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Abstract

The process of diffusion in a random velocity field is the mathematical object underlying cur-
rently used stochastic models of transport in groundwater. The essential difference from the
normal diffusion is given by the nontrivial correlation of the increments of the process which
induces transitory or persistent dependence on initial conditions. Intimately related to these
memory effects is the ergodicity issue in subsurface hydrology. These two topics are discussed
here from the perspectives of 1t6 and Fokker-Planck complementary descriptions and of recent
Monte Carlo studies. The latter used a global random walk algorithm, stable and free of numer-
ical diffusion. Beyond Monte Carlo simulations, this algorithm and the mathematical frame of
the diffusion in random fields allow efficient solutions to evolution equations for the probability
density of the random concentration.

Keywords: Groundwater, Transport processes, Ergodicity, Random fields, Random walk, PDF
methods

1. Introduction

Stochastic modeling became a leading paradigm in studies of complex systems since several
decades. Random media, random environments, or random fields are central topics for thousands
of research papers in physics, technology, geophysics, and life sciences. For instance, a search for
the topic “random media” in Web of Science (seen online in January 2014) returns 4110 results
and 2073 average citations per year in the last two decades, with a strong increasing trend. A
similar dynamics (3197 results with 1345 average citations per year) shows for the same period
the topic “groundwater contamination”, which is one of the investigation directions where the
“randomness” paradigm is intensively used.

Mathematical models of transport in random environments (e.g. continuous diffusion pro-
cesses with random coefficients or random walks with random jump probabilities [11]) are often
used for phenomena which are not reproducible experimentally under macroscopically identical
conditions or in cases where the incomplete knowledge of the physical parameters precludes de-
terministic descriptions. To the first class belongs the turbulence, characterized by an intrinsic
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randomness, which is modeled by random velocity fluctuations [109, 78, 49, 47]. In plasma
physics the turbulent state of the system of charged particles is described by random electric
potentials and magnetic fields [7, 6]. Transport in groundwater belongs to the second class.
The way randomness enters modeling in hydrogeology is through stochastic parameterizations
of incompletely known hydraulic conductivity fields which induce random Darcy velocity fields
[44, 25].

A common feature of transport processes in random environments is the apparent increase
of the diffusion coefficients with the scale of observation. In hydrogeology, the increase from
Darcy scale, to laboratory, and to field scale of the diffusion coefficients inferred from mea-
surements through different approaches (by fitting concentrations with solutions of advection-
diffusion equations, by computing spatial moments of tracer concentrations, or by analysis of
concentration series recorded at different travel distances from the source) has been called “scale
effect” [42, 17, 18]. Similar scale dependence characterizes the so called “running diffusion
coefficient” in plasma physics [5] and the “turbulent diffusivity” in turbulence [109, 79].

Another characteristic of transport in random media is the presence of various memory effects
associated with the departure of the transport process from a genuine Gaussian diffusion. Mem-
ory effects manifested by non-Markovian evolution were explicitly associated with the stochastic
nature of the environment in plasma physics [6]. In the frame of stochastic subsurface hydrol-
ogy, the departure from Fickian, linear-time behavior of the second moment of the solute plume
may be interpreted as a memory effect [88, 104]. This type of memory effects is usually associ-
ated with Markovian diffusion processes and are omnipresent in stochastic models of transport
in groundwater. The prototype memory-free process is the Wiener process with independent in-
crements. Therefore, a direct quantification of such memory effects is provided by correlations
of increments of the transport process [92].

The groundwater is contained in aquifer systems consisting of spatially heterogeneous hy-
drogeological formations. The scarcity of direct measurements of their hydraulic conductivity
is compensated by spatial interpolations and empirical correlations, further modeled as space
random fields [14]. The groundwater flow caused by piezometric pressure gradients is usually
modeled by Darcy law for the filtration velocity in porous media and the randomness of the hy-
draulic conductivity induces the randomness of the flow velocity [25]. Contaminant solutes are
transported by advection, diluted by diffusion and hydrodynamic dispersion, and undergo various
chemical reactions. Under simplifying assumptions, also supported by experiments, the hydro-
dynamic dispersion is approximated as a Gaussian diffusion [84] and summing up the molecular
diffusion at the pore-scale one arrives at a local scale diffusive model with diffusive flux gov-
erned by Fick’s law [8]. Hence, the primary mechanism responsible for the fate of contaminants
in groundwater can be described as a diffusion in random velocity fields.

Concentrations and transition probability densities of the diffusion in given realizations of the
random velocity field are governed by parabolic partial differential equations local in time and
space. However, in case of statistically non-homogeneous fields, theoretical investigations [71]
and numerical simulations [72] show that the evolution of the ensemble average concentration is
non-Fickian and has to be described by integro-differential equations non-local in both time and
space. Non-locality also may occur in modeling the local dispersion. For instance, following the
Mori-Zwanzig memory function formalism of the equilibrium statistical mechanics [120, 22, 19],
Cushman and Ginn derived space-time nonlocal models for diffusion in porous media with hy-
draulic parameters displaying fractal character [20, 21]. A model non-local in time but local
in space is the “continuous time random walk™ process, with uncorrelated polydisperse features
consisting of a random walk with waiting times uniformly sampled from a probability distribu-
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tion [46], which has been proposed by Berkowitz and Scher [9, 10] to describe the behavior of
the ensemble mean concentration. A comparative study of such non-local models is presented
in a review paper by Neuman and Tartakovsky [73]. Since non-local and non-Fickian behavior
may arise from either normal or anomalous local scale diffusion models, it is difficult to extract
information on the true nature of the stochastic transport process from experiments and diffusion
in random velocity fields remains competitive with respect to the other models analyzed in [73].
Moreover, if the hydraulic conductivity and the velocity field may be characterized by power-
law correlations, the model of diffusion in random fields naturally leads to anomalous diffusive
behavior of the transport process [39, 92]. Estimates of the prediction errors [71, 73] and ergod-
icity assessments [34, 95] also can be obtained by comparing results for fixed realizations of the
random field, corresponding to the observed transport process, to their ensemble averages. Last
but not the least, the model of diffusion in random velocity fields facilitates the development of
methods similar to those used in turbulence studies for the probability density function (PDF) of
the random concentration [83, 68].

The process of diffusion in a single realization of the velocity field, is presented in Section 2
below. The spatial variability of the velocity field is found to be the source of both scale ef-
fects and memory effects induced by position-velocity correlations, specific to solute transport
in groundwater. The relationship between memory effects and the ergodicity issue for the usual
setup of passive transport in hydrogeology (Section 3), investigated numerically through Monte
Carlo simulations based on the global random walk (GRW) algorithm, is analyzed in Section 4.
The findings are consistent with theoretical results on statistical homogeneity properties and er-
godicity, derived within the same passive transport setup in Section 5.

The GRW algorithm consists of an arbitrarily large superposition of weak Euler schemes for
the Itd equation and is therefore accurate, stable, and free of numerical diffusion (Section 6).
Coupling this algorithm with finite element solutions to the flow equations results in considerable
speedup over the classical finite element solution to both flow and transport equations. The GRW
algorithm is also a key tool in solving evolution equations for the probability density function
(PDF) of the random concentrations in reactive transport. PDF evolution equations are derived
form models for the local mixing and upscaled processes of diffusion in random fields. The
feasibility of the GRW-PDF approach is illustrated in Section 7 for the one-dimensional transport
of the cross-section space average concentration in saturated aquifers. Some conclusions and
future prospects are presented in Section 8.

2. Diffusion with space-variable drift

2.1. Fokker-Planck equation

Scale and memory effects are already present in case of diffusion processes with deterministic
coeflicients if the drift coefficients vary in space.

