
Comput Visual Sci (2009) 12:77–85
DOI 10.1007/s00791-007-0077-6

REGULAR ARTICLE

Global random walk modelling of transport in complex systems
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Abstract The Global random walk algorithm performs
simultaneously the tracking of large collections of particles
and permits massive simulations at reasonable costs. Appli-
cations were developed for transport in systems with
anisotropic, non-homogeneous, and randomly distributed
parameters. As a first illustration we present simulations for
diffusion in human skin. Further, a case study for conta-
minant transport in groundwater shows that the realizations
of the transport process converge in mean square limit to a
Gaussian diffusion. This investigation also indicates that the
use of the Kraichnan routine, based on periodic random fields,
yields reliable simulations of transport in Gaussian velocity
fields.
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1 Introduction

The global random walk (GRW) is a recently proposed
method for the simulation of transport processes which
generalizes the classical Particle Tracking algorithm (PT).
The new approach considerably increases the accuracy and
reduces the computation time. Non-isotropic and space
variable diffusion coefficients as well as various boundary
and initial conditions can be easily implemented in GRW [15].

Unlike PT, GRW acts “globally” since, starting with a
given distribution of particles in a computational grid, all the
particles lying at a grid site are simultaneously spread, first
by an advection displacement, then by diffusion jumps, as
shown in Fig. 1. The numbers of particles undergoing dif-
fusion jumps are Bernoulli random variables, describing the
number of jumps in a given direction of a discrete random
walk process. Thus, the GRW procedure is equivalent to a
superposition of many PT procedures and can manage large
numbers of particles. GRW is also equivalent to a finite-
difference scheme, for genuine diffusion processes, and it
is appropriate to solve more complex problems for para-
bolic equations. The “overshooting” cannot be avoided in
GRW procedure but, for given overshooting, the discretiza-
tion errors can be controlled and kept under a desirable thre-
shold by an accurate discretization of the velocity [10,13].

The “global change of state” of the whole system of com-
putational particles, as a cellular automaton, is the principle
on which are built the “lattice gas” and “lattice Boltzmann”
methods, and it allows high performance parallel computing
applications [18]. In this respect, GRW is a particular lat-
tice gas model, i.e. it is a stochastic process in the space of
configurations, defined at a given time by the number of par-
ticles at a grid site. Since the particles do not interact, there
is no collision step, as for lattice Boltzmann. The “particle
distribution function” along all the possible positions

123



78 N. Suciu et al.

0
0.1

0.2
0.3

0.4

x1 (m)

-0.1

0

0.1

x2 (m)

1e+09

1e+10

n(x1,x2)

Fig. 1 The advection displacement and diffusive jumps of 1010 par-
ticles starting at (0,0), for r = 0.85; the blue columns and lines represent
the succession of the one-dimensional procedures

occupied by particles after a “propagation” step consisting of
an advection displacement and diffusion jumps is given by
the Bernoulli distribution or its approximations. Similarly
with gas lattice, the next configuration of the system is obtai-
ned by simple summations of the number of particles at each
grid site.

Since in GRW algorithm, unlike in lattice gas models, the
number of particles per grid site is not limited by an “exclu-
sion principle” it is possible to obtain statistically reliable
estimations of the macroscopic quantities, in a single simu-
lation, without averaging over ensembles of simulations. The
required number of particles ranges between 106, for small
size lattices of the order of 100 nodes [15] to 1010 for lat-
tice size of ∼106 nodes [10, Fig. 11]. In some simplified
implementations of the algorithm there are no limitations
as concerning the number of particles. Therefore, GRW can
simulate the behavior of the real number of molecules invol-
ved in microscopic processes (diffusion, chemical reactions
and radioactive decay) as well as in large-scale environmen-
tal problems (contaminant transport in water or atmosphere).

The paper is organized as follows. Section 2 presents the
principle of the GRW algorithm. A two-dimensional algo-
rithm for space variable and anisotropic diffusion tensor is
described in Sect. 3, and in Sect. 4 it is applied for simu-
lations of diffusion in human skin. Section 5 deals with
two-dimensional simulation of large-scale transport in
groundwater and Sect. 6 presents some conclusions.

