only two nonzero
terms

Zn = �1Zn−1 + �5Zn−5 + Gn

applied to the flickering data detrended by a polynomial of
degree q̃=14. For greater order of the AR processes the only
difference from the method described now is that the alge-
braic formula of the serial correlation function becomes too
long. Therefore we use the numerical algorithm given in Ref.
�13� �p. 59�. Unlike the AR�1� process, now the minimum
total error is obtained for RACF when H=22 �for �1� and
H=14 �for �5�. With these information we can compute the
noise parameters �1=0.694�0.039 and �5=0.168�0.035.

VI. CONCLUSIONS

The detrending errors occur when we remove from a time
series an estimated trend which does not coincide with the
real one. We have analyzed these detrending errors for AR�1�
noise whose serial correlation is described by a single param-
eter � and for an AR�5� process with two nonzero coeffi-
cients. When the method is applied to other stochastic mod-
els, as the autoregressive processes of higher order, then the
analysis becomes more elaborate because it is necessary to
trace simultaneously the behavior of several coefficients of
the serial correlation. The numerical algorithm by means of
which we have generated the statistical ensembles provides
time series with a diversity comparable to that occurring in
practical applications. The trend estimation has been
achieved automatically by an algorithm which simulates the
subjective visual selection of a polynomial trend, allowing

10 30 100 200
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

H

ε(
φ i)

γ
Q

FIG. 8. The total errors of the estimated AR�5� parameters for
the flickering time series in terms of the number H of the values of
the serial correlation function used in calculations. The continuous
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Monte Carlo simulations on statistical ensembles large
enough to obtain statistically relevant results.

The detrending errors for an AR�1� noise are almost un-
correlated with the statistical errors due to the noise random-
ness. As expected, the detrending errors are larger when the
signal is dominated by trend. The detrending error for the
estimated standard deviation of the noise increases with its
serial correlation, while the detrending error of the serial
correlation parameter � decreases.

In some situations the detrending errors can be reduced if
instead of the autocovariance function �ACvF� or autocorre-
lation function �ACrF�, the serial correlation is described by
the reverse autocovariance function �RACF� defined as the
difference between the noise variance and the autocovariance
function. According to Fig. 6, the detrending error decrease
is significant for time series dominated by trend �r�1� and
with small serial correlation ��
0.5�. The more the ratio r
decreases and the parameter � increases, the more the de-
trending error obtained by ACvF becomes smaller than the
one obtained by RACF, the relationship between them de-
pending as well on the series length. Therefore, for a particu-
lar time series it is necessary to determine what function
provides the best accuracy.

As shown in Sec. V, the method for estimating the total
and detrending errors can be applied to observed time series
if the statistical ensembles are adapted to the analyzed series
and to the chosen theoretical model of the noise. By means
of this method we can determine the degree q̃ of the esti-
mated polynomial trend, the serial correlation function, and
the number H of the values of the function for which the
noise parameters are computed with minimum error.

If we knew the real trend and the parameters of the sto-
chastic process generating the noise, then we could build for
each type of serial correlation function and each value of H
an ideal statistical ensemble of artificial time series by means
of which we could evaluate the total and detrending errors of
the estimated noise parameters. In this way we could deter-
mine the serial correlation function and the value of H for
which the total error was minimum, i.e., the function and the
value allowing the estimation of the noise parameters with
maximum precision.

But, since the trend and noise parameters of a real time
series are unknown, these ideal statistical ensembles can be
only approximated. The noise parameters used to generate
the artificial time series do not have fixed values, but values
randomly chosen into intervals characteristic to the consid-
ered time series. Obviously, in this case the error is impre-
cisely estimated and the minimum of the total error does not
indicate the serial correlation function and the value H which
provides the maximum precision. At best, we reduce the
variation intervals of the parameters of the artificial series
such that we obtain a better approximation of the ideal sta-
tistical ensemble. So we can build an iterative method to
reduce the statistical ensembles until they do not allow a
precision improvement.