The density of the transition probability g(x,t | Xo, fo) of a real diffusion process {X;(¢),t >
0,X; € R,i = 1,2, 3} with drift coefficients V; and diffusion coefficients D;; is the solution of the
Cauchy problem for the Fokker-Planck equation

dg 0 0’

— 4+ —(Vig) = ———(D;; 2.1

ot axi( i8) axiaxj( ljg) 2.1)
with the initial condition g(X, ty | Xo,#p) = 6(X — Xg). Here and in the rest of the paper summation

over repeated indices is implied.
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The transition probability g governs the evolution of the concentration,

c(x, 1) = fg(x,t | X0, t0)c(X0, to)dXo, (2.2)

where (X, fo) is the initial concentration. If c¢(X, #) is normalized to unity, so is c(x, t), and both
can be interpreted as one-point probability densities.

By virtue of (2.2), the concentration c¢(X, ¢) verifies the equation (2.1) with the initial condition
c(x, 1y) = c(Xp, t9). The equivalence with the concentration balance equation based on Fick’s law

of diffusion,

dc 0 0 Jc
—+ —(Vic)= —(Dij—
o a9 5 Piigy,
is established by the relation V' = V; — dD;;/0x; between velocity components V; and drift
coefficients V; [43].

A diffusion process satisfies uniformly in x and ¢, for all € > 0 [31, 59],

), (2.3)

. 1 ’ ’r _
AI}LI}) N f gx',t+ At | x,0dx’ =0, 2.4)
[x'—x|>€
. 1 ’ ’ ’
Vix, 1) = Al}r_rgo ~ f (x; — x)g(x', t + At | X, 1)dx’, (2.5)
|x’ —x|<e
Dyxt) = s lim — [ (= x)(X) = x))g(x 1 + At | x, DX’ 2.6)
(%0 = 3 lim X = x)(x = x))g(x, X, 1)dx’. .
[x’ —x|<e

Condition (2.4) prevents instantaneous jumps and ensures the almost sure continuity of the
sample paths X(¢), (2.5) defines the drift coefficients, and (2.6) the diffusion coefficients [59, 43].

In applications to transport in groundwater, the class of diffusion processes is restricted by
imposing conditions for finite first and second spatial moments of g at finite times [57, 104]:

AI}LI}) ~ f x; g(x',t+ At | x,0)dx’ =0, 2.7
X' —x|>e

A1}1_)110 Y f XX gx',t+ At | x,0dx’ = 0. (2.8)
[x"—x|>€

With (2.7-2.8), the integrals in (2.5-2.6) extend over the entire R3. In fact, the local averages, over
spheres of radius €, are used in (2.4-2.6) to avoid the hypothesis that the first two moments exist
[31, p. 276]. However, the latter is always true when the drift coefficients are samples of random
velocity fields with finite-range correlations, as well as for samples of fractional Gaussian noise
velocity fields, the two situations considered in the following.

The conditions (2.7) and (2.8) are fulfilled, for instance, by the one-dimensional Gaussian
diffusion with affine mean and linear variance,

u(@) = fxc(x, Ndx = xo + V(t — 1tp),

s(t) = f [x — u()e(x, Hdx = 2D(t — 1),
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constant drift and diffusion coefficients, V = du(r)/dt, D = %ds(t)/dt, and transition probability
density invariant to spatial translations,

g(x. 1| Xo,10) = (4xD) ™ exp (=(x = xo = V(t = 10))*/4D(t — 19)). (2.9)

2.2. Dispersion and memory terms

For diffusion processes with variable coefficients, the linear time behavior of the first two
moments no longer holds. General relations between moments and coefficients were recently
derived in [104, Appendix A]. For a general diffusion precess satisfying (2.4-2.6) and the condi-
tions for finite moments (2.7-2.8), the components of the first moment, y;, and of the covariance,
sij» I, j =1,2,3, are given by:

it  to) = f xic(x, tydx = p(to) + f Vit (2.10)
sij(t, 19) = f(xi = i) (x; — (D)), Hdx

= Sij(t()) + 2[ dr’ fDij(X, t’)C(X, l‘,)dX + SLt,ij(t7 to) + mij(t, to), (2.11)
Suij(t to) = f dar f dr’ f c(Xg, fo)dxq f f (X', " uj(x, 1)

+ui(X, (X, 0 )g(x, 1 | X, 1)g(x, 17 | Xo, to)dxdX' (2.12)
mij(t, to) = f dr fC(XoJo)dXO f((xoj‘ — uj(to)ui(x,1")

+ (xoi — pito))uj(x,1'))g(x, 1" | Xo, to)dx (2.13)

where Vi(t) = [ Vi(x,)e(x,0)dx and  ui(x, 1) = Vi(x, 1) = Vi(2).

According to (2.11), the covariance s;; is decomposed in “dispersion terms” s, ;;, positive
definite, expressed through correlations of the drift coefficients, (2.12), and “memory terms”,
consisting of correlations between drift coefficients and initial positions (2.13), which are no
longer positive definite (see [104, Fig. 1]). The decomposition (2.11) can be viewed as an
extension of an earlier result of Kitanidis [57]. Comparing [57, Eq. 25] and [104, Eq. A2] one
can readily check that the cross correlations position-velocity occurring in the Kitanidis’ relation
are precisely the sum between the dispersion terms (2.12) and the memory terms (2.13).

Modeling motions in random environments often requires relations between spatial moments
of probability densities and the statistics of the process trajectories (e.g., [65, p. 287]). A sys-
tematical derivation of such relations can be achieved by means of suitably defined consistent
finite-dimensional probability distributions (A.1) introduced in Appendix A.l. Using them, in
Appendix A.2 it is proved that the decomposition (2.11) for the diagonal components of the
variance of the process governed by the Fokker-Planck equation (2.1) with a constant diffusion
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coeflicient D can be recast in terms of trajectories as follows,

sii(t, t0) = s;i(to) + 2D(t — to)

‘2 f dr f WX DX A, di”

+2 f ([Xi(10) = {Xi(10))py, JiCX ()Y, (2.14)

where (-)DXO denotes the average over the realizations of the diffusion process and over the initial
positions X of the trajectories X(#).

For given coefficients V; and D of the Fokker-Planck equation (2.1) it is possible to construct
a process satisfying the It6 equation (e.g. [59, p. 144])

t
Xi(t) = Xoi + f ViX(@)dt' + Wit — 1p), (2.15)
4]

where W; is the standard Wiener process of mean E(W;) = 0 and variance E(Wl.z) = 2D(t — ty).
Equation (2.15) describes the diffusion process in a weak sense, that is, only the coefficients are
specified but not the Wiener process [59]. If sufficient conditions for the existence of weak so-
lutions to (2.15) are fulfilled, the process has the same probability distribution as the diffusion
process governed by the corresponding Fokker-Planck equation. Doob [31, Chap. VI, Sec. 3]
also proved the equivalence of It and Fokker-Planck representations in a strong sense. That
means, under more restrictive conditions, the path-wise unique solutions of the Itd equation are
diffusion precesses satisfying (2.4-2.6) and, given a diffusion process with transition probability
solving the Fokker-planck equation, the associated Itd equation admits path-wise unique solu-
tions [59, Theorems 4.6.1, and 4.7.1].

When the variance of the process (2.15) is computed for a fixed Wiener process (e.g., by Itd
formula, as in [99, p. 5]) one obtains, in addition to the terms of (2.14), a term consisting of
correlations between the Wiener process and the velocity fluctuations [99, Eq. 27]. This term is
canceled, for instance, when a weak solution to (2.15) is constructed by successive approxima-
tions with independent Wiener processes in each iteration [99, p. 9]. However, the representation
(2.14) holds for either strong or weak solutions to Itd equation if the diffusion process satisfies
the supplementary conditions (2.7) and (2.8) and, as proved in Appendix A.2, it is equivalent to
the decomposition (2.11) derived within the Fokker-Planck description of the process. The GRW
scheme presented in Section 6 below provides numerical approximations for such diffusion pro-
cesses.

To emphasize the role of the initial conditions, it is useful to rewrite the variance (2.14) as

s;i(t, 19) = sii(to) + Si(t, to) + my(t, 1), (2.16)

where the sum of the second and third term of (2.14) is expressed in terms of displacements
Xi() = Xi(1) — Xi(to), _ _

Sii(t,10) = ((Xi(t) = (Xi(1)) e D o,
The term s; describes an enhanced dispersion (with respect to the local dispersion 2D(t — t;) in

(2.14)), which explains the scale effect in modeling subsurface transport processes (e.g. [42]).
The last term in (2.16),

mii(t, 16) = 2(Xi(t0) = (Xil10)) py, JXAD) = KD}y Dy 2.17)

quantifies the memory effects.