2 The GRW algorithm

The GRW algorithm simulates the random walk of an
ensemble of fictitious particles to solve parabolic partial
derivative equations. As an illustration, we first present the
GRW algorithm for the case of the one-dimensional diffu-
sion whose probability density (normalized concentration of
the diffusing substance) is a solution of the Fokker–Planck

equation with space variable drift coefficient V (x) and constant
diffusion coefficient D,

∂t c + V (x)∂x c = D∂2
x c. (1)

Let us consider a lattice with constant δx , defined by the
nodes xi = iδx , and the discrete time tk = kδt , where i and k,
k ≥ 0, are integers. The configuration of N particles evolving
on the lattice is given by the number n(i, k) of particles lying
at xi at the time step tk . At every time step the particles from
every lattice site are grouped into three subsets:

n( j, k) = δn( j + v j | j, k) + δn( j + v j − d | j, k)

+ δn( j + v j + d | j, k). (2)

The term δn( j + v j | j, k) is the number of particles which
are moved from x j to x j + v j , where v j = V (xi )δt/δx .
The terms δn( j + v j ± d | j, k) in Eq. (2) count the rest
of particles, which undergo diffusive right–left jumps over d
lattice nodes and are Bernoulli random variables. The new
configuration of the particles after a time step is given by the
sum of the particles which at the time (k + 1)δt are at the
same lattice site,

n(i, k + 1) =
∑

j

δn(i | j, k). (3)

By repeating this procedure for different sets of realiza-
tions of the Bernoulli variables δn one obtains a statistical
ensemble of simulations. The ensemble average of the num-
ber of particles undergoing diffusive jumps and of the number
of particles remaining at the same site after the displacement
v j are given by the relations

δn( j + v j ± d | j, k) = 1

2
r n( j, k),

δn( j + v j | j, k) = (1 − r) n( j, k),

(4)

where r , 0 ≤ r ≤ 1 is a real parameter. The diffusion coef-
ficient D is related to the amplitude of diffusive jumps d,
the parameter r , the lattice constant and the time step by the
relation

D = r
(dδx)2

2δt
. (5)

The concentration simulated by the one-dimensional
GRW algorithm is given by c(xi , tk) = n(i, k)/δx . For vani-
shing or constant drift coefficients V , the relations (3–5)
imply that the average of c(xi , tk) over an ensemble of GRW
simulations coincides with the solution of the stable finite dif-
ference scheme for the diffusion equation [15]. For variable
V , GRW is no longer equivalent to a finite difference scheme.
This is due to overshooting errors occurring when particles
jump over grid sites with different V (xi ) and is common to
most of the random walk methods. Nevertheless, an evalua-
tion by comparisons with a method free of overshooting [11]
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has shown that, even for highly variable V , the GRW solu-
tion remains accurate in a range of 5% for suitable chosen
parameters δx , δt , d, and r [12].

In the “exact” version of the GRW the quantities δn( j +
v j ± d | j, k) are picked up from Bernoulli repartition func-
tions, using computer generated random numbers. This pro-
cedure requires the expression of the number of jumping
particles in a series of powers of 2, the computation and
the storage of the Bernoulli repartitions for increasing power
of 2, and the generation of some random numbers at every
time step and lattice site. Accordingly, the computing time
increases for large N . Several approximations of the exact
algorithm can be used to avoid this inconvenience. For ins-
tance, if the number of particles at a lattice site is larger than
220, the Bernoulli repartition can be successfully approxima-
ted by the Gaussian one (i.e. with the erf-function). Another
useful and robust approximation is that leading to the “redu-
ced fluctuations GRW algorithm”. In both cases there are no
limitations for the maximum number of particles, which can
be as large as the maximum double precision value of the
computing platform.

