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CONFERENCE SCHEDULE

Thursday, September 6

900−910 OPENING CEREMONY (Room A)

Plenary Talks

Chairman: Gradimir Milovanović

910-1000 Francesco Altomare

1000-1050 Wolfgang Wendland

1050-1120 COFFEE BREAK

—————————————————————————–
Notes.
1) All plenary talks are given in Room A.

2) Room A is N. Iorga Room and Room B is T. Popoviciu
Room, both located at the 1st floor of the main building of the
Babeş-Bolyai University, 1, M. Kogălniceanu St.

3) Please check daily the updated program posted on the doors
of the rooms.
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1140-1200 Ioan Raşa Pawel Wozny

1200-1220 Ulrich Abel Davod Khojasteh
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1220-1240 Sorin Gal Szilard Csaba Laszlo

1240-1300 Harun Karsli Adrian Viorel

1300 − 1500 LUNCH BREAK
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Plenary Talks
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900-950 Maria Garrido-Atienza

950-1040 Aaron Melman
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Contributed Talks

Room A Room B
Chairman: Chairman:

Ioan Gavrea Mircea Ivan

1110-1130 Alexandru Mitrea Marius Birou

1130-1150 Julian Dimitrov Silviu Urziceanu

1150-1210 Maria Crăciun Ildiko Somogy

1210-1230 Diana Otrocol Vicuta Neagos

1230-1250 Alina Baias Larisa Cheregi
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900 EXCURSION
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PLENARY TALKS

POSITIVE APPROXIMATION PROCESSES
AND INITIAL-BOUNDARY VALUE
DIFFERENTIAL PROBLEMS

Francesco Altomare

Department of Mathematics, University of Bari, Italy
[francesco.altomare@uniba.it]

MSC 2010: 41A36, 47D06, 47D07, 35K65, 35B65

Keywords: Approximation by positive operators, positive
C0-semigroup of operators, initial boundary-value differential
problem.

The talk will be centered about a topic concerning three in-
terrelated subjects: positive approximating operators, pos-
itive C0-semigroups of operators and initial-boundary value
evolution problems.

The main aim is to discuss a series of results concerning
those sequences (Ln)n≥1 of bounded linear operators on a
Banach space E whose iterates converge to a C0-semigroup
(T (t))t≥0 of operators on E.

To such a semigroup it is naturally associated its in-
finitesimal generator A : D(A) → E which, in turn, gives
rise to an abstract Cauchy problem (initial-boundary value
problem) whose solutions can be given, al least from a the-
oretical point of view, by the semigroup itself.
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Thus, if it is possible to determine the operator A and
its domain D(A), then the initial sequence (Ln)n≥1 becomes
the key tool to approximate and to study (especially, from
a qualitative point of view) the solutions of the Cauchy
problem.

The principal ideas and some of the more recent results
on such functional analytic approach to study these kinds
of problems, will be discussed in the context of continu-
ous function spaces by also assuming that the operators
Ln, n ≥ 1, are positive. Moreover, particular attention will
be devoted to the important case when the approximating
operators are constructively generated by a given positive
linear operator T : C(K) → C(K) which, in turn, allows
to determine the differential operator (A,D(A)) as well, K
being a compact subset of Rd, d ≥ 1, having non-empty
interior.

Initial-boundary value evolution problems correspond-
ing to these particular settings, occur, for instance, in the
study of diffusion problems arising from different areas such
as biology, mathematical finance and physics.

For more details and for several other aspects related
to the above outlined theory, the reader is referred to the
monograph [1].

REFERENCES

[1] F. Altomare, M. Cappelletti Montano, V. Leonessa and I.
Raşa, Differential Operators, Markov Semigroups and Pos-
itive Approximation Processes Associated with Markov Op-
erators, de Gruyter Series Studies in Mathematics, Vol. 61,
De Gruyter, Berlin, 2014.
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PALEY-WIENER THEOREMS FOR MELLIN
TRANSFORMS AND THE EXPONENTIAL
SAMPLING

Carlo Bardaro

Department of Mathematics and Computer Sciences,
University of Perugia, Italy
[carlo.bardaro@unipg.it]

MSC 2010: 26D10, 30D20, 44A05

Keywords: Mellin transforms, Paley-Wiener spaces, Bernstein
spaces, band-limited functions, polar-analytic functions.

The exponential sampling formula, introduced by a group
of physicists and engineers during the end of seventieth, was
studied in a rigorous form, through the Mellin transform
theory, by P.L. Butzer and S. Jansche during the ninetees.
This formula is formally equivalent to the classical Shan-
non sampling formula of signal analysis, valid for Fourier
bandlimited functions. Indeed, by a formal change of vari-
able and change of function it is possible to obtain one
formula from the other. However, this equivalence is only
formal. Indeed, the structure of the Paley-Wiener space of
all continuous functions in L2(R) which are bandlimited,
is characterized by the famous Paley-Wiener theorem of
Fourier analysis which states that a (Fourier) bandlimited
function has an extension to the complex field as an en-
tire function of exponential type (the Bernstein space). In
Mellin transform setting this is not true. Indeed, it is shown
that a (non trivial) Mellin bandlimited function cannot be
extended as an entire function over C. As proved in [1], it
has an extension as an analytic function to the Riemann
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surface of the (complex) logarithm with certain exponential
type conditions (Mellin-Bernstein spaces). In this talk, we
discuss some further version of the Paley-Wiener theorem
in Mellin setting, which avoid the use of Riemann surfaces
and analytic branches, employing a new concept of analyt-
icity (see [2]). Another version characterizes the space of all
the functions whose Mellin transform decays exponentially
at infinity involving Hardy-type spaces (see [3]). Applica-
tions to exponential sampling theory are described.

REFERENCES

[1] C. Bardaro, P.L. Butzer, I. Mantellini, G. Schmeisser, On
the Paley-Wiener theorem in Mellin transform setting, J.
Approx. Theory, 207 (2016), pp. 60-75.

[2] C. Bardaro, P.L. Butzer, I. Mantellini, G. Schmeisser, A
fresh approach to the Paley-Wiener theorem for Mellin trans-
forms and the Mellin-Hardy spaces, Math. Nachr., 290 (2017),
pp. 2759-2774.

