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Abstract

Probability density function (PDF) methods are a promising alternative to pre-
dicting the transport of solutes in groundwater under uncertainty. They make
it possible to derive the evolution equations of the mean concentration and
the concentration variance, used in moment methods. The mixing model, de-
scribing the transport of the PDF in concentration space, is essential for both
methods. Finding a satisfactory mixing model is still an open question and due
to the rather elaborate PDF methods, a difficult undertaking. Both the PDF
equation and the concentration variance equation depend on the same mixing
model. This connection is used to find and test an improved mixing model for
the much easier to handle concentration variance. Subsequently, this mixing
model is transferred to the PDF equation and tested. The newly proposed mix-
ing model yields significantly improved results for both variance modelling and
PDF modelling.
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1. Introduction

Predicting the transport of groundwater contaminants remains a demanding
task, especially with respect to the heterogeneity of the subsurface, the large
measurement uncertainties, and the increasing impact of human activities on
groundwater systems [1]. Hence, a risk analysis also includes the quantification
of the uncertainty in order to evaluate how accurate the predictions are.

It is well known from papers published in the last decades that a major
source of uncertainty associated with predicting contaminant concentrations is
the lack of detailed information about the spatial heterogeneity of the hydraulic
conductivity in the subsurface (see e.g. [2, 3]). A long standing approach to deal
with this uncertainty is the stochastic parameterisation of the hydraulic con-
ductivity through random space functions with statistics inferred from field and
laboratory data. Via flow and transport equations, the contaminant concentra-
tions being modelled are random functions too. Their statistics may be inferred
from Monte Carlo ensembles of transport simulations, done for realisations of
the random hydraulic conductivity, by stochastic perturbation approaches, or
by the probability density function (PDF) method, which received an increased
attention during the last decade [4].

The moment approach uses transport equations of the concentration mo-
ments consistent with the geostatistical representation of the aquifer’s hetero-
geneity. If this heterogeneity is statistically homogeneous, the equation for the
first moment, which is the mean concentration, has the following characterist-
ics: The highly heterogeneous and spatially fluctuating groundwater velocity is
replaced by an ensemble averaged velocity field and the effect of the fluctuating
velocity on the transport is modelled by an enhanced dispersion called macrod-
ispersion or ensemble dispersion [2]. But in general, the mean behaviour differs
from that of a specific plume in a single aquifer. See Figure 1 for a comparison
between the mean concentration and a concentration obtained from a simula-
tion in a specific velocity field realisation. Only if the hydraulic conductivity
has finite correlation lengths and the plume has sampled a representative part
of the aquifer, it becomes ergodic and its transport behaviour can be modelled
by the ensemble averaged behaviour, described above. In a first step, possible
deviations from the mean behaviour can be quantified by the concentration vari-
ance. It is transported by the same processes as the mean concentration, thus it
is advected by the averaged velocity field and dispersed by an enhanced macrod-
ispersion. But concentration variance is also generated by mean concentration
gradients and simultaneously it is destroyed by dissipative processes, which are
created by small-scale fluctuations in the velocity field. In order to calculate
the influence of these small-scale fluctuations on the concentration variance, a
so-called closure model is needed.

In the field of turbulence modelling, where very similar transport equations
are used, different approaches exist for such closure models [e.g. 5]. Up to this
point, the adoption of these approaches to groundwater transport modelling
has been hampered by the vastly different flow conditions prevalent in both
fields. Contrary to most other problems where turbulent flows are more chal-
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Figure 1: A measure is needed to quantify how good the mean concentration ⟨C⟩ approximates
the actual concentration C, since the difference can be significant.

lenging, the roles are reversed here. The strong mixing induced by turbulent
flows causes this closure problem to be easier to tackle. The mixing induced
by heterogeneities in the groundwater flow is slower and changes significantly in
time and is therefore more difficult to model. As Dentz et al. [6] have shown, the
mechanism which generates the physical mixing in a given aquifer realisation is
more reliably described by the effective dispersion coefficients in comparison to
the ensemble dispersion coefficients, which correspond to the turbulent diffusion
coefficients. The effective dispersion is small at early times and increases only
slowly with time. Therefore, concentration gradients at early times are steep and
may remain steep for prolonged times, which in turn prevents the smoothing of
concentration fluctuations and preserves concentration uncertainty. Andricevic
[7] proposed a mixing mechanism based on a time variable effective length scale
which, in principle, could be determined experimentally. Kapoor and Gelhar
[8, 9] derived a transport equation for the concentration variance, including local
dispersivity and macrodispersive transport. By neglecting the local dispersivity,
the results from Dagan [10] could be derived. But it was concluded that even
very small local dispersivities create a qualitatively different behaviour com-
pared to the zero local dispersivity case, as the local dispersivity is the only
mechanism which can reduce the variance. They used an approach developed
for turbulent flows to model the variance dissipation, created by the local dis-
persivity. Furthermore, analytical solutions for the long-time behaviour of the
concentration variance were derived. These results were confirmed for globally
integrated variances by numerical simulations [11].

If the predictions made by a contaminant transport model are to be used
for risk analysis, even more information than the mean concentration and the
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variance is needed. Risk thresholds, regulated e.g. by an environmental agency
[1], can only be factored in by the so-called exceedance probability [e.g. 12]. It
depends on the complete one-point probability density function (PDF) of the
concentration. The concentration variance, as discussed above, can only be used
to calculate a first estimation of the exceedance probability [13]. Even if such
an estimation would be an acceptable approximation, rare events or extreme
values cannot be mapped by the mean concentration and the concentration
variance alone. This limitation stems from the fact that by using only the first
two statistical moments, namely the mean and the variance, a Gaussian shape
for the concentration PDF is implied. Such a distribution is short-tailed and
therefore excludes the possibility of rare events. Yee and Chan [14] analysed a
large set of experimental data from tracer tests in the turbulent atmosphere.
From this analysis they identified a collapse of higher-order concentration mo-
ments, which means that the higher-order moments can be expressed through
lower-order moments. Srzic et al. [15] applied such an analysis to the transport
of solutes in groundwater and also found a collapse. This might be a promising
way of computing the concentration PDF from the mean concentration and the
concentration variance. The first studies applying such a PDF framework to
the transport in groundwater used a β distribution, fully characterised by two
parameters, to fit the concentration PDF in a non-Gaussian way [16, 17]. Cirpka
et al. [18] extended the assumption of a β-shaped PDF to some special cases of
reactive transport by mapping the statistics of conservative transport to those
of mixing-controlled reactions. But Srzic et al. [19] concluded that β-shaped
PDF’s only match the true PDF for low heterogeneities. By strictly assuming
a multivariate Gaussian random velocity field and by assuming that the PDF
of the centre of mass of the solute is also Gaussian, Dentz and Tartakovsky
[20] derived a formula for the concentration PDF without need to solve a PDF
evolution equation. Their approach consists of mapping the PDF of the random
centre of mass of the plume, assumed to be Gaussian, onto the concentration
PDF. A similar approach, using a stream function coordinate system, was fur-
ther developed by Cirpka et al. [21]. A “Lagrangian concentration” framework
for calculating the integrated PDF, the cumulative distribution function (CDF),
was presented by de Barros and Fiori [22]. They derived a semi-analytical equa-
tion for the concentration CDF by assuming a small plume size and a normally
distributed and statistically stationary conductivity field with low to mild het-
erogeneity. Compared to the β-CDF, both models perform similar. A review
on assumed β-PDFs and mapping random variable approaches is given by Fiori
et al. [23].