As the first step of the iteration process we estimate the
polynomial trend for different degrees q̃ and apply to the
estimated noise the theoretical model in the form used for
noises without trend. For each noise parameter we obtain a
variation range from the results obtained for different orders

q̃. The numerically generated trends can be a combination of
the polynomial trends initially estimated or, as in Sec. V, they
can be kept fixed and then the statistical ensembles depend
additionally on q̃.

The main difficulty in generalizing this method is to find
an automatic numerical algorithm of building statistical en-
sembles. For example, trend estimation by means of another
method than polynomial fitting implies that, instead of the
algorithm presented in Appendix B, another automatic algo-
rithm simulating realistically the chosen method must be de-
signed. The applications for 1 / f noises or chaotic signals
impose the choice of an explicit theoretical noise model to
generate the artificial series in the statistical ensembles.
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APPENDIX A: AUTOMATIC GENERATION OF TRENDS

The automatic algorithm for the generation of a determin-
istic trend �fn ,n=1,2 , . . . ,N� has two steps. First we gener-
ate P subintervals of random length and then on each sub-
interval we construct a monotonic semiperiod of a sinusoid,
i.e., the part limited by two successive extrema, with random
amplitude and the variation opposite to the previous semipe-
riod. The subinterval p� P contains the terms fn with index
n satisfying the condition Np
n�Np+1, where Np�N are
nonnegative integer numbers. We denote N1=0 and NP+1
=N, such that the number of time steps of any interval is
equal with �Np=Np+1−Np.

The length of the subinterval p is a random number dp
uniformly distributed within the interval �dmin,1� and dmin is
a parameter that will be chosen such that �Np��Nmin,
where �Nmin has a given value. This condition assures that
each sinusoidal part is described with an acceptable reso-
lution. The union of all subintervals is an interval with length
d=�i=1

P di which must be divided into N−1 equal bins corre-
sponding to the N values of the time series. Hence we choose
for p	1

Np = 1 + ��N − 1�d−1�
i=1

p

di� ,

where �¯� is the integer part function. Then the number of
time steps of the part p is approximately equal to �Np
�dp�N−1� /d and it is minimum if dp=dmin and dp�=1 for
p��p. From the condition min��Np�=�Nmin it follows that

dmin =
�P − 1��Nmin

N − 1 − �Nmin
.

To each subinterval p we associate a semiperiod of a si-
nusoid with the amplitude equal to a random number ap
� �0,1� with a uniform probability distribution. The prelimi-
nary value of the trend at a point n of the part p, Np
n
�Np+1, is given by the recurrence relation
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gn = gNp
+ �− 1�pap�1 − sin

�

2
�1 + 2

n − Np

�Np
�� , �A1�

where the free term gNp
is equal to the last term of the pre-

vious part p−1, and for p=1 we choose g0=0. The first
sinusoidal part is decreasing and the monotony of the other
parts alternates such that the trend looks like a distorted si-
nusoid. The continuity between the successive parts is as-
sured by the free term gNp

.
In accordance with Eq. �1�, we superpose over the trend

�gn� the noise �zn� obtained using the algorithm described in
Sec. III. The ratio between the amplitude of the trend and of
the noise is described by a new parameter r and we make the
following transformation of the trend �A1�

fn = rgn
max�zn� − min�zn�
max�gn� − min�gn�

. �A2�

If r	1, the signal �1� is dominated by trend and when r

1 by noise. Finally from the trend �A2� we subtract its
mean.

APPENDIX B: AUTOMATIC ESTIMATION OF TRENDS

We take advantage of the fact that the trend �fn� of the
numerically generated time series is known. The global re-
semblance of the shape of the estimated trend with the real
one is quantified by the index

� =
� f̃ n − fn�

�fn�
.

The estimated trend � f̃ n� is obtained by polynomial fitting
and it depends only on the degree q of the polynomial trend.
We denote by q0 the degree for which � has the minimum
value. In Fig. 2 such estimated trends are represented with
dashed line and they reproduce as a whole the shape of the
real trend, although they are not visually acceptable because
in some regions they significantly move away from the real
trend. Therefore the polynomial trend is considered accept-
able only if it satisfies some additional local conditions.

The local difference between the estimated trend and the
real one is quantified by the maximum of the absolute value
of their difference

� = max
n

�� f̃ n − fn�� .