[3] C. Bardaro, P.L. Butzer, I. Mantellini, G. Schmeisser, A
generalization of the Paley-Wiener theorem for Mellin trans-
forms and metric characterization of function spaces, Frac-
tional Calculus and Applied Analysis, 20 (2017), pp. 1216-
1238.
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STOCHASTIC DIFFERENTIAL
EQUATIONS DRIVEN FRACTIONAL
BROWNIAN MOTION

Maŕıa J. Garrido-Atienza

Departamento de Ecuaciones Diferenciales y Análisis
Numérico, Universidad de Sevilla, Spain
[mgarrido@us.es]

In this talk we are concerned with the study of the exis-
tence and uniqueness of solutions of stochastic (partial) dif-
ferential equations driven by a fractional Brownian motion
(fBm), as well as their longtime behavior. We will analyze
different approaches and consider both the cases of an fBm
with Hurst parameter H ∈ (1/2, 1) and H ∈ (1/3, 1/2].

This talk is based on some joint works with Duc Hoang
Luu (Max-Planck Institut of Leipzig), A. Neuenkirch (Uni-
versity of Mannheim) and B. Schmalfuss (University of
Jena).
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CHLODOVSKY-BERNSTEIN
POLYNOMIAL OPERATORS - PAST AND
PRESENT

Heiner Gonska

University of Duisburg - Essen, Germany
[heiner.gonska@uni-due.de]

The talk will be on a long-neglected polynomial approxi-
mation process for continuous functions defined on the real
half-line. It was introduced by the Russian mathematician
Igor Nikolaevich Chlodovsky. Although the first publication
on it appeared in 1937 already, progress on investigating it
was interrupted for more than half a century. As Butzer
and Karsli said in 2009, this approximation process is not
so easy to handle.

Some progress was made over the last ten years. We
will present some of these latest developments including
very recent results.
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EIGENVALUE LOCALIZATION FOR
MATRIX POLYNOMIALS

Aaron Melman

Department of Applied Mathematics, Santa Clara University,
CA, USA
[amelman@scu.edu]

MSC 2010: 12D10, 15A18, 15A42, 15A54, 26C10, 30C10, 30C15,
47A56, 65F15

Keywords: Bound, localization, eigenvalue, scalar, polynomial,
matrix polynomial.

We survey a number of well-known and less well-known
results ([5], [6]) on the location of scalar polynomial ze-
ros and their generalization to localization results for the
eigenvalues of matrix polynomials. Such polynomials occur
in polynomial eigenvalues problems, which can be found in
a wide range of engineering applications. We include results
for matrix polynomials expressed in generalized bases, cov-
ering all classical orthogonal bases, such as Hermite, Leg-
endre, Chebyshev, etc.

Finally, we show how some of the aforementioned results
for scalar polynomials lead to extensions of the Eneström-
Kakeya theorem for polynomials with positive coefficients.

REFERENCES

[1] A. Melman, Bounds for eigenvalues of matrix polynomi-
als with applications to scalar polynomials, Linear Algebra
Appl. 504 (2016), pp. 190-203.
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[2] A. Melman, Improvement of Pellet’s theorem for scalar and
matrix polynomials, C. R. Math. Acad. Sci. Paris, 354
(2016), pp. 859-863.

[3] A. Melman, Improved Cauchy radius for scalar and ma-
trix polynomials, Proc. Amer. Math. Soc., 146 (2018), pp.
613624.

[4] A. Melman, Eigenvalue bounds for matrix polynomials in
generalized bases, Math. Comp., 87 (2018), pp. 1935-1948.

[5] G.V. Milovanović, D.S. Mitrinović, and Th. Rassias, Top-
ics in polynomials: extremal problems, inequalities, zeros,
World Scientific Publishing Co., Inc., River Edge, NJ, 1994.

[6] Q.I. Rahman, and G. Schmeisser, Analytic Theory of Poly-
nomials, London Mathematical Society Monographs. New
Series, 26. The Clarendon Press, Oxford University Press,
Oxford, 2002.
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SOME CLASSES OF ORTHOGONAL
POLYNOMIALS IN THE COMPLEX PLANE
AND APPLICATIONS

Gradimir V. Milovanović

Mathematical Institute of the Serbian Academy of Sciences
and Arts, Serbia
[gvm@mi.sanu.ac.rs]

MSC 2010: 33C45, 33C47, 65D25, 65D30, 78A30

Keywords: Complex orthogonal polynomials, recurrence rela-
tions, zeros, numerical differentiation, quadrature formula.

We consider a few classes of polynomials orthogonal in the
complex plane with respect to the Hermitian and Non-
Hermitian inner products, as well as some applications of
such polynomials.

The first class of such complex polynomials was intro-
duced and studied in [1], [2] and [3]. The inner product is
not Hermitian and defined by

(f, g) =

∫
Γ

f(z)g(z)w(z)(iz)−1dz,

where z 7→ w(z) is a complex weight function holomorphic
in the half disk D+ = {z ∈ C | |z| < 1, im z > 0}. Polyno-
mials orthogonal on the radial rays in the complex plane is
the second class of polynomials in our investigation. This
class was introduced in [4] (see also [7], [5], [6]).

Beside some analysis of such kinds of orthogonality and
an electrostatic interpretation of zeros of the polynomials
on the radial rays, we give several applications of these
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polynomials in numerical integration and numerical differ-
entiation.

REFERENCES

[1] W. Gautschi, G.V. Milovanović, Polynomials orthogonal on
the semicircle, J. Approx. Theory, 46 (1986), pp. 230–250.

[2] W. Gautschi, H.J. Landau, G.V. Milovanović, Polynomials
orthogonal on the semicircle. II, Constr. Approx., 3 (1987),
pp. 389–404.

[3] G.V. Milovanović, Complex orthogonality on the semicircle
with respect to Gegenbauer weight: theory and applications,
In: Topics in Mathematical Analysis (Th. M. Rassias, ed.),
pp. 695–722, Ser. Pure Math., 11, World Sci. Publ., Teaneck,
NJ, 1989.

[4] G.V. Milovanović, A class of orthogonal polynomials on the
radial rays in the complex plane, J. Math. Anal. Appl.,
206(1997), pp. 121–139.

[5] G.V. Milovanović, Orthogonal polynomials on the radial rays
and an electrostatic interpretation of zeros, Publ. Inst. Math.
(Beograd) (N.S.), 64(78)(1998), 53–68.

[6] G.V. Milovanović, Orthogonal polynomials on the radial rays
in the complex plane and applications, Rend. Circ. Mat.
Palermo (2) Suppl., 68(2002), 65–94.