A more flexible approach - the PDF method - is investigated in this study.
This approach yields an equation for the whole PDF of the concentration and
thus makes no assumptions about the shape of it. The crux of these PDF
methods is finding a mixing model which describes the transport of the PDF
in the concentration space. Another major advantage of the PDF approach is
the possibility to include mass transfer, like chemical reactions or radioactive
decay, even in case of nonlinear reactions. This intriguing property of the PDF
approach is possible by assuming that the mass transfer solely depends on the
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concentration [24, 25, 26]. We refer to Celis and Figueira da Silva [27] for a
recent review of mixing models.

The term “mixing” will be used from now on with a precise meaning, as in
turbulence literature [27], which, although related, is different from its mean-
ing in stochastic sub-surface hydrology, where it is associated to the effective
dispersion coefficient [6]. The latter is the diffusion coefficient of the stochastic
process modelling the transport, centred on the actual plume center of mass. It
differs from the diffusion coefficient of the process centred on the centre of mass
averaged over the ensemble of velocity realisations, i.e. the ensemble dispersion
coefficient describing the spreading of the solute plume [6], by the diffusion coef-
ficient of the centre of mass process [28, equation (3.3)]. The local dispersion
coefficient, consisting of the molecular diffusion coefficient and a term describing
the hydrodynamic dispersion by unresolved velocity fluctuations, enters addit-
ively into both the effective and the ensemble dispersion coefficients. All these
are processes are in physical space. Instead, a mixing model generically con-
sists of an advection and a diffusion in concentration space. The mixing models
provide closures for the conditional average of the diffusion flux, determined by
the local dispersion coefficients [4] and are related in this way to the transport
processes in physical space.

Beyond approaches which overcome the need of mixing models, for instance
in case of advective transport [29] or under simplifying hypotheses for strati-
fied aquifers [30] and simplified solutions which only consider PDF transport
in concentration space [31], Meyer et al. [32] proposed a solution to the full
complexity of the PDF problem, in line with classical approaches in turbulence
literature. In our recent publications, we derived consistency conditions in order
to link PDF equations to Fokker-Planck equations for which efficient numerical
schemes exist [33]. We derived mixing models from simulated concentration
time series. These mixing models performed well, but a trajectory needs to be
prescribed on which the concentration is sampled. Prescribing such a trajectory
is only possible in special cases. Our findings also highlighted the inadequacy
of classical mixing models used in turbulence for groundwater systems [4].

In our recent publications, we derived consistency conditions in order to
link PDF equations to Fokker-Planck equations for which efficient numerical
schemes exist [26, 33]. We derived mixing models from simulated concentration
time series. These mixing models performed well, but a trajectory needs to be
prescribed on which the concentration is sampled. Prescribing such a trajectory
is only possible in special cases. In addition, we used spatially filtered probability
density functions (FDF) to further reduce the computational costs [4].

In this paper, we investigate the concentration variance and concentration
PDF behaviour over a long time period and show that mixing models used before
fail to reproduce the variance at all times. To that end, we first introduce
a closed transport equation for the one-point concentration PDF in section
2. Using this equation as a starting point, we derive the transport equations
of the first two statistical moments. We show that by prescribing a certain
mixing model, both the PDF and the variance equations have the same closure
problem and thus depend on the same mixing coefficients. The importance of
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this finding lies in the possibility of testing new mixing models with much simpler
concentration variance simulations first and subsequently transferring them to
PDF models. Next, we present analytical solutions of the moment equations
and show the dependence of the analytical solution of the concentration variance
on the mixing model. In section 3 we identify the need for a time dependency
of the coefficients of the mixing model and we propose a new time dependent
mixing model. This new model is explicit and in a closed form. It is then
verified in section 4 by comparing the previously derived analytical solution of
the concentration variance equation with the old and the new mixing model with
reference Monte Carlo simulations. Afterwards, the new model is also used in
the PDF framework and compared to reference Monte Carlo solutions. Finally,
we conclude our work in section 5.

2. Background

The non-reactive transport of a solute in groundwater can be described by

∂

∂t
C + Vi

∂

∂xi
C = Dij

∂2

∂xi∂xj
C , (1)

where C(x, t) is the concentration of the solute which is transported by the stat-
istically homogeneous random velocity field V(x) and the local dispersion D.
It is assumed to be diagonal with D11 = DL being the longitudinal component,
Dii = DT for i > 1 being the transversal components, and Dij = 0 for i ̸= j.
Throughout this work, we will be using the Einstein summation convention.
The stochastic partial differential equation (1) describes the time evolution of a
plume of a dissolved substance in the groundwater. If an ensemble of statistic-
ally equivalent solutions of this equation is calculated, the mean behaviour can
be calculated from the ensemble average ⟨C⟩ =

∑N
i=1 Ci/N over N realisations.

As a first measure, the variance σ2
c (x, t) can quantify how good the ensemble

average approximates the behaviour in a specific realisation. The mean concen-
tration ⟨C⟩(x, t) and the concentration variance σ2

c (x, t) are the first and second
statistical moments of the one-point one-time concentration PDF P (c;x, t):

⟨C⟩ :=
∫

cPdc (2)

σ2
c :=

∫
c2Pdc− ⟨C⟩2 . (3)

Thus, if a transport equation for the PDF is derived, transport equations of the
mean and variance can be derived too.

2.1. PDF Transport Equation
We have already shown the derivation of the PDF transport equation in two

different ways in detail [26, 33]. Hence, we only present the results here.
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The PDF transport equation with a gradient-diffusion model applied can be
formulated as

∂

∂t
P + ⟨Vi⟩

∂

∂xi
P −Dens

ij

∂2

∂xi∂xj
P = − ∂2

∂c2
(MP ) , (4)

where ⟨V⟩ is the ensemble averaged velocity and M(c,x, t) the conditional dis-
sipation rate, which is still unclosed. The ensemble dispersion coefficient tensor
Dens is diagonal with Dens

11 = Dens
L , Dens

ii = Dens
T for i > 1, and Dens

ij = 0 for
i ̸= j. In general, the ensemble dispersion coefficients Dens are time dependent.
But in the turbulent regime, these coefficients can be assumed to be constant,
because mixing is so fast. In aquifers, the asymptotic values can be reached
within a few advective time scales [6].