2.3. Memory effects and transition probabilities

Similarly to (2.16), for any three successive times, f; < f; < 3, the variances of the increments
of the process are related by

Si(t,13) = Si(t1, 1) + Si(ta, 13) + myi(ty, 0, 13), (2.18)
where

5ii(t3, 11) = var{X;(t3) — Xi(11)},
5ii(t, 1) = var{X;(t2) — Xi(t1)},
5ii(t2, 12) = var{X;(13) — Xi(12)},
m;i(t1, 12, 13) = 2cov{(Xi(12) — Xi(11)), (Xi(t3) — Xi(22))},

var{-} denotes the variance, and cov{-} the covariance. In fact, (2.18) is the general binomial rule
saying that the variance of the sum of two random variables is the sum of variances plus two
times their covariance (e.g., [77, p.213]) and as such it is valid for any stochastic process X(z).
The relation (2.16) above is retrieved for the increments of the process (2.15) with the expectation
E{-} defined as in Appendix A.1 by o, -

The condition of vanishing memory terms, m;;(t;, t2, t3) = 0, leads to

E{(Xi(t2) — Xi(1)(Xi(13) — Xi(2))} = E{X;(t2) — X;(t)}E{X(t3) — Xi(12)},

which expresses the uncorrelatedness of the increments of the process. As follows from (2.1@,
vanishing memory terms is equivalent with the additivity of the variance of the increments X;
with respect to nonoverlapping time intervals [92, p. 5]. In the particular case of diffusion with
constant coefficients the increments are uncorrelated, m;;(¢;,t,#3) = 0, and (2.18) expresses
the linearity of the variance s;(t,,1,) = 2D(t, — t,), t, > t,. It is also easy to see that the
uncorrelatedness of the increments is a consequence of the translation invariance of the transition
probability density (2.9). Moreover, it has been shown that the only It6-diffusion process with
space-homogeneous transition probabilities are Gaussian diffusion processes with constant drift
and diffusion coeflicients [1].

In general, according to Theorem I1.3.2 of Doob [31, p. 74], for any real process with
E{|X()]*} < oo and uncorrelated increments there exists a wide sense version of X(7) (i.e. with
the same first two moments) which is a Gaussian process with independent increments [31, p.
100]. By the definition of the statistical independence, this process has space-homogeneous tran-
sition probabilities. Since the converse is clearly true, i.e. processes with homogeneous transition
probabilities have uncorrelated increments, we have the following corollary [92, p. 5]:

If the memory terms of a real process with finite first and second moments vanish for arbitrary
successive time increments, then, the transport process is a wide-sense version of a Gaussian
processes with spatially homogeneous transition probabilities.

Thus, memory-free processes have homogeneous transition probabilities. Inhomogeneous
transition probabilities as memory effects were also identified in case of rare and extreme events
(where the memory-free limit corresponds to independent identically distributed variables) and
for non-Markovian processes (generalized Langevin equation, diffusion equations with memory,
or fractional diffusion) [92]. It is worth noting that the memory effects quantified by (2.17) are
not necessarily an indication of non-Markovian behavior of the processes. They characterize
all Itd processes such as (2.15), which are Markovian processes [59, Chap. 4], as far as their
increments are correlated.

7



3. Diffusion in random fields model of passive transport in aquifers

Models of transport in highly heterogeneous media such as atmosphere, plasmas, industrial
devices, or groundwater are based on stochastic partial differential equations of parabolic type
[3, 4, 11, 65, 5, 16, 45, 2]. In case of transport in saturated aquifers, essential features of the
transport, such as the scale dependence, may be described by the simple advection-diffusion
equation without sources and with constant diffusion coefficients (e.g., [25, 57, 28, 34]),

d,c+V-Ve = DVe, (3.1

where c(x, t) is the concentration field, D is a local dispersion coeflicient, and V(x) is a sample
of a random velocity field. The latter is a solution of continuity and Darcy equations

V-V=0,V=-KVy, (3.2)

where ¢ is the piezometric head and K is the hydraulic conductivity, which is a sample of a
space random function. This model reflects the specificity of transport in groundwater, where,
unlike in the case of turbulence, the flow is laminar and randomness is introduced by a stochastic
parametrization of the flow equations (3.2).

Equation (3.1) is the particular case of the concentration balance equation (2.3) for constant
diffusion coefficient D. Since in this case the velocity components coincide with the drift coeffi-
cients, (3.1) is identical to the Fokker-Planck equation. Thus, the concentration c¢(X, f) normalized
to unity may be interpreted as the probability density function of the diffusion process described
by the It6 equation (2.15).

For a given realization of the velocity field, corresponding to a realization of the hydraulic
conductivity, (3.1) describes the diffusion with space variable drift analyzed in Section 2. To
model diffusion in random velocity fields, the space of events from Appendix A.2 is enlarged to
the Cartesian product Q = R3 x Qp x Qy, where Qy is the space of realizations of the random
velocity field. Accordingly, the expectation will be formally written as (-) = ({{-),, )X0 Y = <'>Dx0v-

With these, we define three centered processes of mean zero, Xff I ®, X0, Xi™(0),i=1,2,3,
so that their variance describes the “effective” and the “ensemble” dispersion, S ;(¢) and Z;;(t);;,
and the fluctuations of the center of mass, R;;(f) [105]:

X @0) = Xi0) = X0y, Sa0) = (X 0))
X™(0) = Xi0) = (X0 Zi0) = (X" (1))
X§™(1) = (XiO) gy = XiD)pypys RiD) = (X" (0)%) (3-3)

Using the relations between spatial moments of probability densities and trajectories’ statistics
presented in Appendix A, it can easily be seen that the variances S ;(?), Z;;(t), and R;;(¢) of the
three processes defined in (3.3) correspond respectively to the expectation (average over velocity
realizations) of the second spatial moment of the single-realization concentration c(X, f), to the
second moment of the ensemble average concentration {c(x, t)),, and to the variance of the first
spatial moment of c(x, 7). These quantities are related by

Sii=2Zi—Ri. (3.4)

This identity was used by Le Doussal and Machta [62], in the context of measurements methods
for diffusion coeflicients, to define quenched” and “annealed” coefficients, S ;;/(2¢) and X;;/(2t)
8



respectively. Attinger et al. [2] considered the same quantities to define effective and ensem-
ble dispersion coefficients, %dS ;i/dt and %dE,-,- /dt respectively. Kitanidis [57] also obtained the
identity (3.4) after computing S ;;(f) and X;(#) by averaging an advection-diffusion equation with
random coefficients.

If the necessary joint measurability conditions which allow permutations of averages are ful-
filled (e.g. [119]) the second moment of the mean concentration can be expressed as (see [100]
and, for the case D = 0, [98])

Zii = 8i(0) + (Xio)y, + Mii + Qi (3.5)

where where S ;;(0) = (Xo; — <X0i>x0 )Z)XO, Xii = ((}?i - (Z)Dv)z)w is the “one-particle dispersion”
(defined by averaging with respect to D and V for a fixed initial position), M;; = {m;;), is the
ensemble mean of the memory term (2.17), and Q; = (((Xi),, — <Xi>nxgv)2>xo is the spatial

variance of the one-particle center of mass (Z)DV, computed by averages over Xj.

As follows from (2.15), the trajectory X(#) depends on the Lagrangian velocity field V;(X(z)),
which consists of observations at random locations on the trajectory of the random Eulerian
velocity (which is defined in a fixed reference frame) [119]. If the Lagrangian field is statistically
homogeneous the one-particle center of mass ()~(,-)DV and dispersion X;; are independent of Xj.
Then M;; and Q;; vanish and from (3.4) and (3.5) one obtains

Sii = Si(0) + Xii — Ry;. (3.6)

The validity of the Lagrangian homogeneity hypothesis and of the the relation (3.6), first derived
by Dagan [26], is crucial for the interpretation of the field measurements and for the inference of
the upscaled diffusion coefficients.