A first local condition limits the value of � with respect to the
amplitude of the entire signal, such that when the noise is
dominant, the estimated trend variation should be limited to
a fraction of the signal amplitude

� 
 c1�max
n

�xn� − min
n

�xn�� . �B1�

The second local condition limits the value of � with respect
to the standard deviation of the noise �, such that when the
trend is dominant the estimated trend is contained within the
boundaries of the time series

� 
 c2� . �B2�

The values chosen for the constants are c1=0.2 and c2=1.5,
such that the percent of rejected time series is smaller than
half of the generated series. For example, the percent of ac-
cepted polynomial trends is 70% when the trends have P
=5 monotonic parts, and for smaller values of P this percent
increases.

To complete the algorithm of the automatic selection of
the estimated polynomial trend we must specify the interval
�qmin,qmax� in which we look for q0. If this interval is too
small, then for many generated time series q0 cannot take its
real value and it will be limited to the boundary q0=qmax.
These errors are corrected by the conditions �B1� and �B2�,
because if the difference between the polynomial trend and
the real one is too large, then the time series is eliminated
from the statistical ensemble. However, such situations must
be avoided as much as possible.

The minimum degree of a polynomial trend that can de-
scribe a function with P−1 extremes, i.e., with P monotonic
parts, is qmin= P. As the degree of the polynomial increases,
the estimated trend describes more accurate the real trend,
but for large degrees it begins to follow the fluctuations of
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FIG. 9. The average resemblance index ��
 of the estimated trend with the real one in terms of the degree of the estimated polynomial
trend for different number P of monotonic parts of the trend and for the extreme values of the ratio r, r=0.25 �a� and r=4 �b�. The serial
correlation parameter takes random values into its maximum range �� �0,0.9�. The filled markers indicate the minimum values of ��
. The
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the noise. Hence we expect that for fixed P the average re-
semblance index ��
 on a statistical ensemble of numerically
generated series should have a minimum at a value �q0
,
beyond which the influence of the fluctuations of the noise
becomes more important than the ability of the polynomial
trend to approximate the real trend.

For different values of the number P of the trend mono-
tonic parts and the extreme values of the ratio r ��
� �0,0.9��, Fig. 9 shows the average resemblance index ��

for degrees q� �qmin,6P�. If the estimated trend with the
optimal degree q0 does not satisfy the conditions �B1� and
�B2�, then the time series is eliminated from the statistical
ensemble.

For the time series dominated by noise ��
 has a clear
minimum for �q0
�3P �Fig. 9�a��. When the noise is small
�Fig. 9�b��, the increase of the degree further than 3P does
not significantly improve the resemblance with the real trend,
the graph of ��
 has an almost stationary value, and the
minimum of ��
 is less clearly defined. In all cases, as ex-
pected, when the real trend becomes more complex �P in-
creases�, then it is more difficult for the estimated trend to
follow the shape of the real one and ��
 increases. The graph
of ��
 also depends on �. For greater values of � the noise
becomes more similar to a deterministic trend and the esti-

mated trend cannot distinguish one from the other. Therefore
��
 becomes greater for larger values of q and the minimum
of ��
 occurs at smaller values �q0
. The influence of � is
more important for small values of r.

Taking into account the behavior of ��
, we choose the
maximum degree of the estimated polynomial trend qmax

=3P, represented by a dashed line in Fig. 9. For time series
dominated by noise this choice assures us that for the major-
ity of them we can determine the actual optimal degree q0. In
other cases it is possible that q0	qmax, but then the differ-
ence between the polynomial trend of degree q0 and qmax is
small.

In fact we are not interested on the precise value of the
optimal degree q0 because for real time series the trend is
unknown, the index � cannot be calculated and the optimal
degree q0 cannot be determined. The degree q̃ of a subjec-
tively estimated polynomial trend has a value somewhere
about its optimal value q0. Because we want to numerically
simulate such a subjective procedure, we randomly choose q̃
within the interval �q0−�q ,q0+�q�� �P ,3P�. For the nu-
merical tests we use �q=3. The polynomial trend of q̃ degree
is accepted only if it satisfies the two local conditions �B1�
and �B2�.
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