The interaction by exchange with the mean (IEM) model for closing the mix-
ing term was first formulated by Villermaux and Divillon [34] and by Dopazo
and O’Brien [35] and still remains very popular for modelling reactive and tur-
bulent flows [see e.g. 36, 37, 38]. It closes the mixing term by approximating it
with

M =
∂2

∂c2
(MP ) = − ∂

∂c
[χ (c− ⟨C⟩)P ] , (5)

where χ is a parameter called the mixing frequency when used in PDF methods
or the variance decay coefficient [8] when used in moment methods. It has to
be prescribed and it will be discussed in detail in section 3. This model causes
concentration fluctuations to relax towards the local mean concentration in an
exponentially decaying way.

2.2. Mean and Variance Transport Equations
The evolution equations of the mean concentration and the concentration

variance can be derived from the PDF transport equation (4). A detailed de-
rivation is given in Appendix A, but the main ideas are also presented here.

The mean concentration is defined by equation (2). Therefore, the PDF
transport equation (4) is multiplied by c and integrated over the entire con-
centration space. The integral over the mixing term vanishes just as we would
expect from equation (5). Now, the definition of the mean concentration (2)
can be inserted and the well known advection-dispersion equation for the mean
concentration of passive solutes in statistically homogeneous velocity fields is
derived:

∂

∂t
⟨C⟩+ ⟨Vi⟩

∂

∂xi
⟨C⟩ −Dens

ij

∂2

∂xi∂xj
⟨C⟩ = 0 . (6)

The concentration variance is defined by (3) and thus, in order to derive
the transport equation, the PDF evolution equation (4) with the mixing model
(5) is multiplied by c2 and integrated over the entire concentration space. The
squared mean concentration ⟨C⟩2 appears after some manipulations. This term
can be replaced by multiplying equation (6) with ⟨C⟩, which gives an equation
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for ⟨C⟩2. Now, the definition of the concentration variance can be plugged in,
which results in the transport equation for the variance:

∂

∂t
σ2
c + ⟨Vi⟩

∂

∂xi
σ2
c −Dens

ij

∂2

∂xi∂xj
σ2
c = 2Dens

ij

∂

∂xi
⟨C⟩ ∂

∂xj
⟨C⟩ − 2χσ2

c . (7)

It can be seen that the concentration variance is transported by the mean ve-
locity ⟨V⟩ and by the ensemble dispersion coefficients Dens exactly like the
mean concentration. But in contrast to the transport equation for the mean
concentration (6) it also has a source and a sink term on the right hand side.
The source term creates variance at mean concentration gradients and couples
the two equations (6) and (7) weakly, as the coupling is only in one direction.
For this study, the most interesting term of equation (7) is the last one on the
right hand side. This sink term destroys variance by small-scale fluctuations.
It is not closed and the same variance decay coefficient χ as in the mixing term
of the transport equation for the full PDF (4) appears here. This link makes
it possible to test different propositions of the variance decay coefficient as a
closure assumption for the transport equation for the concentration variance.
Subsequently, the new proposition can be transferred to the PDF equation. The
big advantage of testing different closures for the variance is that this equation
is easier to handle. On the one hand, the variance equation has an analyt-
ical solution expressed by a time integral (see section 2.3) which can be readily
evaluated by numerical quadratures. And on the other hand, PDF equations
are high-dimensional, with independent variables in both the physical and the
concentration space and they have to be solved numerically.

2.3. Analytical Solutions of the Moment Equations
With an analytical solution of the concentration variance transport equa-

tion, new mixing models can easily be examined and compared to Monte Carlo
reference simulations. In order to make the analytical solutions for the first two
moments easier, we assume that the ensemble dispersion coefficients Dens are
constant. The asymptotic value is therefore used. This assumption was already
justified in section 2.1.

An analytical solution of the transport equation for the mean concentration
(6) can be found, for example, by transforming it into the frequency domain,
which makes it an ordinary differential equation. Following Kapoor and Gelhar
[9], we prescribe a a multivariate Gaussian distribution with zero mean and a
diagonal covariance matrix 2Dens

ii t0 as the initial condition. It can be interpreted
as a function which evolved from a Dirac delta function for a time span t0
according to equation (6) without the advection term. The solution is then
given by

⟨C⟩(x, t) =
d∏

i=1

(4πDens
ii (t+ t0))

−1/2
exp

(
− (xi − ⟨Vi⟩t)2

4Dens
ii (t+ t0)

)
, (8)

where d is the spatial dimension.
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Deriving an analytical solution of the concentration variance evolution equa-
tion is more involved than deriving a solution of the mean concentration equa-
tion. The most important steps of the derivation are outlined here, but a more
detailed derivation is given in Appendix B. This derivation is similar to the one
presented by Kapoor and Gelhar [9], but we believe that the derivation presen-
ted here is easier to comprehend, because it is a more straightforward derivation
by standard methods. Furthermore, we leave us the option open to include a
time dependency of the variance decay coefficient χ(t). The variance evolu-
tion equation (7) is an inhomogeneous linear partial differential equation and
as such we formulate a fundamental solution (also known as Green’s function).
The general solution of equation (7) can then be calculated by the convolution
of Green’s function with the inhomogeneity 2Dens

ij
∂

∂xi
⟨C⟩ ∂

∂xj
⟨C⟩. Because the

convolution transforms into a simple multiplication, it is transformed into Four-
ier space. Eventually, the solution of the mean concentration (8) is needed. This
is where the time shift t0 becomes important, because without it, a singularity
would appear in the limit t → 0, as the Gaussian solution would tend to a Dirac
delta function in this short time limit. By applying this time shift, the solution
stays Gaussian and the singularity vanishes. Finally, the convolution can be
calculated and an analytical solution is the result:

σ2
c (x, t) =

d∑
i=1

2Dens
ii

t∫
0

dt′
d∏

j=1

exp
(
− (xj−⟨Vj⟩t)2

2Dens
jj (2t+t0−t′)

)
[
(2πDens

jj )2(2t+ t0 − t′)(t′ + t0)
]1/2[

t− t′

2Dens
ii (2t+ t0 − t′)(t′ + t0)

+
(xi − ⟨Vi⟩t)2

(2Dens
ii (2t+ t0 − t′))

2

]

exp

(
−2

∫ t

t′
dt′′χ(t′′)

)
. (9)

The time integral is rather well behaved and can easily be solved, for example by
adaptive numerical quadrature algorithms. Kapoor and Gelhar [9] have further
tackled this integral with χ = const by applying some long term approximations
and came up with a closed analytical solution. But because the short time
behaviour is of interest in this work, we will stay with solution (9). The variance
decay coefficient χ appears in the argument of the last exponential function.
Hence, new mixing models can be verified with this equation if, for example,
compared to Monte Carlo reference solutions.