4. Monte Carlo results

An ideal tracer experiment, consisting of passive transport of substance under different de-
terministic initial conditions, was simulated numerically with the method presented in Sec-
tion 6 below. A two-dimensional advection-diffusion problem was solved by simultane-
ously tracking large collections of computational particles (ten billions in most cases, see e.g.
[95, 96, 98, 100, 101]) by a GRW approach equivalent to a superposition of weak Euler schemes
for the It6 equation (implementation details are given in [95, Appendix A]).

For a given statistically homogeneous log-normal random hydraulic conductivity K with ex-
ponential correlation and finite correlation length A, the velocity field was approximated to the
first order in the variance of In K. This approximation, obtained by a formal asymptotic expan-
sion of the flow equations (3.2) [45, 25], was computed numerically by the Kraichnan’s approach
[61] as sum between a constant mean (U, 0) and a superposition of random periodic fluctuations
(e.g. [96, Eq. 8]). In this way one obtains fast estimations of samples of random velocity fields
which permit the computation of thousands of transport simulations at moderate computational
costs. For finite numbers of random periodic modes the fluctuations of the estimated dispersion
quantities may be affected by an artificial logarithmic increase [35, Appendix A]. As an empir-
ical recipe, the number of modes was chosen to be of the order of the total computation time
[35]. The convergence of the Monte Carlo estimates was ensured by using several hundreds of
simulations [102, Fig. 4].
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Figure 1: The variance of the center of mass R;;/(2Dt), i = 1,2, decreases uniformly with increasing source

dimension and goes to zero for large times.

4.1. Ergodic properties of the center of mass process

Figure 1 shows the long-time decay of the variance R;; of the center of mass process X;™ (7).
This implies, according to (3.4), that at large times the expectation of the second moment of the
concentration may be approximated by the second moment of the mean concentration, S;; ~ Z;;.
Figure 1 also shows the decrease of R; with increasing supports of the initial concentration. One
expects therefore that, for sufficiently large contaminant sources, the approximation S; ~ X;
also holds at finite times. Following the terminology introduced by Dagan [26], large plumes, for
which the expected second moment can be approximated by the second moment of the ensemble
mean concentration, are usually called “ergodic plumes” in the hydrogeological literature. One
hypothesizes also that the mean second moment S ; as well as the un-averaged moment s;; of
an ergodic plume can be approximated, according to (3.6), by the one-particle dispersion X;
[98, 101].

Another ergodic property was formulated by Sposito et al. [89]. The transport in groundwater
is called asymptotically ergodic if the solution to (3.1) for a given realization of the velocity
field approaches that of the “macrodispersion” model, an upscaled advection-diffusion equation
supposed to describe the transport in random velocity fields with finite correlation scales [25].
Various meanings of ergodicity in hydrogeological literature are particular cases of the general
formulation proposed in [95]: an observable of the transport process is ergodic with respect
to a stochastic model if the root mean square distance from the model prediction is smaller
than a given threshold. The squared distance can be decomposed as sum between the squared
deviation of the ensemble mean of the observable from the reference stochastic model and the
variance of the observable about its mean [95, definition 5]. The usual statistical inference for
ergodic estimators of the mean [118] is retrieved in this formulation when the observable is an
average over the parameter range (time or space) and the stochastic model is the ensemble mean
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Figure 2: For sources with large dimensions on the i-direction the ensemble dispersion X; depends on the
initial conditions.

of the random function (see also [98]). The self-averaging property from statistical physics
[11] corresponds to the particular case when the observable is the (un-averaged) process itself
and the stochastic model is the ensemble mean of the process. The self-averaging property is
thus ensured by a vanishing variance in the long time limit, and, obviously, it is implied by the
asymptotic ergodicity.

The decay with time of the variance R;; indicates the self-averaging of the center of mass
process X;™(?). The self-averaging of the center of mass corresponds to a self-averaging property
of the mean Lagrangian velocity (u,-(X(t’)))DX0 [104, Fig. 2]. The variance of (Xf’”)z(t) also was
found to decrease in time and with increasing source size [100, Fig. 1]. This implies the self-
averaging of the quantity (Xf’")z/ (21), which is the single-realization dispersion coefficient of the
center of mass [99, Eq. 23]. Since, according to Slutsky’s theorem [118] a vanishing variance
is a sufficient condition for ergodicity, the self-averaging implies the “usual” ergodicity, that is,
the convergence of the time and space averages of the observables X" (1)), (u;(X(¢))) nd

DX, a
(X2 /(21).

4.2. Dependence on initial conditions

The variance of the process X (), i.e. the second moment X; of the mean concentration,
computed for different shapes and sizes of the source is shown in Fig. 2. Significant dependence
on initial conditions of the ensemble dispersion corrected for the initial second moment, X; —
S ,:(0), manifests in case of asymmetric sources with large extension on the i-axis while the initial
conditions have negligible influence for sources with direction of largest extension perpendicular
to the i-axis. This behavior was attributed to the mean memory terms, which may be significantly
large in the first case and negligible in the second case (according to relation (3.5), where the
influence of the Q;; term was found to be negligible, see [104, 100, 98]).
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Figure 3: Single-realization dispersion (s; — S;;(0))/(2D¢) (thin lines), one-particle dispersion X;;/(2Dt)
(dots), ensemble averages (S; — S;;(0))/(2D¢) (solid lines), and (S;; — S;(0) £ S D(s;;))/(2Dt) (grey dots)
[101].

From Fig. 2 we conclude that the second moments of the mean concentration depend on the
size, geometry, and orientation of the source. They approximate the one-particle dispersion
only in special cases of narrow sources with small extension on i -th direction and small memory
terms (2.17). Otherwise, Z; # S ;;(0)+X;;. This indicates that the Lagrangian homogeneity, which
would imply (3.6), fails even though the velocity field considered in simulations is statistically
homogeneous.

4.3. Non-ergodic effective dispersion at finite times

The variance (2.16) of the effective process Xff f (t) computed for fixed realizations of the
velocity field shows large sample to sample fluctuations in cases where X; is also strongly in-
fluenced by the initial conditions (Fig. 3). The one-particle dispersion X;; shown in Fig. 3 was
approximated by X; — S ;(0) in ergodic situations consisting of large slab sources perpendicular
to the i-axis. The deviation S; — Xj; of the mean of s;; from the one-particle dispersion is one to
two orders of magnitude smaller than its standard deviation S D(s;;). These are the two quanti-
ties which determine the deviation from ergodic behavior in the general formulation presented in
Section 4.1. Thus, the results from Fig. 3 indicate that the single realization dispersion s;; is in
general non-ergodic with respect to the one-particle dispersion Xj; at finite times.

Ergodicity may be expected, within acceptable small root mean square distances, for longi-
tudinal dispersion in case of large transverse slab sources and for transverse dispersion in case
of longitudinal slab sources. However, the Monte Carlo results contradict a common belief on
ergodic plumes: large transverse plumes do not necessarily imply the ergodicity of both longitu-
dinal and transverse dispersion. On the contrary, increasing the plume dimensions might result
in dramatic non-ergodic behavior, mainly for the transverse dispersion.
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Figure 4: Longitudinal (left) and transverse (right) memory terms in non-ergodic cases, for finite and infinite
Peclet numbers. Solid lines correspond to M;; and thin lines correspond to (M; + S D(m;;)/R"?)/(2Dt),
where R = 1024 is the number of Monte Carlo simulations [99].

4.4. Loss of memory and asymptotic ergodicity

In ergodic cases shown in Fig. 3 (slab sources perpendicular to i-axis) the relation s; —S ;;(0) =
Xi; is an acceptable approximation of (2.16). In non-ergodic cases, the memory terms (2.17) are
no longer negligible and (2.16) is approximated by s;;—S ;;(0) ~ X;;+m;;, which allows estimations
of means and standard deviations of the memory terms m;; [104]. Since the deviation of the
mean S ; — §;;(0) — Xj; is negligible as compared with the standard deviation S D(s;) (see Fig. 3),
S D(m;;) ~ S D(s;;) also quantifies the non-ergodicity of s; with respect to X;; (see definition in
Section 4.1).