[7] G.V. Milovanović, P.M. Rajković, Z.M. Marjanović,Zero dis-
tribution of polynomials orthogonal on the radial rays in the
complex plane, Facta Univ. Ser. Math. Inform., 12(1997),
127–142.
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THE SCOTTISH CAFE AND STATISTICAL
CONVERGENCE

Cihan Orhan

University of Ankara, Turkey
[Cihan.Orhan@science.ankara.edu.tr]

Many valuable problems and solutions are originated in a
cafe so-called ”Scottish Cafe” in Lviv around 1930’s. These
problems are listed in the well-known book The Scottish
Book, Mathematics from the Scottish Cafe. The partici-
pants of this informal meetings includes well-known math-
ematicians such as Stefan Banach, Hugo Steinhaus, Stanis-
law Mazur, W. Orlicz, J.P. Schauder, M. Kac, S. Kacmarz,
S. Saks, S. Ulam etc.

Here is the one problem posed by S. Mazur (July 22,
1935):

”A sequence (xn) is asymptotically convergent to L if
there exits a subsequence of density one convergent to L.
In the domain of all sequences this notion of convergence
is not equivalent to any Toeplitz (regular method). How is
it in the domain of bounded sequences?” Mazur also made
some comments that indicates the solution of this problem
is negative (see, The Scottish Book, Second Edition, page
55, problem 5).

In our talk we will provide a positive answer to Mazur’s
problem and his claim has to be false. In order to prove
our result we first note that the notion of asymptotic con-
vergence of Mazur is equivalent to the notion of statisti-
cal convergence. We show that statistical convergence is
always boundedly (as well as over the space of uniformly
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integrable sequences) equivalent to a nonnegative regular
matrix method which is boundedly multiplicative. We also
characterize the set of bounded multipliers of multiplica-
tive methods. This talk is mainly based on my joint paper
with M.K. Khan (Matrix characterization of A-statistical
convergence; J. Math. Anal. Appl. 335 (2007), 406-417).
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ON NEUMANN’S METHOD AND DOUBLE
LAYER POTENTIALS

Wolfgang. L. Wendland

IANS & Simtech University Stuttgart, Germany
[wendland@mathematik.uni-stuttgart.de]

MSC 2010: 31A10, 45F15, 65N30

Keywords: Boundary integral equations, boundary element meth-
ods.

Neumann’s classical integral equations with the double layer
boundary potential is considered on different spaces of boun-
dary charges such as continuous data, L2 and energy trace
spaces on the domain’s boundary for interior and exte-
rior boundary value problems of elliptic partial differen-
tial equations. Corresponding known results for different
classes of boundaries are discussed in view of collocation
and Galerkin boundary element methods.

REFERENCES

[1] O. Steinbach, W.L. Wendland, On C. Neumann’s method
for second-order elliptic systems in domains with non–smooth
boundaries, J. Math. Anal. Appl., 262 (2001), pp. 733–748.

[2] M. Costabel, Some historical remarks on the positivity of
boundary integral operators, In: Boundary Element Analy-
sis (M. Schanz, O. Steinbach eds.), Springer–Verlag Berlin
2007, pp.1–27.

[3] W.L. Wendland, On the double layer potential, Operator
Theory: Advances and Appl. 193 (2009), pp. 319–334.
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[4] G.C. Hsiao, O. Steinbach, W.L. Wendland, Boundary el-
ement methods: Foundation and error analysis, In: Encyclo-
pedia of Computational Mechanics. Second Edition (E. Stein,
R. de Borst, T.J.R. Hughes eds.), 2217 John Wiley & Sons
Ltd. pp. 1–62.
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CONTRIBUTED TALKS

ASYMPTOTIC PROPERTIES AND
OPERATOR NORMS OF GAUSS-
WEIERSTRASS OPERATORS AND THEIR
LEFT QUASI INTERPOLANTS

Ulrich Abel

Department Mathematik, Naturwissenschaften und
Datenverarbeitung, Technische Hochschule Mittelhessen,
Wilhelm-Leuschner-Strasse 13, 61169 Friedberg, Germany
[ulrich.abel@mnd.thm.de]

MSC 2010: 41A36, 41A45, 47A30

Keywords: Approximation by positive operators, operator norm.

The Gauß–Weierstraß convolution operators Wn (n = 1, 2,
3, . . .) are defined by

(Wnf) (x) =
√

n
π

∫ ∞
−∞

f (t) exp
(
−n (t− x)2) dt (1)

(see, e.g., [6, SS 5.2.9]). They are positive linear approxi-
mation operators which are applicable to the class Lc (R)
of all locally integrable real functions f on R satisfying the
growth condition f (t) = O(ect

2
), as t → ±∞, for some

c > 0, provided that n > c. If f is continuous we have

lim
x→∞

(Wnf) (x) = f (x)
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uniformly on compact subsets of R.
The complete asymptotic expansion of (Wnf) (x) as n tends
to infinity appears to be a special case of the results [3] on
a more general operator defined by Altomare and Milella
[5].
In 2014 Sablonnière [7] defined quasi-interpolants of Wn

and studied their basic properties including the operator
norm for bounded functions with respect to the sup-norm.
In particular, he proved asymptotic expansions for polyno-
mials and functions having a bounded higher order deriva-
tive on the whole line.
In the first part we report recent results [2] by presenting
the complete asymptotic expansions of (Wnf)(x) and the

left quasi-interpolant (W
[r]
n f)(x) as n tends to infinity, for

functions belonging to the class Lc (R) which are assumed
to be only locally smooth. The corresponding results for
the Favard operators which are the discrete version of Wn

can be found in [4, 1].
Finally, in the second part, we consider the operator norms

of Wn and W
[r]
n when acting on various function spaces.

REFERENCES

[1] U. Abel, Asymptotic expansions for Favard operators and
their left quasi-interpolants, Stud. Univ. Babeş-Bolyai
Math. 56 (2011), pp. 199–206.

[2] U. Abel, O. Agratini, R. Păltănea, A complete
asymptotic expansion for the quasi-interpolants of Gauß–
Weierstraß operators, Mediterr. J. Math. (2018) 15:156,
https://doi.org/10.1007/s00009-018-1195-8

[3] U. Abel, M. Ivan, Simultaneous approximation by Altomare
operators, Proceedings of the 6th international confer-
ence on functional analysis and approximation theory, Ac-
quafredda di Maratea (Potenza), Italy, Sept. 24–30, 2009,
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The results obtained are motivated by the recent results
which give a solution to a problem proposed by A. Lupaş
in [1]. One of the questions raised by him was to give an
estimate for

Bn ◦ Bn − Bn ◦Bn =: Un − Sn,

where Bn are the Bernstein operators and Bn are the Beta
operators. We introduce new inequalities for such differ-
ences of positive linear operators and their derivatives in
terms of moduli of continuity. This is a joint work with
Ioan Raşa from Technical University of Cluj-Napoca, Ro-
mania.
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In this paper, a Dunkl type generalization of Stancu type
q-Szász-Mirakjan-Kantorovich positive linear operators of
the exponential function is introduced. With the help of
well-known Korovkin’s theorem, some approximation prop-
erties and also the rate of convergence for these operators
in terms of the classical and second-order modulus of con-
tinuity, Peetre’s K-functional and Lipschitz functions are
investigated. Further, some approximation results for bi-
variate Stancu type q-Szász-Mirakjan-Kantorovich opera-
tors are obtained.
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The preservation of convexity under the Bernstein opera-
tors Bn is exhaustively investigated in literature.