3. A Time Dependent Extension of the IEM Model

The IEM model describes the decrease of the concentration PDF too slow,
as we have already pointed out [4, 33]. It was developed for simulating turbulent
flows. One major difference between turbulent flows and flows in porous media
is the time scale on which mixing takes place. In the turbulent regime, it is
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often taken as a constant. And even there, a mixing time scale as a variable
parameter has already been taken into account [39, 40, 41].

The original IEM model for turbulent flows approximates the conditional
dissipation rate by equation (5). The variance decay coefficient χ is proportional
to the inverse mixing time scale. In classical PDF approaches, the latter is
usually assumed to be proportional to the turbulence time scale [24, 27]. In
large eddy simulations (LES), the mixing time scale is often estimated as a
velocity [41] or as a diffusion time scale [36]. Colucci et al. [36], for instance,
used the subgrid length scale ∆l, which defines the transition from resolved to
unresolved scales and the subgrid diffusion coefficient, which corresponds to an
isotropic ensemble dispersion coefficient Dens in groundwater flows. Following
this approach, we can formulate the variance decay coefficient as

χ = kχ
Dens

∆2
l

. (10)

The dimensionless model parameter kχ is usually in the range of 1 ≤ kχ ≤ 3
[24, 36].

For groundwater systems, characterised by the anisotropic local dispersion
coefficients Dij , Kapoor and Gelhar [8] arrived at a very similar equation for
the variance decay coefficient, by introducing the Taylor microscales ∆ci , which
characterise the gradients of the concentration fluctuations along the ith co-
ordinate. The resulting variance decay coefficient is

χ =

d∑
i,j=1

Dij

∆ci∆cj

. (11)

But the Taylor microscales could only be fitted to measurements, as a closed
formula was not given.

We should recall that the IEM model was developed to approximate the
second derivative of the conditional dissipation rate with respect to c (5). The
conditional dissipation rate is defined by

M =

〈
Dij

∂C

∂xi

∂C

∂xj

∣∣∣∣c〉 . (12)

Here, ⟨A|B⟩ = ⟨AB⟩/⟨B⟩ denotes the conditional expectation of A given B. The
conditional dissipation rate M depends on the squared concentration gradients,
which clearly evolve in time. But the IEM model has no way of accounting for
this evolution. It only takes the difference between the current concentration
and the local mean concentration into account. As we have already observed [4],
a more accurate mixing model would account for larger dissipation rates at early
times and smaller dissipation rates at later times, as the concentration gradients
decrease. For turbulent reactive flows, a dependence of χ on the Reynolds
number of the subgrid scale flow was already proposed [40, 41]. Furthermore,
Sabel’nikov et al. [39] modelled the mixing frequency as a stochastic process in
order to account for the entire range of time scales in the mixing process. They
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named their model extended interaction by exchange with the mean (EIEM).
We elaborate the idea of using a variable variance decay coefficient χ(t) and
propose a new time dependent extension of the model, adapted to the transport
processes in groundwater.

Like Andricevic [7], we approximate the concentration gradients using an
evolving effective spatial scale λc(t). This assumption implies that the squared
concentration gradients evolve inversely proportional to that squared charac-
teristic length scale (∇C)2 ∼ λc(t)

−2 as the plume spreads and its fringes and
fluctuations smooth out. Since the concentration fluctuations are smoothed out
by the local dispersion with the characteristic scale λc(t) =

√
2Dt, we assume a

decay of the conditional dissipation rate (12) to be proportional to M ∼ λc(t)
−2.

In order to improve the IEM model, we include this dependency on λc(t) into
the variance decay coefficient (10).

Furthermore, the ensemble dispersion coefficient Dens accounts for an ar-
tificial dispersion which is caused by centre of mass fluctuations of the solute
plume from realisation to realisation. The effective dispersion coefficient Deff

excludes this artificial dispersion and converges to Dens in the long-time limit
for velocity fields with short range correlations [6, 28]. Because the mixing in
turbulent flows is so much faster than it is in groundwater flows, the difference
does not matter for turbulent flows. Therefore, the mathematically simpler to
handle ensemble dispersion coefficient is used in studies concerning flows in the
turbulent regime [24, 36]. But in groundwater flows the difference is significant
and because the centre of mass fluctuations do not influence the dissipation,
the effective dispersion coefficient Deff describes the correct behaviour for the
mixing model. With these physical arguments and choosing kχ = 2 from the
middle of the interval of reported values, we propose following time-dependent
variance decay coefficient:

χ(t) =

d∑
i,j=1

Deff
ij (t)

Dijt
. (13)

In order to show the similarities between this newly proposed variance decay
coefficient and the previous ones, we assume an isotropic correlation length of
the log conductivity field λ and an isotropic local dispersion coefficient D, which
gives us the dispersive time scale τD = λ2/D. With this relationship, we can
transform the variance decay coefficient to

χ(t) =

d∑
i,j=1

Deff
ij (t)τD

λ2t
. (14)

Equation (14) generalises equation (10) to a time-variable characteristic length
scale and to anisotropic effective dispersion coefficients. Compared to the coef-
ficient (11) introduced by Kapoor and Gelhar [8], the new variance decay coeffi-
cient (14) depends on the effective dispersion coefficients instead of the local dis-
persion coefficients. Furthermore, the unclosed Taylor microscale was replaced
by the correlation length and a dimensionless time factor τD/t was added.
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Figure 2: An illustration of the different time behaviours of the IEM and the TIEM variance
decay coefficients. The TIEM model causes strong dissipation at early times, but for long
times it causes less dissipation than the IEM model.

As shown in figure 2, this variance decay coefficient has larger values than
the constant one at early times, which causes a stronger dissipation. But
then it drops below the constant variance decay coefficient and approaches
limt→∞ χ(t) = 0. In order to distinguish this model from other extensions
of the IEM model, we name it the time dependent interaction by exchange with
the mean model (TIEM).

With this extension, the simplicity and low computational costs of the IEM
model are preserved, while at the same time, it incorporates the time dependent
physical processes causing the dissipation.

4. Simulations

4.1. Variance Modelling
In order to verify the TIEM model independently, simulations with two dif-

ferent numerical models were performed. A sequential standard particle track-
ing model was implemented following Dentz et al. [42] and the global random
walk (GRW) algorithm [43] was used as an independent model. The mean con-
centration and the concentration variance were derived from both numerical
simulations and compared to the analytical solutions (8) and (9) with the IEM
and TIEM mixing models.