The reduced fluctuations GRW algorithm is defined by

δn( j + v j − d | j, k) =
{

n/2 if n is even
[n/2] + θ if n is odd

,

where n = n( j, k) − δn( j + v j | j, k), [n/2] is the inte-
ger part of n/2 and θ is a variable taking the values 0 and
1 with probability 1/2. This algorithm minimizes the num-
ber of calls of the random number generator and makes the
computing time independent of N . Therefore the reduced
fluctuations GRW algorithm is mainly useful for large-scale
problems. Moreover, a physical significant shape of the dif-
fusion front is ensured by the threshold concentration defi-
ned by one particle at a grid point. This feature also saves
memory and computing time by avoiding computations at
lattice sites with irrelevant small concentrations, as in case
when one gives up the particle indivisibility or in finite dif-
ferences schemes [15]. In the following by GRW we shall
denote only reduced fluctuations algorithms.

For constant diffusion coefficient D the two- and three-
dimensional algorithms can be simply built by repeating the
same procedure for all space directions. Figures 1 and 2 illus-
trate the two-dimensional GRW algorithm for constant D.

The concentration plotted in Fig. 2 was computed at a
given time t = kδt and at a lattice site (x1, x2) = (i1δx1,

i2δx2), where δt is the time step, δx1, and δx2 are the space
steps, with the formula

c(x1, x2, t) = 1

N

1

δx1δx2

i1+1∑

i ′1=i1−1

i2+1∑

i ′2=i2−1

n
(
i ′1, i ′2, kδt

)
. (6)

Let us consider, more generally, an initial condition consis-
ting of N particles uniformly distributed over NX0

grid sites.
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Fig. 2 The resulting concentration field, at t = 0, t = 5δt and t =
10δt , for a uniform initial distribution of 1010 particles in the square of
sides δx1 and δx2

By n(i1, i2, k; x0,1, x0,2) we denote the distribution of par-
ticles at the time step k given by the GRW procedure for a
diffusion process staring at (x0,1, x0,2). Since the distribution
of the particles at time k can be written as

n(i1, i2, k) =
∑

x0,1,x0,2

n(i1, i2, k; x0,1, x0,2),

it follows that

1

N

∑

i1,i2

n(i1, i2, k)

= 1

NX0

∑

x0,1,x0,2

NX0

N

∑

i1,i2

n(i1, i2, k; x0,1, x0,2).

Thus, the concentration (6), as well as its spatial moments,
are averages over the trajectories of the diffusion process
starting at given initial positions and over the distribution of
the initial positions.

It was shown that for Gaussian diffusion the numerical
solution (6) converges to the Gaussian distribution as O(δx2)

+O(1/
√

N ), i.e. for large numbers of particles, N , the
convergence order is O(δx2), the same as for the finite diffe-
rences scheme [15]. Therefore, GRW is “self-averaging”, in
the sense that for large N the solution given by a single simu-
lation obeys the same equation (the finite difference scheme)
as the ensemble average of Eq. (6). The self-averaging pro-
perty distinguishes GRW from the gas-lattice approaches,
where the “exclusion principle” does not permit the pre-
sence large numbers of identical particles at the same site
and the solution of the problem is obtained by averaging
over ensembles of simulations.
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The algorithm is obviously stable since the total number of
particles N contained in the lattice is conserved. The condi-
tion r ≤ 1, ensures that there is no numerical diffusion. In
[15] it was also shown that GRW is orders of magnitude fas-
ter than PT, in all its possible implementations, and is able to
handle large numbers of particles that are prohibitive for the
classical PT algorithms.

3 GRW algorithm for two-dimensional diffusion
in non-homogeneous and anisotropic media

In the following we consider a two-dimensional diffusion
process described by the diagonal diffusion tensor
∥∥∥∥

Dx (x, y) 0
0 Dy(x, y)

∥∥∥∥

and the diffusion equation

∂t c = ∂x (Dx∂x c) + ∂y(Dy∂yc).