In this talk we present some non-convex functions f for
which Bnf is convex. Inequalities for such functions are also
discussed.
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In this article we define the -q variant of some King type
operators which fix the functions e0 and e2 + αe1, α > 0.
We study the rates of convergence for the iterates of these
operators using the first and the second order modulus of
continuity. We show that the convergence is faster in the
case of -q operators (q < 1) than in the classical case (q =
1).
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Joint work with Francesco Altomare and Vita Leonessa
([1]).

In this talk, we introduce, in the framework of func-
tion spaces defined on the d-dimensional hypercube of Rd,
d ≥ 1, a class of polynomial type positive linear opera-
tors, which generalize the Bernstein-Durrmeyer operators
with Jacobi weights on [0, 1] ([3, 2]). By means of them,
we study some degenerate second-order elliptic differential
operators, often referred to as Fleming-Viot type opera-
tors, showing that their closures generate positive semi-
groups both in the space of all continuous functions and in
weighted Lp-spaces. In addition, we show that those semi-
groups are approximated by iterates the above mentioned
Bernstein-Durrmeyer operators.
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We consider the solving of nonlinear equations in R, and we
introduce an inverse interpolatory iterative method of Her-
mite type, for which the nodes are given using the Newton
method:

yn = xn − f(xn)
f ′(xn)

xn+1 = yn − f(yn)
f ′(yn)

− [yn,yn,xn;f ]f2(yn)
f ′(yn)[yn,xn;f ]2

.

The convergence order of the resulted method is 5, and
the efficiency index is higher than in the case of the Newton
and the Steffensen methods.

Under some natural conditions, the generated iterates
converge monotonically to the solution, and one may obtain
larger convergence sets than the usual attraction balls.
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We generalize the Pompeiu mean-value theorem by replac-
ing the graph of a continuous function with a compact set.
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In the present study we investigate the properties of the
galactic rotation curves in the Bose-Einstein Condensate
dark matter model, with quadratic self-interaction, by u-
sing more than one hundred galaxies from the recently pub-
lished Spitzer Photomery & Accurate Rotation Curves
(SPARC) data.
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One approach of modeling of an electric arc furnace (EAF)
is by the power balance equation which results in a nonlin-
ear ordinary differential equation.

In real-world data can be observed that arc-current and
arc-voltage vary randomly in time (cf. [1]), for example
they oscillate with a randomly time-varying amplitude and
a slight shiver. Therefore it is better to model them as
stochastic processes and then solve a random differential
equation.

Here we want to propose one example for a modulation
by using the Ornstein-Uhlenbeck process and present some
results which we gained by studying this model.

This is a joint work with Anna Chekhanova and Hans-
Jörg Starkloff.
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The article discusses a method for valuation of the func-
tional dependencies applied for estimation of some numer-
ical models. The method for valuation of dependencies is
applied similar to ”functional stability analysis” method,
which is intended to detect instability in numerical algo-
rithms [1].

The uncertainty principle is a fundamental concept [2],
[3]. In this paper, we propose a new approach for dealing
with such uncertainty, which combines the uncertainties in
the values of parameters and transformation uncertainty
that describes local degree of correlation at a given point
of domain.

For optimal evaluation of the dependencies, we use rela-
tive distance in space of input parameters. The used math-
ematical theory is based on the theory of functional analy-
sis on metric spaces, where the metric gives an estimation
of the error [4]. The p-relative distance was introduced by
Ren-Cang [5]. In [6] was introduced the main results of M -
relative distances.
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We use calculations with semi-logarithmic derivative en-
suring accordance with the relative distance and we estab-
lish relevant properties. A valuation is applied for an ana-
lytical expression.
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We associate to various linear Kantorovich type approxima-
tion operators, nonlinear max-product operators for which
we obtain quantitative approximation results in the uni-
form norm, shape preserving properties and localization
results.
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The work presented here is a continuation of what was
done in [2] and it is strongly connected to the work done
in [1]. Applications are given for Mirakyan-Favard-Szász,
Baskakov and Szász-Schurer type operators.
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In this talk we consider the decomposition of some dis-
cretely linear positive operators. Our results generalize the
results obtained in [1].
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We prove that the Markov operator associated to an iter-
ated function system consisting of ϕ-max-contractions with
probabilities has a unique invariant measure whose support
is the attractor of the system.

REFERENCES

[1] F. Georgescu, R. Miculescu, A. Mihail, A study of the at-
tractor of a ϕ-max-IFS via a relatively new method, J. Fixed
Point Theory Appl., (2018) 20:24, https://doi.org/10.1007/
s11784-018-0497-6.

[2] J. E. Hutchinson, Fractals and self similarity, Indiana Univ.
Math. J., 30 (1981), pp. 713–747.

53



SPECTRAL COLLOCATION SOLUTIONS
TO A CLASS OF NONLINEAR BVPs ON
THE HALF LINE
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The existence, uniqueness and regularity of solutions to the
boundary value problems

1
p(x)

(p (x)u′ (x))′ = q (x) f (x, u (x) , p (x)u′ (x)) , x ∈ (0,∞)