4.1.1. Simulation Setup
Both numerical transport simulations were calculated for a two-dimensional

heterogeneous velocity field which was modelled as a solution of the linearised
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Darcy and continuity equations by the Kraichnan algorithm [44]. The mean
flow velocity was prescribed as ⟨V⟩ = (1, 0)Tmd−1 and an isotropic Gaussian
covariance structure with a correlation length of λ = (1, 1)Tm and a variance of
σ2 = 0.1 was chosen for the underlying conductivity field. The flow fields were
generated by using 6400 Fourier modes for the randomisation method [4, 45],
in order to capture the self-averaging behaviour of the transport process over
hundreds of correlation lengths [46].

The simulations were performed with an isotropic local dispersion coefficient
of D = 0.01m2 d−1, which results in a Péclet number equal to 100 with the
above parameters for the mean velocity and the correlation length. The particles
were injected instantaneously and distributed uniformly on a rectangle with side
lengths 1.62m × 1.62m. This initial distribution of particles approximates the
analytical solution (8) for t = 0 and t0 = 10d. Both numerical models used a
time step of ∆t = 0.5 d.

For the standard particle tracking simulation, the particles, transported by
the velocity field and dispersed by heterogeneities, were modelled according to
the Itô equations

dXi(t) = Vi(X) dt+
√
2D dWi(t) , (15)

where Wi(t) are independent standard Wiener processes [33]. An extended
Runge-Kutta scheme [47] with an accuracy of order (∆t)3/2 was used to discret-
ise the stochastic equations (15).

1000 realisations with 150000 particles in each of them were calculated to
create a statistical ensemble. It took about 1100min to compute one realisation
on a single core of the EVE cluster at the UFZ Leipzig.

The GRW-algorithm takes a different approach. It uses a superposition of
many weak solutions of Itô equations projected onto a regular grid. The particles
solving the Itô equations are spread on the grid globally according to the drift
and diffusion coefficients of the equation. By construction, this algorithm is
free of numerical diffusion and can be used for practically arbitrary numbers of
particles without an impact on the computational costs. For more details about
the GRW algorithm, Suciu et al. [48, Appendix A1] show how to implement
an efficient GRW version of Monte Carlo simulations, whereas more technical
details and the convergence behaviour of the schemes are presented by Suciu
[28] and Suciu et al. [49]. The same physical parameters were used as for
the standard particle tracking. The GRW simulations where performed on a
grid with 4600 × 1800 cells with a resolution of 0.1m × 0.1m. A total of 1024
particles were used to represent the behaviour of the concentration on the GRW
lattice. The computation of the velocity field on the grid and the GRW transport
simulation took about 48min for each realisation. The ensemble of realisations
of the transport process was obtained by conducting independent simulations on
1000 cores, in a single job executed on the JURECA supercomputer at Research
Centre Jülich.

A normalised two-dimensional histogram on grid cells with a size of 1m×1m
was performed for both simulations to calculate concentrations from the particle
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Figure 3: The concentration standard deviation calculated from standard particle tracking
simulations with different amounts of particles per realisation compared to results from GRW
simulations with 1024 particles per realisation.

distributions. Rather than representing a sampling volume which mimics ex-
perimental measurements, the cells are needed to estimate concentrations from
particles distributions provided by the two numerical methods. Ensembles of
simulated concentrations, along the mean flow direction, were used to estim-
ate variances which were further compared to the analytical solution at the
continuum scale given by equation (9).

A comparison of the two numerical approaches shows how much the number
of particles required for accurate simulations of localised quantities reduces the
computational performance in classical, sequential particle tracking methods.
Fewer particles are needed to compute global quantities, such as spatial moments
of the solute plume [e.g. 42]. But for accurate estimations of the local variance
of the solute concentration, 105, or even more particles are required (see Figure
3). This results in a dramatic increase of computational time. Comparing the
computing times normalised by the corresponding numbers of particles we find
that GRW simulations are about 1020 times more efficient in estimating the
same localised quantity.

4.1.2. Results
Here, we investigate the impact of the TIEM model (13) on the analytical

solution (9) of the concentration variance evolution equation (7) by comparing
the results to the two numerical models described in section 4.1.1. Because
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Figure 4: Analytical concentration standard deviations with the IEM and TIEM mixing
models compared to concentration standard deviations computed from GRW simulations at
times t = 10d, 50 d, and 100 d.

no mixing term appears in the evolution equation for the mean concentration
(6), different mixing models do not influence the mean concentration behaviour.
Thus, the results for the mean concentration will not be shown here.

When using it in the analytical solution, the IEM model has no space de-
pendency. Therefore, it destroys the variance at a uniform rate over the whole
plume. Hence, the well-known bimodal shape of the variance of a Gaussian-
like mean concentration will remain unaltered and only the magnitude of the
variance will change by introducing new mixing models which act globally.

In Figure 4, the concentration standard deviation σc computed from the
GRW simulation is compared to the analytical solution (9) using the two differ-
ent mixing models. For the ensemble and effective dispersion coefficients, the
results from Dentz et al. [6] where used. The results from the particle tracking
are omitted, because they are very similar to the GRW solutions and make the
figure difficult to read. The different solutions are plotted at t = 10d, 50 d,
and 100 d after injection. Instead of the variance, its square root, the standard
deviation, is plotted in Figure 4 for practical reasons.

The most obvious feature of the figure is the large peak of the analytical
solution at short times with the IEM mixing model. This large peak shows the
problem of the IEM model, namely that the variance destruction at short times
due to small-scale fluctuations of the flow field is strongly underestimated. As
seen from Figure 2, the TIEM model has a much larger variance decay coefficient
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Figure 5: The concentration standard deviation at the centre of mass xcm = ⟨V⟩t.
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Figure 7: For t > 500 d, the TIEM solutions stays larger than the IEM solution.

at short times which manifests itself as a stronger decline of variance at these
early times. In Figure 4, this behaviour can be seen in the analytical solution
with the TIEM model, which matches the numerical simulation very well at
intermediate and long times. At 500 d, the analytical solutions with the IEM
and the TIEM models intersect. At even larger times, the TIEM solution stays
greater than the IEM solution, as shown in figure 7. On the other side of the
time axis, at very early times, ranging from t = 0d up to about t = 15d there
is still a gap between the numerical reference simulations and the TIEM model.
But for t = 10d the IEM model differs from the reference simulations by about
61%, compared to a difference of 18% with the TIEM model, which is a major
improvement. The time evolution of the concentration standard deviation at the
centre of mass of the mean concentration plume xcm = ⟨V⟩t is shown in Figure
5, to highlight the influence of the time dependent mixing model at early times.
It should be noted that the analytical solution pronounces the valley of the
bimodal structure of the variance curve too much. Comparing the peaks of the
analytical solution and of the GRW solution, the difference at early times is more
pronounced and becomes increasingly smaller at intermediate and long times.
The slight asymmetry in the numerical solutions is due to the non-ergodicity at
early times.