The GRW solution of the diffusion equation with spatially
dependent diffusion coefficients requires correction terms in
Eq. (2). These corrections have to account for a drift term
equal to (∂x Dx , ∂y Dy) (see e.g. [6]). However, for the pur-
pose of illustration, we consider here only the particular case
of slowly variable diffusion coefficients, i.e. ∂x Dx ≈ 0 and
∂y Dy ≈ 0, for which the diffusion equation can be approxi-
mated by

∂t c = Dx∂
2
x c + Dy∂

2
y c. (7)

The Eq. (7) has no drift terms and the diffusion coefficients
vary in space. In this case the GRW relation (2) is replaced
by

n(i, j, k)= δn(i, j | i, j, k) + δn(i − dx , j | i, j, k)

+ δn(i + dx , j | i, j, k) + δn(i, j −dy | i, j, k)

+ δn(i, j + dy | i, j, k) (8)

where n(i, j, k) is the number of particles at the site
(xi , y j ) = (iδx, jδy) at the time kδt . Unlike the
two-dimensional algorithm presented in Fig. 1, where the
one-dimensional procedure is applied successively for lon-
gitudinal and transversal directions, the procedure (8) moves
the particles simultaneously along the principal directions of
the diffusion tensor. Figure 3 illustrates this two-dimensional
algorithm, in the general case of a non vanishing drift.

The anisotropy is taken into account by two different para-
meters dx and dy which describe the diffusive jumps along
the coordinates axes. The spatial variation of the diffusion
coefficients is described through the variable parameters

rx = 2Dxδt

(dxδx)2 , ry = 2Dyδt

(dyδy)2 . (9)
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Fig. 3 The two-dimensional GRW algorithm for variable diffusion
coefficients

After the global change of state of the lattice by the pro-
cedure (8) applied at every site containing particles, the new
numbers of particles at sites are obtained similarly to Eq. (3)
by summation over two spatial indices.

The average over an ensemble of simulations of the terms
in Eq. (8) are related by

δn(i ± dx | j, k) = 1

2
rx (i, j) n(i, j, k),

δn(i | j ± dy, k) = 1

2
ry(i, j) n(i, j, k),

δn(i, j | i, j, k) = [1 − rx (i, j) − ry(i, j)] n( j, k).

These relations can be used to show that for slowly variable
diffusion coefficients the two-dimensional GRW algorithm
approximates the finite difference scheme.

The lattice steps δx and δy are chosen accordingly to the
desired resolution of the concentration field. The time step δt
is inferred from the condition rx + ry ≤ 1, which states that
the numbers of diffusing particles are limited by the numbers
of particles at the lattice sites. From Eq. (9) it follows

δt ≤
(

2Dmax
x δt

(dxδx)2 + 2Dmax
y δt

(dyδy)2

)
, (10)

where Dmax
x and Dmax

y are the upper bounds of the diffusion
coefficients Dx (x, y) and Dy(x, y).

4 Diffusion in skin

The human skin varies in texture, structure and thickness and
is made up of three main layers: namely epidermis, dermis
and hypodermis. The epidermis is the uppermost layer of the
skin, measures less than 1 mm in thickness and can be also
subdivided into several layers. The Stratum Corneum (SC) is
located on the outer surface of the skin and its thickness is in
the range 10–100µm. It is made of keratinized flat, roughly
hexagonally shaped, partly overlapping cells embedded in
a lipid matrix. Its main constituents are proteins, lipids and
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water. The dermis is the second layer of the skin and acts as
a supportive layer for the epidermis and the hypodermis, the
third layer of the skin, acts as a shock absorber and an energy
reserve.

The skin is a complex heterogeneous medium that plays
an essential part in body protection and regulation: its most
outer layer, the SC, acts as a protective barrier between the
body and the environment and its main role to prevent fluid
loss and to exclude environmental toxins, is fundamental to
life. The excellent diffusional resistance of the SC makes the
transdermal delivery of drugs pretty difficult. Nevertheless,
there remains an important pharmaceutical need to reliably
predict the topical and/or transdermal bioavailability of cuta-
neously applied drugs. In this sense, to measure percutaneous
penetration of the externally applied chemicals into human
skin is very important for understanding how drugs can be
delivered through the skin.