αu (0)− βu′ (0) = r, limx→∞ u (x) = 0,
(1)

are established. We assume α > 0, β ≥ 0 and r is a given
constant and f , p and 1

q
are continuous. Our aim is to

accurately approximate the solutions of these problems, as
well as to some PDEs reducible to (1), by a high order
Laguerre-Gauss-Radau collocation method (see [1], Ch. 2).
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A drift parameter estimation problem is studied for a lin-
ear parabolic stochastic partial differential equation driven
by a multiplicative cylindrical fractional Brownian motion
with Hurst index h ∈]1/2, 1[ and a multiplicative Poisson
process with values in a Hilbert space. Equations are in-
troduced for the Galerkin approximations of the mild solu-
tion process. A mean square estimation criterion is used for
these equations. It is proved that the estimate is unbiased
and weakly consistent for the original problem.
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This is a joint work with M. Veselý. We consider half-
linear differential equations given by operators with one-
dimensional p-Laplacian. The main subject of this talk is
to present results concerning the conditional oscillation of
such equations, i.e., we find a border value which sepa-
rates oscillatory equations from non-oscillatory ones and
we explicitly determine this borderline (depending on the
equations coefficients). For some of the presented results,
we refer to [1, 2].
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In our talk we investigate linking operators acting on the
unbounded interval [0,∞). Linking operators for the Szász-
Mirakjan case were defined by Păltănea in [3] and for Bas-
kakov type operators by Heilmann and Raşa in [2]. If the
linking paprameter ρ is a natural number we present a rep-
resentation for Kantorovich variants of arbitrary order in
terms of the Baskakov and Szász-Mirakjan basis functions,
respectively. This leads to a simple proof of convexity prop-
erties which also solves an open problem mentioned in [1].
At the end of our talk we present a conjecture concern-
ing a limit to B-splines which is connected to the above
mentioned representation.
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In the present work, our aim is generalization and extension
of the theory of interpolation of functions to functionals by
means of Urysohn type operators. In accordance with this
purpose, we introduce and study a new type of Urysohn
type operators. In particular, we investigate the conver-
gence problem for operators that approximate the Urysohn
type operator. We construct our operators by using a non-
linear forms of the kernels together with the Urysohn type
operator values instead of the sampling values of the func-
tion.
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We consider the system of linear equations (W + iT )u = b,
where W,T ∈ Rn×n are symmetric positive semidefinite
matrices with at least one of them being positive definite
and i =

√
−1. Letting b = p+iq and u = x+iy, we propose

a new iterative method for two-by-two block real equivalent
form [

W −T
T W

] [
x
y

]
=

[
p
q

]
,

of the system. Convergence of the proposed method is stud-
ied and the numerical results of the method are compared
with those of the MHSS [1], the PMHSS [2], the TTSCSP
[3], the CRI [4] methods.
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We investigate an inertial algorithm of gradient type in con-
nection with the minimization of a nonconvex differentiable
function. The algorithm is formulated in the spirit of Nes-
terov’s accelerated convex gradient method. We show that
the generated sequences converge to a critical point of the
objective function, if a regularization of the objective func-
tion satisfies the Kurdyka- Lojasiewicz property. Further,
we provide convergence rates for the generated sequences
and the objective function values formulated in terms of
the  Lojasiewicz exponent.
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Let K be a convex compact subset of Rd, d ≥ 1, with non-
empty interior. In this talk we are interesting to all positive
linear operators T acting on the space C(K) of continuous
functions on K which leave invariant the polynomials of
degree at most 1 and which, in addition, map polynomials
into polynomials of the same degree m, m ≥ 2.

In particular, we discuss the existence of operators T
when K is a non-trivial strictly convex subset of Rd, d ≥ 2,
discovering, among other things, a characterization of ellip-
soids and balls of Rd. A discussion of the above polynomial
preserving property in the setting of product spaces, as well
as for convex convolution products of positive linear oper-
ators, is also presented.

Such a polynomial preserving property play a central
role in studying the possibility to get a representation/
approximation formula for semigroups generated by cer-
tain differential operators, associated with T , in terms of
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constructively defined linear positive operators associated
with the same T (see, e.g. [1, 4]). Anyway, we point out
that this is not the only case where a property of this kind
is required (see, e.g. [3]). Moreover, in the literature there
are many classes of positive linear operators that satisfy it.

All results presented are contained in the joint work [2].
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In this talk, we intend to highlight an applicative side of
the classical Bernstein polynomials, in contrast to the well-
known theory of the uniform approximation of functions.
We will present some new results concerning the classical
Bernstein quadrature formula∫ b

a

F (x)dx ≈ b−a
n+1

n∑
k=0

F
(
a+ k(b−a)

n

)
,

which can be found in [1] and in another recent paper sub-
mitted for publication.
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We provide a new algorithm (called the grid algorithm)
designed to generate the image of the attractor of a gen-
eralized iterated function system and we compare it with
the deterministic algorithm regarding generalized iterated
function systems presented by P. Jaros,  L. Maślanka and
F. Strobin in [Algorithms generating images of attractors
of generalized iterated function systems, Numer. Algor., 73
(2016), 477-499].
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The aim of this presentation is to prove new results related
to several inequalities in an inner product space. Among
these inequalities we will mention inequality Cauchy-Sch-
warz’s inequality. Also we obtain some applications of these
inequalities.
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Based on some principles of Functional Analysis, this pa-
per emphasizes the topological structure of the set of un-
bounded divergence for some interpolatory product quadra-
ture formulas on Jacobi and equidistant points of the inter-
val [−1, 1], associated with the Banach space of all s-times
continuously differentiable functions and with a weighted
Banach space of absolutely integrable functions of order
p > 1.
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In this paper we introduce and investigate a new opera-
tor of Bernstein-Stancu type, based on q polynomials. We
study approximation properties for these operators based
on Korovkin type approximation theorem and study some
direct theorems. Also, the study contains numerical con-
siderations regarding the constructed operators based on
Maple algorithms.

This is a joint work with Ana-Maria Acu from Lucian
Blaga University of Sibiu, Romania, Ogun Dogru from Gazi
University, Turkey and Voichita Adriana Radu from Babes-
Bolyai University, Romania.
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We improve the classical First Mean-value Theorem for In-
tegrals and obtain related results.
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In this paper we introduce a new kind of Bernstein-Kanto-
rovich-Stancu operators. This operators generalizes the op-
erators introduced in the article Modified Kantorovich op-
erators with better approximation properties by V. Gupta,
G. Tachev, A. M. Acu, published online 18 may 2018 in
Springer, Numer. Algor, https://doi.org/10.1007/s11075-
018-0538-7.
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We investigate the best Ulam constants for the Cauchy,
Jensen and Quadratic functional equations. Our results are
related to those presented in [1, Section 4.2].
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The paper studies the degree of approximation of contin-
uous functions using the Schoenberg type operators with
knots at the roots of Chebyshev polynomials.
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A mathematical model for the free convection from a verti-
cal plate placed in a non-Darcy BDPM (bidisperse porous
medium) containing inertial terms is proposed. The influ-
ence of the inertial parameters on the fluid and heat transfer
characteristics is studied. The partial differential equations
governing the flow and heat transfer in the f-phase and
the p-phase are solved numerically using the bvp4c routine
from Matlab.
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Consider the following parabolic PDE

∂P

∂t
= A

∂P

∂x

(
P
∂P

∂x

)
,

with initial condition

P (x, 0) = P0

and boundary condition

P (0, t) = P1, where α = 1− P 2
0

P 2
1

.