Finally, we tested the impact of different exponents of the explicit time
dependency of the TIEM model (14). In Figure 6, the standard deviation curves
with the exponents t−1/2 and t−3/2 are compared to the exponent t−1, which
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follows from our arguments made in section 3. It can be seen that the exponent
of −1/2 causes the variance to be too large at early times, which then decreases
so fast over time, that it is less than the reference solution for t > τD = 100 d.
Thus, even if the large values at early times would be adjusted by the constant
factor kχ in the TIEM model, the variance would quickly drop beneath the
reference values. On the other hand, the exponent of −3/2 causes the variance to
be too small at early times, which then decreases so slowly, that for t > 100 d, it
is greater than the reference solution. These results further support the physical
reasoning made in chapter 3.

4.2. PDF Modelling
As we have pointed out, Lagrangian particle methods used to solve PDF

problems in the fields of combustion and turbulence are not well suited for
groundwater problems, where concentrations are strongly diluted [4, 26]. There-
fore, numerical simulations of the PDF equation with the new TIEM model
where only performed with the GRW algorithm adapted to PDF simulations.
The concentration PDF at the centre of mass of the plume was simulated based
on the GRW setup described by us in [33]. There, we showed that the PDF
equation for the concentration at the centre of mass of the plume integrated over
the transversal direction can be formulated as a two-dimensional Fokker-Planck
equation. This equation describes the cross-section of the concentration at the
centre of mass, for which corresponding Itô equations are formulated:

dX(t) = ⟨V1⟩ dt+
√
2Dens

11 dW (t) (16)
dC(t) = M dt , (17)

These stochastic differential equations can be solved by Monte Carlo methods
and thus by the GRW algorithm. The same parameters as for the simulations
described in section 4.1 were used. A reference solution was calculated from
Monte Carlo simulations [33].

The results are shown in Figure 8. Here, the cumulative distribution function
F (c;x, t) and therefore the integral of the PDF is shown, because in general the
CDF is a smoother curve than the PDF and can thus be better compared.
The CDF at the centre of mass is shown at t = 30d, 50 d, and 100 d after
injection (from right to left). It can be seen that the TIEM model is a major
improvement over the IEM model. At early times, the IEM model predicts a
CDF which is shifted far towards higher concentrations. The TIEM model is
just slightly shifted, but the shape differs too with a longer tail towards low
concentrations, similar to the IEM model. At t = 50d both models perform
acceptable. At t = 100 d the IEM model is even shifted too far towards lower
concentrations, while the TIEM model is still close to the reference solution.
The deviation of the IEM model from the reference solution indicates that the
drift in concentration space (see equation (17)) is too slow at early times and too
large at large times. By considering a time variable variance decay coefficient
χ(t) (see figure 2), the TIEM model proposed in this paper provides a correction
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Figure 8: The CDF at the centre of mass of the solute plume at times t = 30d, 50 d, and
100 d (from right to left) is calculated with two different IEM models and with dissipation
rates extracted from simulated particle trajectories.

for the drift in concentration space. This leads to the observed improvements
of the PDF simulations. Sabel’nikov et al. [39] also extended the IEM model
to incorporate a time dependency of the variance decay coefficient for turbulent
reactive flows. Compared to direct numerical simulations, they too reported a
good match at intermediate times, but an increasing mismatch for small and
large times.

5. Conclusions and Future Perspectives

This paper presents a new and time-dependent mixing model: an extended
IEM model for groundwater, named TIEM. We showed that the same mixing
model is used for both the concentration variance evolution equation (7) and
the concentration PDF evolution equation (4). This link was used to verify
the new TIEM model (13) with the much simpler to handle variance equation.
The verification was done by comparing an analytical solution of the variance
equation (9), which depends on a mixing closure model, to two independent
numerical models. The TIEM model shows a strong improvement over the
IEM model. A significant deviation from the reference simulations can only be
observed at times t < 15 d. And even for these very short times, the new model
is a significant improvement.
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Based on these promising results, the model was transferred to the PDF
framework. The results obtained from the PDF simulations with the TIEM
model are not quite as satisfying as the results from the variance simulations
mentioned above. Although there are mismatches at early and also at later
times, the new model is still a major improvement over the classical IEM model.
One possible way of further improving the IEM model is to derive a partial
differential equation as a dynamic model for the variance decay coefficient [50,
51]. Such a model could include the actual and instantaneous length scales of
the processes destroying the variance. This feature would make it possible to
also apply the model to statistically non-homogeneous conductivity fields [51],
as needed if the fields are to be conditioned on measurements.

The GRW-simulations, together with the TIEM model, can easily be exten-
ded to three-dimensional problems, to anisotropic dispersion coefficients, and
to reactive transport. Especially the latter point is worth highlighting. The
reaction terms can simply be plugged into the PDF equations, which makes the
PDF framework the method of choice for modelling complex reactive transport
in groundwater.

The TIEM model explicitly takes into account the dimensionality of the
transport problem trough the expression (14) of the variance decay coefficient.
This shows that by increasing the dimension of the physical space the variance
decay coefficient increases, which results in enhanced mixing. The TIEM model
also depends on the Péclet number implicitly, through the dependence on the
effective diffusion coefficient given in (14). The limit of an infinite Péclet number
causes a singularity in (14). However, for vanishing local dispersion there is no
mixing at all and the PDF equation takes the form of a Fokker-Planck equation
[52]. In case of passive transport as considered here, this Fokker-Planck equation
reduces to equation (4) with the right hand side set to zero, which describes the
PDF transport in physical space.

Unlike the approaches based on mapping random variables [20, 21, 22], the
derivation of the PDF equation and the closure by IEM or TIEM mixing mod-
els are free of the low heterogeneity variance assumption. Another important
difference is the way the influence of the sampling volume is taken into account.
In mapping approaches [22], as well as in Monte Carlo simulations [19] the
sampling volume is explicitly considered in the computation of the concentra-
tion. A sampling volume, associated to the spatial scale of the measurement,
can be accounted for by a spatial filtering of the transport equations, similarly to
the LES approach in turbulence [4]. The filtered density function (FDF), which
describes the unresolved concentration fluctuations, verifies the PDF equation
(4), with coefficients defined by spatial filtering and is solved by the GRW al-
gorithm described in Section 4.2. The GRW solution also provides the filtered
concentration, which corresponds to a spatial average over the sampling volume
in this approach. In the limit of large filter widths, the filtered concentration
tends to its ensemble average. For finite filter widths it is a random quantity.
Its statistics can be inferred from a Monte Carlo ensemble of GRW-FDF solu-
tions, obtained at low computational costs (e.g. computing time of the order of
seconds [4]). The TIEM model for FDF simulations is easily obtained by adding
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the filter width at the denominators of terms in expression (14).
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Appendix A. Mean and Variance Transport Equations

The transport equation for the mean concentration can be derived from the
PDF transport equation (4) by multiplying it with c and integrating over the
entire concentration space. Doing so yields

1∫
0

c
∂P

∂t
dc+

1∫
0

c⟨Vi⟩
∂P

∂xi
dc−

1∫
0

cDens
ij

∂2P

∂xi∂xj
dc =

1∫
0

c
∂

∂c
[χ(c− ⟨C⟩)P ] dc .