The Monte Carlo results presented in Fig. 4 show strong memory effects at finite times for
asymmetric sources. The memory terms for Pe= 100 are almost identical with those for pure ad-
vection (Pe= o0). The mean-square convergence of m;; to zero indicates the asymptotic ergodicity
of the actual dispersion s;;.

Asymptotic ergodicity, and implicitly self-averaging behavior, is also indicated by Monte
Carlo results on means and standard deviations of the cross-section space average concentra-
tion at the plume center of mass [95, Figs. 1 and 2].

5. Theoretical results

5.1. Statistical homogeneity properties

The failure of Lagrangian homogeneity (Section 4.2) means that the mean ()?,-)DV and the
variance X;; of the increment )?i(t) = X;(t) — Xi(to) depend on the deterministic initial position
Xi(tp). Since the ~transition density g(x,? | Xo, o) is the probability density of )~(,-, the statistical
homogeneity of X; is equivalent to the invariance to space translations of the ensemble averaged
transition density (g), .

The usual set-up for statistical homogeneity is as follows. Let V(w,x) = w(x), w € Q, be a
homogeneous random function defined on the canonical probability space (2, A, P), where A is
a o -algebra on Q). Measure-preserving shifts on Q are defined through (Tx, W)(X) = W(X +X,),
Po ‘r;Ol = P. A composed function F(V) is also homogeneous if it depends on w and xy only
through measure preserving shifts F' = F(rx w) [119].
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Let us consider the transition density solving (3.1) in a translated reference system, X = x — Xy,

0g(X,110,1)
0y

As follows from (5.1), g depends on velocity statistics only through 74 w = V(X+x,), hence, it is
statistically homogeneous if the Eulerian velocity field V(x, w) is homogeneous. If, in addition,
the solutions of (3.1) are unique in a classical sense, then g(X, ¢ | X, fp, w) = g(X—Xo,? | 0, tp, Tx, W)
and the measure-preserving property of 7y, implies the translation invariance of the mean transi-
tion density, that is, {(g), (X, | X0, %) = (g), (X — X0, 1 | 0, fp).

According to (2.15), to Fokker-Plank equation (5.1) one associates an It6 equation solving for
displacements )?i(t) = Xi(?) — xo; from the deterministic initial position X;(fy) = xo;,

+V - (VX +x,)g(X.1]0,10)) = DV?g(X, 1] 0, 19). (5.1)

Zm=fw&M+mw+mm. (5.2)
0

If the solutions to (5.2) are pathwise unique, then the displacement field i(t; Xp,w) =
X(#; 0, Ty, w) is homogeneous [119, Remark 6.7 and Prposition 6.1]. Homogeneity of X(#) im-
plies homogeneity of the Lagrangian velocity field, ViL(xo, 1 = Vi(X@) = V,-(i(t) + Xg), which
depends on statistics of X through measure-preserving shifts. Conversely, assuming the homo-
geneity of V;(Xo, 1), (5.2) implies the homogeneity of X (see also [92, p. 2]).

We have thus the following result which summarizes the homogeneity properties of the process
of diffusion in random velocity fields:

If (1) the Eulerian velocity field V (X, w) is statistically homogeneous and (2) the Fokker-Plank
equation (3.1) admits unique classical solutions for (3) deterministic initial conditions, then
(a) The mean transition density (g), is invariant to spatial translations, (g),(X,t | Xo,%) =
(), (x = X0.1 | 0, 1o).

If, in addition, (4) the associated It6 equation (2.15) admits pathwise unique solutions, then
(D) the following statements are equivalent:
(bl1) The displacement field X = X;(t) — x; is statistically homogeneous.
(b2) The Lagrangian velocity field ViL(XO, t) is statistically homogeneous.
(b3) The ensemble mean transition density {g), is translation-invariant.

The statements (b1) and (b2) in can be proved independently, without requiring the existence
of a density g for the transition probability. The first proof of homogeneity property (b2) and
of the equality between Lagrangian and Eulerian means was given by Lumley [64] for purely
advective transport, under the implicit assumption of analytical velocity realizations. Port and
Stone [80] extended this result by considering diffusion in random advection fields and provided
a rigorous proof for the equality of the Lagrangian and Eulerian one-point probability distribu-
tions under milder conditions, i.e continuity of the first-order spatial derivatives of the velocity
samples. Zirbel [119] extended previous homogeneity results to statistical stationarity in case of
space-time velocity fields and generalized the results of Port and Stone by replacing the Wiener
process by a family of martingales which allow including the diffusion in the random environ-
ment.

The results obtained so far do not go beyond the equality of the one-dimensional probability
distributions of the Lagrangian and Eulerian velocity fields. Since the higher-order distributions
do not coincide, the probability laws of the Lagrangian and Eulerian fields are in general different
[119]. The invariance to spatial translations of the mean density (g), (statement (a)) is also a one-
point statistical property, which implies the homogeneity of ()~(i>bv and Xj;, cancels the mean of
the memory terms (2.17), and ensures the validity of the expression (3.6) for the second moment.
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These homogeneity properties hold true for unique solutions of the transport equations. The
irregularity of the velocity samples for the exponentially correlated In K field used in Monte
Carlo simulations (see [92, Fig. 1]), which do not ensure the uniqueness of the solutions, may
explain the non-vanishing mean memory terms indicated by Fig. 2 and Fig. 4.

Also essential is the assumption of deterministic initial conditions. In case of random initial
conditions, the velocity with the spatial argument translated by Xo(w) in equations (5.1) and (5.2)
is not a measure-preserving shift and we are no longer in the frame of the usual homogeneity
setup. Since the mean memory terms are time integrals of the Lagrangian velocity covariance
[92, Eq. 15], they are non-vanishing as long as the velocity is correlated. This implies that
translation-invariance of the mean transition probabilities associated to successive increments of
the process may be expected only in case of un-correlated velocity fields or asymptotically in the
long time limit, for velocity fields with finite correlation scales. In such cases, by the Corollary
formulated in Section 2.3, the transport process is a wide-sense version of a Gaussian diffusion.

5.2. First-order approximations

Theoretical investigations in subsurface hydrology are often based on first-order approxima-
tions for the variance of the effective, ensemble, and center of mass processes defined in (3.3)
[45, 23, 2, 28, 34]. Such approximations are essentially asymptotic expansions truncated at the
first order in the variance of the velocity field. Approximations obtained by Eulerian approaches,
based on Fourier representations of solutions to partial differential equations similar to (3.1)
[45, 2, 28, 15, 34], are in very good agrement with those derived from trajectory equations of
type (2.15) [12, 34, 96, 35]. Moreover, if the same conventions in defining Fourier transform are
used, the mathematical expressions of the first order approximations obtained by Eulerian and
Lagrangian approaches are identical [105, Ramark 4.2]. This is just as we would expect from the
1t - Fokker-Planck equivalence (e.g. Appendix A.2). It6 representation is to be preferred here
since it renders the computations easier and leads to simpler physical interpretations [92].