The origin of this problem is in the study of a gas flow
through a semi-infinite porous medium (see [1]).

We present two solution for this problem: by reduction
to a BVP for ODE and by using line method.
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Let X be a Banach space over C, a1, a2, . . . , an ∈ C and
D : Cn(R, X)→ C(R, X) given by the relation

Dy = y(n) + a1y
(n−1) + . . .+ any, y ∈ Cn(R, X). (1)

Define ‖ · ‖∞ : Cn(R, X)→ R by

‖y‖∞ = sup
x∈R
‖y(x)‖. (2)

The operator D is called Ulam stable if there exists K ≥ 0
such that for every ε > 0 and every y ∈ Cn(R, X) with

‖Dy‖∞ ≤ ε (3)

there exists y0 ∈ kerD such that
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‖y − y0‖∞ ≤ Kε. (4)

Denote by KD the infimum of all constants K satisfying
(4). If KD is an Ulam constant of D, it is called the best
Ulam constant or the Ulam constant of D. In this paper we
are looking for the best Ulam constant of D.
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For Zolotarev’s so-called ”First Problem”, see [1], we pro-
vide an explicit algebraic solution for the polynomial degree
n ∈ {6, 7, 8}. We have announced this result on a poster
presented at the Poster Session of the IX Jaen Conference
on Approximation Theory, see pp. 59-60 at URL
http://www.ujaen.es/revista/jja/jca/principal.pdf
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The Uρ
n operators was introduced in 2007 by R. Păltănea

and since then, many researchers extend the study of them
in vary directions. In our paper we consider a generaliza-
tion of these operators using a new Bezier bases b̃n,k(λ, x)
with shape parameter λ. Some approximation properties
are given, including local approximation, error estimation
in terms of moduli of continuity and Voronovskaja-type
asymptotic formulas.
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We obtain new bounds and closed forms for some hyper-
geometric/Heun functions. The results are related to those
presented in [1] and [2]. We also recall the following
CONJECTURE (I. Raşa, University of Bielsko-Biala, No-
vember 15, 2017)

f ∈ C[0, 1] log-concave ⇒∑
i+j=h

0≤i≤n−1
0≤j≤n

(
n−1
i

)(
n
j

) (
(n− 1− i)f

(
j
n

)
∆2

1
n
f
(
i
n

)
−

−(n− j)∆1
1
n
f
(
i
n

)
∆1

1
n
f
(
j
n

))
≤ 0,

for all n ≥ 1, h ∈ {0, 1, . . . , 2n− 2}.
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In this paper there are presented the modified positive lin-
ear operators which depend on a certain function % defined
on [0, 1], and they have a better degree of approximation
than classical ones. To illustrate this, some examples are
given for Bernstein operators, Lupas operators and genuine
Bernstein-Durrmeyer operators.
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Many modern science satellites are 3-axis stabilized. At-
titude profiles play a central role in satellite control. Be-
sides the dynamical properties numerous constraints need
to be fulfilled. These additional constraints are usually of
elementary geometric nature and can often be described as
affine-linear functions. Several examples of problems of this
type are stated and solutions with different optimal control
methods [BH81] and respective numerical simulations will
be presented. The generation of valid attitudes has often to
consider the alignment of the solar arrays with sun line. In
[RYMC04] a generic way for calculating such attitudes is
given. By regarding the problem form an ’euler angle point
of view’, the remaining two degrees of freedom form a flat
torus and allow the search for attitudes that obey further
geometric constraints. Another way to approach this prob-
lem is to use optimal control methods. A method based on
a simple cost function is proposed. Further some analytic
background for understanding the choice of the cost func-
tion is given. Besides the attitude profile also the dynamics
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has to be considered. Using numerical model predictive con-
trol [W09], [D15] an approximative filter to reduce space-
craft rates to a given level and the corresponding numerical
results are presented.
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We consider two stochastic lattice systems. The nodes of
each of these systems are linearly coupled. In addition there
is a coupling for any node between these systems. We state
the existence of an invariant random manifold in the phase
space such that we have synchronization in the following
sense. Any solution trajectory of the systems converges ex-
ponentially fast to some some solution trajectory ”living”
on the random manifold.
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The set of real data can be approximated with fractal in-
terpolation functions. These fractal interpolation functions
can be constructed with the so-called iterated function sys-
tems. Local iterated function systems are important gen-
eralization of iterated function systems. In order to obtain
new approximation methods we can combine this methods
with the classical interpolation methods. In this article us-
ing the fact that graphs of piecewise polynomial functions
can be written as the fixed points of local iterated function
system we give some delimitation of the error for this new
approximation methods.

REFERENCES

[1] M.F. Barnsley, Fractals Everywhere, Academic Press (1993)

[2] M.F. Barnsley, M. Hegeland and P. Massopust, Numerics
and Fractals, https://arxiv.org/abs/1309.0972, (2014)

91



[3] J. Kolumbán, A. Soós, Fractal functions using contrac-
tion method in probabilistic metric spaces, Proceeding of
the 7th International Multidisciplinary Conference Fractal
2002, Complexity and Nature, Emergent Nature, M.M. No-
vak (ed.), World Scientific 2002, pp. 255-265.

[4] M.A. Nevascués, M.V. Sebastián, Generalization of Her-
mite functions by fractal interpolation, J. Approx. Theory,
131 (1) 2004, pp. 19-29.

[5] H.Y. Wang, J.S. Yu, Fractal interpolation functions with
variable parameters and their analytical properties, J. Ap-
prox Theory, 175 (2013), pp. 1-18.

92



STONE-WEIERSTRASS THEOREMS FOR
RANDOM FUNCTIONS

Hans-Jörg Starkloff

Faculty of Mathematics and Computer Science, University of
Technology, Freiberg, Saxonia, Germany
[Hans-Joerg.Starkloff@math.tu-freiberg.de]

MSC 2010: 41A10, 41A65, 60G99

Keywords: Random function, Stone-Weierstrass theorem, sto-
chastic convergence.