(A.1)
The order of integration and derivation is swapped on the left hand side and on
the right hand side the product rule is applied:

∂

∂t

1∫
0

cP dc+ ⟨Vi⟩
∂

∂xi

1∫
0

cP dc−Dens
ij

∂2

∂xi∂xj

1∫
0

cP dc

=

1∫
0

{
∂

∂c
[cχ (c− ⟨C⟩)P ]− χ (c− ⟨C⟩)P ∂c

∂c

}
dc . (A.2)

On the left hand side, the definition of the mean concentration ⟨C⟩ :=
∫
cP dc

can already be inserted and on the right hand side, the integral is evaluated:

∂⟨C⟩
∂t

+⟨Vi⟩
∂⟨C⟩
∂xi

−Dens
ij

∂2⟨C⟩
∂xi∂xj

= cχ (c− ⟨C⟩)P |1c=0−χ (⟨C⟩ − ⟨C⟩)P . (A.3)

Both terms on the right hand side vanish, the second one is obvious, but the
first one needs further comment. The case c = 0 is clear, but for c = 1, the term
could potentially result in a non-zero value, if all concentration is gathered at
one singular point as a Dirac delta function. But this case is excluded as it is
not relevant if studying natural systems. Thus, the transport equation for the
mean concentration is
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∂⟨C⟩
∂t

+ ⟨Vi⟩
∂⟨C⟩
∂xi

−Dens
ij

∂2⟨C⟩
∂xi∂xj

= 0 . (A.4)

It can be seen that the mixing term does not influence the mean concentration,
as it cancels itself out.

The variance is defined by (3). Thus, as with the derivation of the mean
concentration, we start again from the PDF transport equation (4), but now we
multiply it with c2 and integrate over the whole concentration space. The order
of integration and derivation is swapped and the product rule is applied to the
right hand side:

∂

∂t

∫ 1

0

c2P dc+ ⟨Vi⟩
∂

∂xi

∫ 1

0

c2P dc−Dens
ij

∂2

∂xi∂xj

∫ 1

0

c2P dc

=

∫ 1

0

{
∂

∂c

[
c2χ (c− ⟨C⟩)P

]
− 2cχ (c− ⟨C⟩)P

}
dc . (A.5)

The first term on the right hand side vanishes for the same reason as in the
derivation of the mean concentration. The definition of the mean concentration
(2) can be inserted into the second term on the right hand side:

∂

∂t

∫ 1

0

c2P dc+ ⟨Vi⟩
∂

∂xi

∫ 1

0

c2P dc−Dens
ij

∂2

∂xi∂xj

∫ 1

0

c2P dc

=− 2χ

[∫ 1

0

c2P dc− ⟨C⟩2
]
. (A.6)

The term inside the squared brackets on the right hand side could already
be replaced by the concentration variance (3), but to do this for every term,
the transport equation of ⟨C⟩2 needs to be subtracted from equation (A.6).
Therefore, the equation of the squared mean concentration needs to be derived
first. This is done by multiplying equation (A.4) by ⟨C⟩, yielding

⟨C⟩∂⟨C⟩
∂t

+ ⟨C⟩⟨Vi⟩
∂⟨C⟩
∂xi

− ⟨C⟩Dens
ij

∂2⟨C⟩
∂xi∂xj

= 0 . (A.7)

By making extensive use of the product rule we arrive at

∂⟨C⟩2

∂t
− ⟨C⟩∂⟨C⟩

∂t
+ ⟨Vi⟩

∂⟨C⟩2

∂xi
− ⟨C⟩⟨Vi⟩

∂⟨C⟩
∂xi

−Dens
ij

[
∂

∂xi

(
⟨C⟩∂⟨C⟩

∂xj

)
− ∂⟨C⟩

∂xi

∂⟨C⟩
∂xj

]
= 0 . (A.8)

The dispersion term is further modified by using the product rule:
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Dens
ij

[
∂

∂xi

(
⟨C⟩∂⟨C⟩

∂xj

)
− ∂⟨C⟩

∂xi

∂⟨C⟩
∂xj

]
=Dens

ij

[
∂

∂xi

(
∂⟨C⟩2

∂xj
− ⟨C⟩∂⟨C⟩

∂xj

)
− ∂⟨C⟩

∂xi

∂⟨C⟩
∂xj

]
=Dens

ij

[
∂2⟨C⟩2

∂xi∂xj
− ⟨C⟩ ∂

2⟨C⟩
∂xi∂xj

− 2
∂⟨C⟩
∂xi

∂⟨C⟩
∂xj

]
. (A.9)

Hence, equation (A.8) is transformed into

∂⟨C⟩2

∂t
+ ⟨Vi⟩

∂⟨C⟩2

∂xi
−Dens

ij

∂2⟨C⟩2

∂xi∂xj
+ 2Dens

ij

∂⟨C⟩
∂xi

∂⟨C⟩
∂xj

−⟨C⟩∂⟨C⟩
∂t

− ⟨C⟩⟨Vi⟩
∂⟨C⟩
∂xi

+ ⟨C⟩Dens
ij

∂2⟨C⟩
∂xi∂xj

= 0 . (A.10)

If we compare the second line of equation (A.10) with equation (A.7), we see
that it vanishes and the transport equation of ⟨C⟩2 is

∂⟨C⟩2

∂t
+ ⟨Vi⟩

∂⟨C⟩2

∂xi
−Dens

ij

∂2⟨C⟩2

∂xi∂xj
+ 2Dens

ij

∂⟨C⟩
∂xi

∂⟨C⟩
∂xj

= 0 (A.11)

Now, equation (A.11) can be subtracted from equation (A.6):

∂

∂t

[∫ 1

0

c2P dc− ⟨C⟩2
]
+ ⟨Vi⟩

∂

∂xi

[∫ 1

0

c2P dc− ⟨C⟩2
]

−Dens
ij

∂2

∂xi∂xj

[∫ 1

0

c2P dc− ⟨C⟩2
]