In the following, the first-order approximation approach is illustrated for the ensemble process
X{"*. Approximations for the effective, Xff I , and center of mass, X{™, processes can be obtained
similarly ([99, Sec. 4]). The It6 process starting from x, = 0, in non-dimensional form, reads

Xi(t) = 8;1t + € f w,(X())dt' + Pe > Wy(r), (5.3)
0

where Pe = UA/D is the Péclet number with respect to the correlation length in the mean flow
direction A = Ayy, U = (V1),, u; = Vi = 61U, (), = 0, (u?), = 0, and € = o/ U are velocity
fluctuations. Within the order of magnitude hypothesis Pe™'/? = O(e%), & > 0, the ensemble
process X{"¥(1) = X;(¢) — (Xi(9)),, is described, according to (5.3), by

XE5(1) = € f wi(X(A)dr + e Wi(t).
0

The half time derivative of the variance of X?"* (see (3.3)), which defines ensemble dispersion
coeflicients D (7) = %dZii(t)/ dt [2, 28], yields a Taylor-Green-Kubo formula [92]:

DIS(h) = €% + € fo (X)X (1)), 1. (5.4)
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The convergence of the integral in (5.4) for t+ — oo ensures finite correlation times 7; of the
Lagrangian velocity. Finite 7;; is a criterion for diffusive limit, formulated for instance by Fan-
njiang and Komorowski [38]. If this criterion is fulfilled, then the long time limit of (5.4) defines
asymptotic dispersion coeflicients of the process X;*.

The Kubo relation (5.4) has been derived in [92] in case of homogeneous Lagrangian veloc-
ity fields. In absence of Lagrangian homogeneity, (5.4) is still valid if u;(X(?)) is replaced by
vi(X(#)) = u;(X(#)) — (u;(X(#))), . In the derivation of (5.4), cross-correlations between the Wiener
process W; and the velocity fluctuations v; cancel (see Section 2.2) because the diffusion process
fulfils the supplementary conditions (2.7) and (2.8). If we are only interested in a first order
of approximation, there is no distinction between the two situations, because the approximated
Lagrangian velocity is statistically homogeneous [99, Sec. 4].

A consistent formal asymptotical expansion of the dispersion coefficients (5.4) can be obtained
as follows. Consider the asymptotic series of the trajectory (5.3), X(1) = X (1) + eAX() + - - -,
where X (#) = (¢,0, 0) is the trajectory of the mean flow, and the formal Taylor expansion of u;,

wi(X) = u;(X) + e XNAX + - -+, (5.5)
where u: denotes the Fréchet derivative. Then, assuming @ > 1, from (5.4) and (5.5) one obtains
D~ &+ €17 + € Fu(X), )Xy + -+, (5.6)

where Il.(?) is the integral in (5.4) evaluated on the mean trajectory X©O(f) and F is a functional of
the Lagrangian velocity u; and of its Fréchet derivative ;. In the long time limit, the truncation
to the first-order in €? yields D~ X + EZTE?), where Tg?) = lim,, Ii(io)(t) are the Lagrangian
correlation times. In case of velocity fields with finite correlation range, finite correlation times
are ensured by the finiteness of the correlation lengths 4;;. Reverting to dimensional variables,

one obtains the asymptotic long time behavior of the approximated dispersion coefficient [92],
D ~ D+ 0”2/ U. (5.7)

Hence, consistent first-order expansions of the dispersion coefficients may be obtained from
the first iteration of the Itd equation (5.3) about the reference solution X©(¢) [96, 99]. Formally,
this consists of replacing u;(X(?)) in (5.4) by u;()[23].

Assuming Gaussian velocity fluctuations u;(f) (corresponding to log-normal hydraulic con-
ductivity of small variance), Dagan [23] derived an advection-dispersion equation for the mean
concentration, with constant velocity equal to the mean flow velocity and time-dependent disper-
sion coefficient given by (5.6) truncated at the first-order in €. Equations for the mean concen-
tration were also derived from stochastic concentration balance equations by truncated cumulant
expansions [90], with approximation errors of the order (071.)? [116, Sect. 12], where 7, is a
characteristic time scale on which the randomness of the velocity fluctuations appears as uncor-
related [90, 52], hence of the order of the Lagrangian correlation times 7;. The method, applied
initially to passive transport in incompressible, statistically homogeneous random velocity fields,
was successively generalized by considering reactive transport in incompressible homogeneous
fields [S51], passive transport in compressible non-stationary and non-homogeneous time-space
random fields [52], and, for the latter case, by adding non-equilibrium sorption [87] and forcing
terms [86]. For passive transport in incompressible and statistically homogeneous fields, Dagan’s
equation is retrieved by sampling velocity fluctuations on the mean flow trajectory [51, 87], sim-
ilarly to the consistent first-order expansion presented above.
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Rigorous proofs of existence for upscaled processes with constant coefficients similar to (5.7)
(limit theorems) can be found in a series of papers by Kesten, Papanicolaou, Fannjiang, Ko-
morowski [56, 38, 60], among others.

The first iteration of the It equation about the process of diffusion taking place in the mean
flow field, ZO(t) = XO(7) + e*W(7) leads to

D{¥(t) =D+ f dt'ff(ui(x)ui(x'))wp(x, t,x,1)dxdx’. (5.8)
0

where p(x,#;X’,#') is the Gaussian joint probability density of the diffusion process Z(z) (see
[92, Eq. 11] and [99, Eq. 34]). This approximation is an inconsistent asymptotic expansion,
because it mixes the orders of magnitude, by including the contribution € in the zero-th order
Z%. However, (5.8) leads to the same asymptotic behavior (5.7) as the consistent expansion
[96, Fig. 2]. In addition, the inconsistent approximation, unlike the consistent one, accounts for
enhanced diffusion (i.e. scale effect) in single realizations of the velocity field [96]. Eulerian
perturbation methods [28] and Lagrangian approaches [24] yield the same explicit expressions
for both ensemble and effective dispersion coefficients [105, Remark 7]. Moreover, Sposito
and Barry have shown that Dagan’s expression of the ensemble coefficients [24] is equivalent
to that obtained by the method of cumulant expansion [90]. Such approximations also allow
the computation of the dispersion coefficients in case of power-law correlated velocity fields as
linear combinations of scale-dependent coefficients for diffusion in velocity fields with short-
range correlations [105, Eq. 42].

5.3. Anomalous diffusion, ergodicity, and self-averaging

Anomalous diffusion behavior is commonly characterized by the time dependence of the vari-
ance. If it grows like #* with @ < 1, @ = 1, or @ > 1 one considers that the process is subdiffu-
sive, diffusive, or superdiffusive, respectively. There are however cases where this classification
scheme might be misleading, as for instance the apparently diffusive behavior with @ = 1 resulted
from the competition between subdiffusion and Lévi flights [33]. To overcome such situations,
O’Malley and Cushman proposed a renormalization-group classification of diffusive processes,
which generalizes the notion of self-similarity [75, 76]. The new scheme performs better in case
of processes with infinite variance and/or non-stationary increments and yields the same classi-
fication as the variance scheme for processes with stationary increments, as those considered in
the following. Another special case is that of the process made up of the sum of a subdiffusion
and a normal diffusion, with linear long time behavior of the variance, which is, however, not a
normal diffusion because of the indefinite persistence of the memory terms [92]. Though it can-
not classify different types of diffusive behavior, the criterion of vanishing memory terms allows
unambiguous identification of normal diffusion processes (see Section 2.3).

The ergodicity of the center of mass process X;™(f) (shown, for instance in Fig. 1) has been
associated with that of the space-random fields with finite correlation range and with the normal
diffusive behavior of the process at large times [26]. In the more general case of space-time ran-
dom fields, arguments have been put forward that temporally ergodic flows satisfy the diffusion
limit criterion of convergent integral in (5.4) and that the violation of this criterion may lead to
anomalous diffusion [38]. For time-independent fields and small velocity fluctuations, some re-
lations between the ergodicity of the random fields, the ergodicity of the dispersion coefficients,
and the type of diffusive behavior are readily available in the frame of the consistent first-order
approximation.

17



Consider first velocity fields with short-range correlations. In such cases the integral range
is finite and the space-random velocity is necessarily ergodic [14]. Typical examples are expo-
nential and Gaussian short-range correlations, for which, according to Section 5.2, the first-order
approximation of the Lagrangian correlation behaves like covy(f) ~ e and covy(f) ~ e"z,
respectively. The corresponding correlation times 7; are finite and define constant dispersion
coefficients, given by (5.6) truncated at the order €.