Due to an increased use of random models and an inten-
sive investigation of random ordinary and partial differen-
tial equations a more systematic treatment of approxima-
tion methods for random functions and random variables
in function spaces seems to be appropriate. Basic results in
deterministic approximation theory are related to different
versions of Stone-Weierstrass theorems. In the talk some
stochastic versions of Stone-Weierstrass theorems are pre-
sented, generalizing corresponding results of, e.g., [1] and
[2].
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Sums of sequences of independent identically distributed
(i.i.d.) random variables can be formulated by the Law
of Large Numbers or the Central Limit Theorem as diffu-
sion processes. This property of the i.i.d. random variables,
which lies at the core of numerical modeling of diffusion
processes, will be illustrated by generating various diffu-
sion processes and further used to model diffusion at both
microscopic and macroscopic level by numerical solutions
of Ito and Fokker-Planck equations, respectively.
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In this paper we introduce q-Bernstein type operators which
is an extension of classical case since they convert q-Bernstein
operators if n is sufficiently large. We also study some ap-
proximation properties and obtain direct and inverse theo-
rems.
This work was supported by the Ahi Evran University Sci-
entific Research Projects Coordination Unit. Project Num-
ber: FEF.A4.18.004
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We use inverse Padé interpolation and Maple to find the
following fourth order method for the solution of a scalar
nonlinear equation

Φ(x) = x− f(x)

f ′(x)

1 +
1
2

f ′(x)
f ′′(x)

[
f ′(x)
f(x)

+ f ′′′(x)
3f ′(x)

]
− 1

 .

Also a result on convergence and a MATLAB implementa-
tion are given.
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Korovkin type approximation theory mainly deals with the
convergence of a sequence of positive linear operators de-
fined on the space of real-valued continuous functions on a
closed interval. If the ordinary convergence does not work
then we may consider a summability method that is consis-
tent with and stronger than ordinary convergence. In this
talk, using the Abel convergence method we study some
approximation properties of generalized Meyer-König and
Zeller operators. Moreover, we obtain the rate of conver-
gence by means of modulus of continuity.

97



REFERENCES
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One way to generalize the concept of iterated function sys-
tem was proposed by R. Miculescu and A. Mihail (see [3]
and [4]) under the name of generalized iterated function
system (for short GIFS). More precisely, given m ∈ N∗
and a metric space (X, d), a generalized iterated function
system of order m is a finite family of functions f1, ..., fn :
Xm → X satisfying certain contractive conditions. Another
generalization of the notion of iterated function system in
given by those systems consisting of ϕ-max contractions
(see [1]).

Combining these two lines of research, we prove that the
fractal operator associated to a possibly infinite generalized
iterated function system comprising ϕ-max contractions is
a Picard operator (whose fixed point is called the attrac-
tor of the system). Paper [2] inspired us to associate to
each possibly infinite generalized iterated function system
comprising ϕ-max contractions F (of order m) an operator
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HF : Cm → C, where C stands for the space of continuous
and bounded functions from the shift space on the metric
space corresponding to the system. We prove that HF is a
Picard operator whose fixed point is the canonical projec-
tion associated to F .
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Let Λ ⊂ [0,∞; 0,∞] be a two-dimensional index set con-
sisting of σ = (ξ, η) indices with accumulation point σ0 =
(ξ, η). We assume that the function Kσ : R2 × R → R
is Lebesgue integrable on R2 and satisfies some conditions
including Lipschitz condition with respect to its third vari-
able for any σ ∈ Λ. The main purpose of this work is to in-
vestigate the conditions under which Fatou type pointwise
convergence is obtained for the operators in the following
setting:

(Tσf) (x, y) =

b+ξ∫
a−ξ

d+η∫
c−η

Kσ (t− x, s− y, f (t, s)) dsdt, (x, y) ∈ R,

where a, b, c and d are arbitrary real numbers and R =
(a− ξ, b+ ξ; c− η, d+ η) is a mobile rectangle, at µ-gene-
ralized Lebesgue point of measurable function f ∈ Lω1 (R) ,
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as (x, y, σ) → (x0, y0, σ0) . Here, Lω1 (R) is the space of all
measurable functions f for which

∣∣ f
ω

∣∣ is integrable over R,
where ω : R2 → R+ is a weight function satisfying some ex-
tra conditions. The obtained results are used for presenting
some theorems for the rate of convergences.
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The exact general solution to Zolotarev’s First Problem was
known only in terms of elliptic integrals and functions [1].
Interests in giving explicit algebraic decriptions to small
degree Zolotarev polynomials revived in some recent work
[2, 3]. This talk investigates the power of symbolic compu-
tational tools (Groebner basis and quantifier elimination)
to solve the problem. It turns out that generic polynomial
expressions of a symbolic parameter can be obtained via
Groebner basis method using the defining differential equa-
tion of the proper Zolotarev polynomials at least up to de-
gree eight. The knowledge of explicit algebraic solutions can
be used for solving varoius related computational problems
in approximation theory. Most of the computation is done
with aid of the Wolfram Mathematica computer algebra
system.
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A Finite Difference scheme for the High Order Nonlinear
Schrödinger (HNLS) equation in 1D, with localized damp-
ing, will be presented. The equation can model superlumi-
nal optical solitons in atomic systems, as well as femtosec-
ond solitons travelling in optical fibers made by different
materials. The method can preserve the numerical energy,
and can almost preserve the numerical charge. Numerical
results will be shown.

This is a joint work with Marcelo M. Cavalcanti (UEM-
Brazil), Wellington J. Corrêa (UTFPR-Brazil), and Mauri-
cio Sepúlveda C. (CI 2MA - DIM, UdeC, Chile).
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This talk is based on the joint works [1, 2, 3] with P. Hasil.
Using iterative methods, we study the solution spaces of
limit periodic homogeneous linear difference systems, where
the coefficient matrices of the considered systems are taken
from a given commutative group which does not need to be
bounded. In particular, we study such systems whose fun-
damental matrices are not asymptotically almost periodic
or which have solutions vanishing at infinity. We identify
conditions on the matrix group which guarantee that these
systems form a dense subset in the space of all considered
systems. Note that the elements of the coefficient matrices
are taken from an infinite field with an absolute value and
that the corresponding almost periodic case is treated as
well.
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The present contribution deals with nonconvex optimiza-
tion from a dynamical systems perspective. More precisely,
we consider the second order evolution equation

ü+ u̇ = −∇G (u) (1)

which can be understood (cf. [1]) as describing a damped
mechanical system with the nonconvex objective function
G : Rn → R as the system’s potential energy. Its asymp-
totic behavior has been analyzed quite recently by Bégout
et. al. who show the convergence of solutions, at precise
rates, to minimizers of G.

110



A similar approach applies to the vanishing damping
model

ü+
γ

t
u̇ = −∇G (u) , (2)

which is the continuous counterpart of the celebrated Nes-
terov optimization algorithm (cf. [5]).

In this context, our aim is to investigate discrete dy-
namical systems which faithfully reproduce the properties
of (1) or (2). These discrete dynamical systems are ob-
tained by means of a two-stage discretization of (1) or (2),
consisting in a Strang splitting semidiscretization that sep-
arates the conservative and dissipative parts of the system
followed by an energy-preserving numerical integration of
the conservative part.