=2Dens
ij

∂⟨C⟩
∂xi

∂⟨C⟩
∂xj

− 2χ

[∫ 1

0

c2P dc− ⟨C⟩2
]
. (A.12)

Finally, the definition of the concentration variance (3) is inserted, which yields
the transport equation for the variance:

∂σ2
c

∂t
+ ⟨Vi⟩

∂σ2
c

∂xi
−Dens

ij

∂2σ2
c

∂xi∂xj
= 2Dens

ij

∂⟨C⟩
∂xi

∂⟨C⟩
∂xj

− 2χσ2
c . (A.13)

Appendix B. Analytical Solution of the Variance Transport Equation

An analytical solution of the variance transport equation (7) will now be
derived. As this equation is a linear inhomogeneous partial differential equation,
a fundamental solution is derived and convolved with the inhomogeneity of
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equation (7) in order to derive the general solution. This way, an analytical
solution can be found without making any approximations or assumptions. This
derivation is similar to the one presented by Kapoor and Gelhar [9], but we
believe the derivation presented here is easier to comprehend and we include a
time dependency of the variance decay coefficient χ(t).

If we define the differential operator L(x, t) by

Lσ2
c =

∂σ2
c

∂t
+ ⟨Vi⟩

∂σ2
c

∂xi
−Dens

ij

∂2σ2
c

∂xi∂xj
− 2χσ2

c = 0 , (B.1)

with the inhomogeneity

g(x, t) = 2Dens
ij

∂⟨C⟩
∂xi

∂⟨C⟩
∂xj

, (B.2)

then we can rewrite the concentration variance transport equation (7) as

L(x, t)σ2
c (x, t) = g(x, t). (B.3)

The fundamental solution (or Green’s function) G(x− x′, t, t′) is defined as the
solution of the differential operator L(x, t) with delta functions as the inhomo-
geneity:

L(x, t)G(x− x′, t, t′) = δ(x− x′)δ(t− t′) . (B.4)

The fundamental solution is translation invariant in space, because the operator
L has constant coefficients with respect to x. The general solution of equation
(7) is given by

σ2
c (x, t) = σ2

ch
(x, t) +

∫ t

0

∫
Rd

G(x− x′, t, t′)g(x′, t′)dx′dt′ , (B.5)

where σ2
ch
(x, t) is the solution of equation (7) without the inhomogeneity. But

because we assume that the initial condition is known exactly, the variance at
time t = 0 is σ2

c (x, t = 0) = 0. Thus, without the inhomogeneity, which acts as
the only source term, the solution of the homogeneous partial differential equa-
tion is σ2

ch
(x, t) = 0 for all times. Therefore, the solution of the homogeneous

equation can be dropped.
If Green’s function is known, the solution of equation (7) can be calculated

from equation (B.5), which is a convolution of Green’s function and the inhomo-
geneity in physical space:

σ2
c (x, t) =

∫ t

0

∫
Rd

G(x− x′, t, t′)g(x′, t′) dx′dt′

=

∫ t

0

(G ∗ g)(x, t, t′) dt′

=

∫ t

0

F−1
[
G̃(k, t, t′)g̃(k, t′)

]
dt′ , (B.6)
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where F−1 denotes the inverse Fourier transform and a tilde denotes the Fourier
transform of a function. Hence, G̃ and g̃ need to be calculated in order to obtain
the solution σ2

c .
Fourier transforming both sides of equation (B.4) gives an inhomogeneous

ordinary differential equation in the frequency domain:(
∂

∂t
+ I⟨Vi⟩ki +Dens

ij kikj + 2χ(t)

)
G̃(k, t, t′) = δ(t− t′) , (B.7)

with I being the imaginary unit. This ordinary differential equation can be
solved by separation of variables for a solution of the homogeneous equation,
which can be used as a starting point to guess a particular solution of the
inhomogeneous solution, yielding

G̃(k, t, t′) = Θ(t− t′) exp

(
−
(
Dens

ij kikj + I⟨Vi⟩ki
)
(t− t′)− 2

∫ t

t′
dt′′χ(t′′)

)
,

(B.8)
where Θ is the Heaviside step function. In order to transform the inhomogeneity
(B.2), the transformed mean concentration ⟨C⟩ from equation (8) needs to be
plugged in:

g̃(k, t) = F
[
2Dens

ij

∂⟨C⟩
∂xi

∂⟨C⟩
∂xj

]
=

−2Dens
ij

(2π)d/2
ki ˜⟨C⟩ ∗ kj ˜⟨C⟩ . (B.9)

At this point, the time shift t0 is needed. Otherwise, a singularity for t = 0
would cause problems, as the Gaussian distribution would tend to a Dirac delta
function for small times. The Fourier transformed mean concentration is

˜⟨C⟩ = 1

(2π)d/2
exp

(
−Dens

ij kikj(t+ t0)− Iki⟨Vi⟩t
)
. (B.10)

With this solution, the Fourier transformed inhomogeneity can be calculated:

g̃(k, t) =
Dens

ij

2(2π)d
1

(2Dens
ij (t+ t0))d/2

[
d

Dens
ij (t+ t0)

− kikj

]

exp

(
−1

2
Dens

ij (t+ t0)kikj − I⟨Vi⟩kit
)

. (B.11)

Finally, the transformed Green’s function (B.8) and the transformed inhomo-
geneity (B.11) are inserted into equation (B.6):

σ2
c (x, t) =

Dens
ij

2(2π)3d/2

∫ t

0

dt′
Θ(t− t′)

[2Dens
ij (t′ + t0)]d/2

∫
Rd

dk

[
d

Dens
ij (t′ + t0)

− kikj

]

exp

(
−1

2
Dens

ij (2t− t′ + t0) kikj + I(xi − ⟨Vi⟩t)ki − 2

∫ t

t′
dt′′χ(t′′)

)
. (B.12)
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By completing the square for the variable k, the Fourier integrand is lead back
to a Gaussian function which can be integrated. Because the ensemble disper-
sion tensor is diagonal, we can simplify the expression by only considering the
diagonal elements. Now, only a final time integral remains to be calculated:

σ2
c (x, t) =

d∑
i=1

2Dens
ii

∫ t

0

dt′
d∏

j=1

exp
(
− (xj−⟨Vj⟩t)2

2Dens
jj (2t+t0−t′)

)
[
(2πDens

jj )2(2t+ t0 − t′)(t′ + t0)
]1/2[

t− t′

2Dens
ii (2t+ t0 − t′)(t′ + t0)

+
(xi − ⟨Vi⟩t)2

(2Dens
ii (2t+ t0 − t′))

2

]

exp

(
−2

∫ t

t′
dt′′χ(t′′)

)
. (B.13)

This integral can either be evaluated analytically by using a long-time approx-
imation or by applying numerical methods.
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