In most cases a constant diffusion coefficient for trans-
ported material adequately describes the diffusion process.
However, in real biological systems, because of the hetero-
geneity of the skin, the diffusion coefficient behaves like a
random variable. This is why adequate analytical and nume-
rical models able to describe the diffusion process in com-
plex structures must be developed. An example of such a
model was developed by Johnson et al. [7], who focused on
measuring and modeling the molecular diffusion coefficient
in order to describe the macroscopic SC permeation via the
interkeratinocyte lipid.

The two-dimensional algorithm introduced in Sect. 3 can
be used as a new approach able to simulate the diffusion
through the human skin. A two-dimensional geometry with
the x axis parallel and the y axis perpendicular to the surface
of the skin was used. A thin film consisting of N = 1020 water
molecules with ∆x = 10 mm was considered to be applied
on the surface of the skin. Since the skin structure is stratified,
the diffusion can be described by the two-dimensional equa-
tion (7). To describe the diffusion in the horizontal direction
the lattice dimension on the x axis was 3∆x . An acceptable
resolution was obtained with δx = 0.1 mm, (300 nodes per
lattice). A simplified two layers structure of the skin was
considered, with thickness y1 = 0.1 mm and y2 = 0.5 mm,
respectively. With a resolution of δy = 0.01 mm the lattice
extended over 10 nodes in the first layer and over 50 nodes
in the second.

Because of the nonhomogeneous structure of the skin
the diffusion coefficients show spatial fluctuations about the
mean value. At every lattice site the coefficients Dx and Dy

were generated as normal random variables with the mean
value equal to half the maximal values Dmax

x and Dmax
y and

variance equal to a fraction p < 1 of the corresponding maxi-
mal values. In the simulations presented in the following we
chose p = 0.1. Since the cells are rather flat, here we conside-
red Dmax

x = 2Dmax
y = 5.8810−7 m2/s in the first layer. In the

second layer an isotropic diffusion coefficient ten times lar-
ger than in the superior layer was introduced. Between the
layers a transition zone of thickness 3δy was placed, where
diffusion coefficients vary linearly [16].

Two different boundary conditions were used. At the sur-
face of the skin, the molecules which have been jumped in the
exterior were blocked on the boundary. At the inferior boun-
dary we imposed a “transmission boundary condition” in the
first order of approximation [15]. This last condition has the
property to not disturb the diffusion front at the boundary.
The time step was chosen using the condition (10). Some
simulation results are presented in Figs. 4, 5, 6 and 7.

Fig. 4 The distribution of molecules after t = 5 min

Fig. 5 The distribution of molecules after t = 200 min
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Fig. 6 Depth averaged probability density as a function of longitudinal
coordinate for fixed times

Fig. 7 Time behavior of longitudinal and transversal flux of molecules
through the skin

5 Transport in heterogeneous porous media

Some applications to transport in groundwater show that
GRW is suitable to be used in large-scale simulations and
in Monte Carlo approaches on the predictability of the sto-
chastic model [10,13].

We considered two-dimensional divergence-free velocity
fields with constant mean 〈V〉 = U = (U, 0), U = 1 m/day,
given by the Darcy law for exponential correlated normal
log-hydraulic conductivity with correlation length λ = 1 m,
and variances σ 2 = 0.1. The random velocity was nume-
rically generated, as a first-order approximation in σ , with
the procedure based on the Kraichnan routine, already used
in Refs. [1–3,9,13,14]. In Ref. [13] it was shown that such
velocity fields fulfil the requirements of the limit theorem
(on the existence of the Gaussian up-scaling) of Kesten and
Papanicolaou [5].