The Strang splitting approximation (see [2] and refer-
ences therein)

eh(A+B) ≈ e
h
2
AehBe

h
2
A, et(A+B) ≈

(
e

h
2
AehBe

h
2
A
)n
, t = nh

is known to have an improved order of approximation when
compared to the simpler Lie spitting

eh(A+B) ≈ ehAehB, et(A+B) ≈
(
ehAehB

)n
, t = nh,

as both are dealing with the linear problem ż = Az+Bz by
iteratively solving two subproblems: ż = Az and ż = Bz.
Recent progress [3], however, has shown that the semilinear
problem ż = Az+ f (z) can be treated in exactly the same
manner by only replacing ehB with the solution operator
(nonlinear semigroup) U (h) of ż = f (z).
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The evolution equations (1), (2) both fit nicely in this
semilinear framework if rewritten as systems of first order
equations {

u̇ = v,
v̇ = −c(t)v −∇G (u) ,

(3)

with either c(t) = 1 or c(t) = γ/t. Furthermore, the split-
ting method can be applied in such a way that the con-
servative and dissipative parts of the system are separated,
the subproblems that need to be solved iteratively being

(Cons)

{
u̇ = v,
v̇ = −∇G (u)

and (Dissip)

{
u̇ = 0,
v̇ = −c(t)v.

The resulting semidiscretization generates a discrete dy-
namical system which has

(i) the same equilibria (u∗, 0), with ∇G (u∗) = 0, as (3);

(ii) the same Lyapunov function H (u, v) = 1
2
‖v‖2+G (u)

as (3);

(iii) an O (h2) accuracy on finite time intervals.

While the dissipative subproblem is explicitly solvable,
the conservative one can be integrated using an energy-
preserving numerical scheme (see [4]) such that all the prop-
erties (i), (ii) and (iii) remain valid.

Further, the infinite-dimensional case is also discussed.
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2Institute of Computer Science, University of Wroc law,
ul. Joliot-Curie 15, 50-383 Wroc law, Poland
[pwo@cs.uni.wroc.pl]

MSC 2010: 33C45, 65Q30

Keywords: Differential equations, recurrence relations, Bernstein
basis polynomials, dual Bernstein polynomials, Jacobi polyno-
mials, Hahn polynomials.

Dual Bernstein polynomials introduced in [2], which are
associated with the shifted Jacobi inner product, have re-
cently found many applications in numerical analysis and
computer graphics (curve intersection using Bézier clipping,
degree reduction and merging of Bézier curves, polynomial
approximation of rational Bézier curves, numerical solving
of boundary value problems, numerical solving of fractional
partial differential equations, etc.). Note that skillful use
of these polynomials often results in less costly algorithms
which solve some computational problems.

In the talk, we give new differential-recurrence proper-
ties of dual Bernstein polynomials which follow from re-
lations between dual Bernstein and orthogonal Hahn and
Jacobi polynomials. Using these results, the fourth-order
differential equation satisfied by dual Bernstein polynomi-
als has been constructed. Next, we obtain a fourth-order
recurrence relation for these polynomials. The latter result
may be useful in fast evaluation of dual Bernstein polyno-
mials and their linear combinations or integrals which are
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related to the least-square approximation in Bézier form.
See also [1].
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We consider a continuous-time financial market with par-
tial information on the drift and solve utility maximization
problems which include expert opinions on the unobserv-
able drift. Stock returns are driven by a Brownian motion
and the drift depends on a factor process which is an Orn-
stein Uhlenbeck process. Thus the drift is hidden and has
to be estimated from observable quantities. If the investor
only observes stock prices then the best estimate is the
Kalman filter.

However, to improve the estimate, an investor may also
rely on expert opinions providing a noisy estimate of the
current state of the drift. This reduces the variance of the
filter and thus improves expected utility. That procedure
can be seen as a continuous-time version of the classical
Black-Litterman approach.

For the associated portfolio problem with logarithmic
utility explicit solutions are available in the literature. In
this talk we consider the case of power utility. Here, we
apply dynamic programming techniques and solve the cor-
responding dynamic programming equation for the value
function. In particular we investigate the asymptotic be-
havior of the filter for high-frequency experts and derive
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limit theorems for two different asymptotic regimes. In the
first, variances of the expert opinions grow linearly with
the arrival frequency while in the second they are constant.
The derived limit theorems allow for simplified approxi-
mate solutions of utility maximization problems since the
convergence of the filter carries over to the convergence of
the value function. Numerical results are presented.

The talk is based on joint work with A. Gabih, H. Kon-
dakji, J. Sass and D. Westphal.
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In this paper we consider power series method which is also
member of the class of all continuous summability methods.
We study a Korovkin type approximation theorem for a
sequence of positive linear operators acting from a weighted
space Cρ1 into a weighted space Bρ2 with the use of the
power series method which includes both Abel and Borel
methods. We also consider the rates of convergence of these
operators.
This paper was supported by the department of Scientific
Research Projects of Hitit University. Project No: 19008

REFERENCES

[1] O.G. Atlihan, C. Orhan, Matrix summability and positive
linear operators, Positivity, 11 (2007), pp. 387-398.

118



LIST OF SPEAKERS

Ulrich Abel

Department Mathematik, Naturwissenschaften und
Datenverarbeitung, Technische Hochschule Mittelhessen,
Wilhelm-Leuschner-Strasse 13, 61169 Friedberg, Germany
[ulrich.abel@mnd.thm.de]

Ana Maria Acu

Department of Mathematics and Informatics, Lucian Blaga
University, Sibiu, Romania
[anamaria.acu@ulbsibiu.ro]

Mohd. Ahasan

Department of Mathematics, Aligarh Muslim University,
Aligarh, 202002, India
[ahasan.amu@gmail.com]

Francesco Altomare

Department of Mathematics, University of Bari, Italy
[francesco.altomare@uniba.it]

Alina Baias

Department of Mathematics, Technical University of
Cluj-Napoca, Romania
[Baias.Alina@math.utcluj.ro]

119



Carlo Bardaro

Department of Mathematics and Computer Sciences,
University of Perugia, Italy
[carlo.bardaro@unipg.it]

Marius-Mihai Birou

Department of Mathematics, Technical University of Cluj
Napoca, Romania
[Marius.Birou@math.utcluj.ro]

Mirella Cappelletti Montano

Department of Mathematics, University of Bari, Italy
[mirella.cappellettimontano@uniba.it]

Emil Cătinaş
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