An ergodic estimator in the first-order of approximation of the dispersion coefficient for the
“reduced” process ¥; = X{"* —W; can be obtained by replacing in (5.4) the Lagrangian covariance
covy(t — 1) = (u;(t)u;(¢')), by a time average of the product u;(#)u;(t’'),

t 1 T—t t
Dj(1) = f dt'T— ui(t + )u(t' + s)ds = f covl(t,t)dr . (5.9)
0 =t Jo 0

Since to the first-order the velocity fields are Gaussian of mean zero (e.g., [45, 26]), the forth
moments are completely determined by the correlation function (e.g., [118, equation (3.29)]).
The limit, in the mean square sense, {[cov’ (¢,1') — covy(f — t’)]z)v — 0 as T — oo exists if and
only if the condition of Slutsky’s theorem for ergodic variance is fulfilled [118, p. 234], i.e.

T
% fo (covu(s))*ds — 0. (5.10)

The validity of (5.10) for short-range correlation fields implies the mean square convergence of
the estimator Dy ;; towards the ensemble coefficient DY

Power-law velocity correlations also may occur in hydrological modeling if the analysis of
the field data shows a dependence on the observation scale of the log-hydraulic conductivity.
A discussion on this topic and explicit relations of the longitudinal dispersion coefficients for
two important classes of long-range correlated In K fields, namely fractional Gaussian noise and
fractional Brwonian motion correlation types, can be found in [39].

Consider in the following fractional Gaussian noise velocities with power-law correlations
covy(t) ~ t7#,0 < B < 2. According to (5.4), the variance of the process ¥; behaves like
2= (Yiz) ~ 2P If B £ 1, Y; is a fractional Brownian motion with Hurst exponent H = 1 - 8/2,
0< H < 1, H # 1/2 (superdiffusion if 0 < 8 < 1 and subdiffusion if 1 < 8 < 2). If =1 (the
case of “1/x” noise), then X;; ~ tInt—1t. In all these cases of anomalous diffusion, the increments
of the process are correlated and the memory terms M;; ~ 1> persist indefinitely [92].

For the case of fractional Brownian motion, Deng and Barkai [27] proved the ergodicity of
the variance by a direct analytical computation of the variance of its ergodic estimator. Since the
condition (5.10) holds for all 5 > 0, the ergodicity of X; and D" is also a corollary of Slutsky’s
theorem.

Summarizing, we have the following result: Ensemble dispersion coefficients for diffusion
in velocity fields with short-range correlations as well as in fractional Gaussian noise random
fields with correlations covy ~ t75, 0 < 8 < 2, are ergodic within the precision of the consistent
first-order approximation.

The normal diffusion is retrieved as a particular case of fractional Brownian motion, together
with the super- and subdiffusive cases, if one considers correlations of fractional Gaussian noise
of the form covy ~ ¢ (1 = B)t™ + ct'P5(t), where t = t) — tp, 1) > 1, > 0 (see e.g. [50]). With
Hurst exponent defined as above by H = 1 — 8/2, normal diffusion corresponds to § = 1 and
H=1/2.
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It is worth noting that anomalous diffusion is generated, through (5.4), by the power-law cor-
relation of the Lagrangian velocity without necessarily requiring a power-law correlation of the
Eulerian velocity field. This is illustrated by the famous model of Matheron and de Marsily [67]
where the interplay between the local dispersion and the longitudinal Eulerian velocity with finite
correlation length along the transverse direction produces a Lagrangian velocity with longitudi-
nal correlation scaling as ~ #~'/2 [67, 12]. This results in superdiffusive behavior with Hurst
exponent H = 3/4 in two-dimensions [92]. The same model also shows subdiffusive behavior in
three-dimensions, and a ~ #In ¢ — ¢ behavior when extended to higher dimensions [66].

To check whether the variance of the process ¥; = X"* — W; is also self-averaging, consider
the single-trajectory quantity

() = 2f(t - ‘z’)a"r(L f_T w;(s)u;(s + ‘r)ds).
0 =7 Jo

The expression in the brackets is an ergodic estimator of the velocity covariance covy(?). If this
estimator is accurate enough at finite times, then

i) = 2f de_T ui(ui(s + tyds ~ 2 f (t = T)covy(r)dr. 5.11)
0 0 0

Since the right hand side of the approximate equality in (5.11) is the Taylor’s formula valid
for a stationary ensemble variance X; [70, equation (9.30°)], X7 is a self-averaging estimator of
2. The self-averaging property (5.11) has been demonstrated numerically and used to estimate
ensemble dispersion coeflicients D{"* ~ X7 /(2¢) on a single trajectory of diffusion in short-range
correlated velocity fields [102]. Such self-averaging estimates are useful as input parameters in
models for the evolution of the probability density of the random concentration [108] (see also
Section 7).

First-order consistent approximations of effective dispersion coefficients S ;;/(2¢) are computed
according to (3.4) by subtracting from the ensemble coeflicients the coefficients of the center of
mass R;;/(2¢t) evaluated by spatial integrals of two-particle velocity covariances over the support
of the initial plume [26, 99]. For singular point-like sources, £; — 2Dt = R;; and the consistent
first-order effective coefficient equals the local dispersion coefficient D [96]. Useful first-order
approximations for point sources can be obtained in an Eulerian frame by computing small per-
turbations around the process of diffusion in the constant mean velocity field [2, 28]. Even
though a recent study, considering two-dimensional transport in velocity fields with short-range
correlations and point sources, reports non-vanishing variance of the longitudinal effective coeffi-
cients in the long time limit [30, Fig. 1], direct numerical estimations, using ensembles of single-
realization effective coefficients computed by the same perturbation approach [34], clearly show
the decay of the variance at large times [96, Fig. 3]. This self-averaging property, demonstrated
numerically for both two- and three-dimensional cases [35], is also consistent with the results
on asymptotic ergodicity presented in Section 4.4. One the other side, in case of anomalous
diffusion with H = 3/4, generated by the model of Matheron and de Marsily, the sample-to-
sample fluctuations calculated analytically do not converge to zero and the longitudinal effective
dispersion coefficient is not self-averaging [15, Fig. 4].
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6. Global random walk

6.1. Global random walk algorithm

The GRW algorithm used in the Monte Carlo simulations presented in Section 4 solves diffu-
sion problems by moving large collections of computational particles on regular lattices. Instead
of moving particles sequentially, GRW redistributes all particles from a lattice site, through ad-
vective displacements and diffusion jumps, in a single numerical procedure. GRW can thus be
thought as a superposition of weak solutions to Itd equation projected on the lattice: instead of
computing individual trajectories, it approximates the evolution of the probability distribution of
the 1t6 diffusion by that of the number of particles at lattice sites [110].

In a one-dimensional GRW algorithm, the number of particles # at lattice sites i and successive
time steps k and k + 1 is given by the relations

n(j,k) =on(j+v;, j,k) +on(j+v;—d, jk)+on(j+v; +d, jk), (6.1)
n(i, k+1) =on(,i, k) + Z on(i, j, k), (6.2)
J#i

where v; = [V;0t/0x] are discrete displacements due to advection by the local velocity field,
computed as the integer part [-] of the non-dimensional velocity, ¢ and dx are the time and the
space steps, j + v; are new positions after advective displacements, and d are natural numbers
describing discrete diffusive jumps dox. The number of particles undergoing diffusion jumps,
on(j+v;=+d, j, k), and the number of particles waiting at j+v; over the k-time step, on(j+v;, j, k),
are binomial random variables. The space and time steps, dx and d¢, are related to the diffusion
coefficient D through
(dox)?

D= , 6.3
"6 6.3)

where r is a rational number, 0 < r < 1.