In every realization of the velocity field the simulation of
an isotropic diffusion (Dii = D = 0.01 m2/day, Di j = 0

for i 	= j , i = 1, 2) was conducted for dimensionless times
t/Uλ corresponding to 3,700 correlation lengths, using the
reduced fluctuations GRW algorithm illustrated by Figs. 1
and 2. In each realization of the velocity field, N = 1010

particles were initially located at the origin of the grid. It was
shown that increasing the number of particles between 1010

and 1024, the values of the effective coefficients, computed at
successive moments over 5,000 time steps, are identical in the
limit of the double precision [10]. To assess the reliability of
the procedure, the simulations were repeated for increasing
numbers of periods used in the Kraichnan routine of N p =
64, 640, and 6,400. Ensembles of 1,024 realizations of the
transport simulations were computed for each of the three
N p values considered.

The lattice size of 
107 nodes was larger than the maxi-
mum extension of the plume in all simulations. We used
a uniform lattice with constant δx = 0.1 m, a time step
δt = 0.5 day and diffusive jumps in Eq. (2) d = 2. These
parameters are related with r = 0.25 accordingly to Eq. (5).
To reduce the “overshooting” errors in particles methods one
impose that the mean displacement in a time step does not
overtake a given threshold [8]. For the same overshooting,
the error of GRW simulations is mainly influenced by the
discretization of the velocity, as described by the parame-
ter Uδt/δx . It was found that increasing this parameter from
five (as in the present simulations) to ten results in differences
smaller than 2% [10]. For Uδt/δx = 5 and the parameters
above, the large-scale GRW simulations estimate the obser-
vables of the transport in groundwater with errors which are
one or two orders of magnitude smaller than the correspon-
ding first-order approximations in σ 2 [11,12].

The parallelization was trivial since the computation of the
Kraichnan velocity field and the simulation of the transport in
a given realization were performed on a single processor of an
IBM Regatta p690+ computer (the JUMP system at Research
Center Jülich, Germany). The costs were considerable, for
instance of about 4,500 cpu hours for the ensemble of 1,024
realizations in the case N p = 64. Nevertheless, a comparison
with other simulations (see e.g. [9]) shows that the costs are
4.4 millions times smaller than they could have been for the
PT method.

The effective coefficients of transport in groundwater were
estimated through the rate of increase of the second cen-
tral moment of the plume Deff

i i = σ 2
i i/(2t), which in the

large time limit should coincide with the coefficients of the
up-scaled Gaussian process. For N p = 6,400 periodic modes
in Kraichnan routine and for an initial solute plume with
transverse dimension of 100λ, the root-mean-square
deviation of the effective coefficients from the up-scaled
coefficients, computed at distances larger than 200λ, was
indeed found to be one order of magnitude smaller than
the local coefficient D [13, Fig. 9], as predicted by theory
[5,13].
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In the following we present some results concerning the
predictive value of the stochastic approach for the contami-
nation in actual aquifer systems, in the case of point instan-
taneous sources. Following the approach of previous works
[1,13] we computed the sample to sample fluctuations of the
effective coefficients
(

σDeff
i i〈

Deff
i i

〉
)2

, where σ 2
Deff

i i
=

〈
Deff

i i
2
〉
−

〈
Deff

i i

〉2
.

The results presented in Fig. 8 indicate that at large times
the fluctuations of the longitudinal effective coefficient tend
to zero, i.e. the coefficient is “self-averaging”, only when
the number of periods in the Kraichnan routine, N p, is of the
order of 1,000s or larger. The self-averaging of the longitudi-
nal coefficients has been also investigated by approximations
of the transport equations up to the first order in velocity fluc-
tuations, which were previously evaluated by comparisons
with GRW simulations [14]. It was found that, in order to
account for the self-averaging behavior of transport in Gaus-
sian velocity fields, the number of periodic modes in the
Kraichnan procedure must be at least as large as the total
dimensionless time Ut/λ of the simulation [2].

The transverse coefficient, shown in Fig. 9, has much
smaller fluctuations than the longitudinal coefficient and is
self-averaging even for small N p. One can see that N p = 640
periodic modes yields practically the same result as N p =
6,400.

The normalized concentration in given realizations
c(x1, x2, t) was computed, similarly with Eq. (6), as the num-
ber of particles in a domain 1λ × 1λ centered at (x1, x2)

divided by the total number of particles N . Further, the point
concentrations were averaged over a domain of dimensions
1λ × 160λ, oriented across the mean flow. This domain
is larger than the transverse dimension of the plume and,
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Fig. 10 Coefficient of variation of the cross-section averaged concen-
tration at the plume center of mass

consequently the concentration field can be described by an
one-dimensional problem for the transverse averaged
concentration C(x1, t). This quantity corresponds to the ideal
sampling across reference planes aimed at in field experi-
ments [17]. Further, We stored the mean concentration at the
plume center of mass, C(〈x1〉 , t), and we computed the mean
〈C(〈x1〉 , t)〉 over the ensemble of 1,024 realizations of the
transport. Finally we computed the variance at the center of
mass

σ 2
c (〈x1〉 , t) = 〈

C2 − 〈C〉2 〉
(〈x1〉 , t)

and the coefficient of variation CV = σc/ 〈C〉. In Fig. 10
one remarks that for N p = 6,400 and after more than 2,000
dimensionless times the coefficient of variation becomes
smaller than 10% and shows a monotonous decrease.

The self-averaging behavior of the effective coefficients
and cross-section concentration, shown in Figs. 8, 9 and
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10, indicates that single realizations of the transport process
behave in the large time limit as the ensemble averaged pro-
cess. Since the latter tends to an up-scaled Gaussian pro-
cess, as shown by both theoretical and numerical results, one
concludes that the process is asymptotically “ergodic” in a
large sense [13]. Concerning the predictive power of the sto-
chastic up-scaled model, the present results complete and
reinforce the conclusions drown by previous works [9,1]:
Even under rather ideal conditions (σ 2 = 0.1), in the case of
small initial contaminant plumes the predictions of the up-
scaled model are reliable for real groundwater systems only
after travelled distances of 1,000s of heterogeneity scales.

6 Conclusions

The simulated concentration field capture the effects of non-
homogeneity and anisotropy of the skin structure. These first
results indicate that the simulations can be used in inves-
tigations on diffusion and other microscopic processes in
biological structures. Comparisons between measured quan-
tities (for instance fluxes of molecules) and GRW simulations
could be helpful for the elaboration of more complex codes,
able to account for less idealized skin structures.

The stochastic simulations of the advection dominated
transport in groundwater, based on GRW procedure, are in
good agreement with the exact mathematical result on the
existence of the up-scaled Gaussian process. Therefore, we
expect that our method could be successfully used to analyze
more realistic situations, with larger variance of the
log-hydraulic conductivity, for which there are no exact
mathematical results. The accuracy of the simulated concen-
tration field and the possibility to describe large-scale beha-
vior of the transport process make the GRW method appro-
priate for simulations of field experiments, such as those pre-
sented in [17]. The relatively small computational costs allow
the implementation of GRW algorithm in inverse modeling
procedures for the assessment of the aquifer’s properties.

Though it can be considered as a particular cellular auto-
maton, the GRW procedure differs from most of lattice gas
models because no exclusion principle is necessary. As a
consequence, the number of particles used in simulations
can be as large as the number of molecules involved in a
specific transport problem. This can be a great advantage in
simulations for reactive and radioactive decay processes.

The method presented in this paper does not completely
remove the overshooting errors associated with the spatial
variation of the velocity field. The overshooting can be com-
pletely removed with a biased GRW code. The principle of
the biased GRW consists in the simulation of the advec-
tive displacement by a bias in the random walk jumps [11].
This procedure remains “global”, unlike similar approaches
[4] where the updated lattice configurations are obtained by

sequential random decisions for the jumps of the particles
at a lattice site. Since it introduces new constraints, the bia-
sed procedure requires larger computational domains. It is
yet possible to use the biased GRW algorithm in large-scale
problems owing to its cellular automaton property which
permits domain-decomposition on parallel machines. When
domain-decomposition does not increase the computational
efficiency, as in case of advection-diffusion simulations for
groundwater, biased GRW test simulations can be useful for
the calibration and the evaluation of the less expensive un-
biased GRW algorithm [14,12].
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