The relation (6.3) is the Kolmogorov’s definition of the diffusion coefficient (2.6) projected on
the lattice, where the parameter r plays the role of the transition probability. Indeed, according
to (6.1), the trajectory of each particle is governed by

Xk+1 = Xk + vox + é:, (64)

where Xk = jox, v = v;, and the discrete process £ is an unbiased random walk with amplitude
|€] = dox and transition probabilities

P{¢ = + V2Do1) = % PiE=01=1-r (6.5)
In Appendix B.1 it is proved that the GRW algorithm (6.1-6.3) fulfills the requirements for
an exact decomposition of the spatial second moment of the concentration as sum of dispersion
and memory terms (see Section 2.2). As shown by (6.3) and (B.2), the algorithm is free of
numerical diffusion by construction. The main source of errors is the truncation of the advective
displacement from the last term in (B.1). A priori error estimates are not available for the GRW
algorithm. However, a posteriori error estimates obtained by comparisons with a biased-GRW
(see Section 6.3), indicate the decrease of the truncation errors with refining the lattice [94].
The resolution of the velocity field in GRW simulations is controlled by the parameter p =
Uot/6x, where U is the mean velocity [93]. An empirical recipe to reduce the truncation errors
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in case of variable velocity is to chose a value of the mean Courant number Udt/dox = p/d
smaller than one [107].

As shown in Appendix B.2, for a constant drift V the GRW algorithm is strictly equivalent to
a superposition of weak Euler schemes, with convergence order O(6¢%), which approximates the
one-point probability density of the Itd process by the particle density at lattice sites.

The mean of the binomial random variables én(j + v; + d, j, k) with parameters n(j, k) and r/2
(see (6.5)), i.e. the mean number of unbiased right/left jumps from the lattice site j at time ¢,
equals %rn( J,k) [77, p. 156]. Taking the mean over an ensemble of GRW runs (denoted in the
following by an overline) and using (6.1) one obtains

1 -
on(j+vj+d, jk)=zrn(ik),  on(jj+vyk)=1=7)n(k). (6.6)

In case of constant D and V = 0, according to (6.1-6.2), the evolution of the mean number
of particles is described by an explicit finite difference scheme for the diffusion equation d,c =
D(?fcc,

nGk+ 1) = %n(i Y0+ (1— PGk + %n(i 4.0 (6.7)

The continuous solution can be approximated by c(x;, #;) = m/éx [110]. In weak formula-
tions, c(x;, #;) is usually approximated by a sum of Dirac measures [63, 37]. Since the initial
value problem is well-posed (as consequence of conservation of the number of particles) and the
scheme (6.7) is stable (r < 1 fulfils the von Neumann’s criterion), it is also convergent, according
to Lax-Richtmyer Equivalence Theorem [91]. The convergence order is O(6¢) in time and 0(6x%)
in space.

6.2. Implementation and numerical convergence

The exact GRW algorithm is implemented by extracting the random variables on(j+v;+d, j, k)
from the cumulative binomial distribution function (see [110, pp. 532-533]). Several other im-
plementations were also proposed in [110], for instance, the “deterministic GRW”, where one
gives up the particle indivisibility and n are arbitrary positive real numbers evolving according
to (6.7), approximations of the binomial distributions by erf-functions for large n, or the re-
duced fluctuations GRW algorithm. The latter proved its efficiency in large scale simulations of
transport in groundwater [96, 100].

In the reduced fluctuations GRW, the number of left jumps is given by

. o n/2 if n is even
6n(]+vj—d,J,k)—{ [7/2]1+ 6 ifnisodd, 8

where n = n(j, k)-oén(j+v;, j,k), [n/2] is the integer part of n/2, and 8 is arandom variable taking
the values 0 and 1 with probability 1/2. The number of right jumps is given by the difference
n—on(j+v;—d, jk).

In practice, (6.8) is implemented by summing up reminders of division by 2 and multiplication
by r of n(j.k) and by assigning a particle to the lattice site where the sum of reminders reaches
the unity. In this way, one avoids the need to use random number generators [107].

The GRW solution to the initial value problem for a Gaussian diffusion is illustrated in Fig. 5.
By increasing the number of particles the un-averaged GRW solution approaches the solution of
the finite difference scheme (6.7). It was found that the GRW algorithm is self-averaging, in the
sense that if the total number of particles N is large enough, no ensemble averaging over GRW
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Figure 5: Distribution of N = 300 particles staring from x = 100 after the first three GRW time steps for
D =1 and fixed parameters » = 1 and d = 1.
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Figure 6: Convergence with the number of parti-  Figure 7: Comparison of CPU times for simula-
cles of the exact GRW algorithm (GRWO0) and of  tions carried out with GRW, GRW0, and PT of
the reduced fluctuations algorithm (GRW), fora  a three-dimensional Gaussian diffusion problem
one-dimensional Gaussian diffusion problem. over ten dimensionless time steps.
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Figure 8: Two-dimensional GRW for constant Figure 9: Two-dimensional GRW for variable
diffusion coefficient, built as a superposition of  diffusion coeflicients, based on two independent
two one-dimensional GRW procedures. random walks on x- and y-directions (right).

runs is necessary to obtain smooth solutions [110, Fig. 5]. Thus, the GRW solution converges
like O(6x%) +O(1/ VN). The decay with N of the error norm is a bit faster in case of reduced
fluctuations GRW (Fig. 6). The number of particles required for self-averaging increases with the
simulation time and with the dimension of the spatial domain. In case of large scale simulations
in groundwater is vas found to be N ~ 10'0 [93].

Compared with sequential particle tracking procedures (PT), usually consisting of ensembles
of strong solutions to It6 equation, GRW has the advantage of providing smooth solutions by
using huge numbers of particles, at low computational costs. This is shown by a comparison of
CPU time used to solve the same problem given in Fig. 7. While for PT the CPU time increases
linearly with N and requires increasing numbers of processors (up to 256 for N = 10 on a Cray
T3E parallel computer), the computing time increases significantly only for N > 108 in case of
exact GRW algorithm (GRWO) and is practically constant in case of reduced fluctuations GRW.

Two-and three-dimensional GRW algorithms are designed by repeating the one-dimensional
procedure for each spatial direction, in case of constant diffusion coefficients (Fig. 8), or by using
independent random walks, in case of variable diffusion coefficients (Fig. 9). In the latter case, a
two-dimensional GRW is constructed with space-time variable r, and r,, r, + r, < 1. For given
dy, dy, 6x and dy, the time step is chosen to satisfy

s 2 D?ax 2 D;nax -1
t< + —
(d:6x)*  (dyoy)*

where DT = max{D,(x,y, )} and D;‘“”‘ = max{Dy(x,y,?)}. This implementation yields accu-
rate solutions even if the diffusion coefficients are highly variable and random (for instance, in
simulations of diffusion in human skin, modeled as a three-layer two-dimensional model with
Gaussian distributed diffusion coefficients [103]).

6.3. Biased-GRW algorithm

If the velocity and the diffusion coefficients vary in space, overshooting errors may occur
when the particles jump over more than one lattice site (see Fig. 10). This is mainly the case of
diffusion in space-variable velocity fields, when velocity values at sites lying between the initial
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Figure 10: The state of the unbiased GRW at r =  Figure 11: BGRW state at t = 6t = 0.0025, for
ot =0.5. the same problem as in Fig. 10.

and final position of the group of particles during the advection step may have sharp variations.
Overshooting can be avoided if advection is simulated by a bias in the random walk probability
and only jumps to the nearest sites are allowed, as shown in Fig. 11. This results in a biased global
random walk (BGRW) algorithm [94]. Since BGRW moves all the particles lying at a lattice site
in a single numerical procedure, N can be as large as necessary to ensure the self-averaging,
which is the main difference with respect to the biased-random walks on lattices which move
particles sequentially [55, 36]).
The two-dimensional BGRW is defined by the relation

n(i, jk) = on(i, j1i, j, k)
+ on(i+1,ji j.k)+onGi—1,j1ij.k
+on(i, j+ 116, j, k) +6n(, j =114, j,k), (6.9)

where n(i, j, k) is the number of particles at the site (x,y) = (idx, joy) at the time ¢ = kot and the
on are binomial random variables describing the number of particles waiting at the initial lattice
site or jumping to the first-neighbor sites. To the drift and diffusion coefficients of the transport
problem, V(x,y,1), Vy(x,,t), Di(x,y,t) and Dy(x,y, t), one associates dimensionless parameters

Ve = ng, vy = Vyg—;, ry = ng, ry = Dyg. (6.10)
Instead of (6.6), the average over BGRW runs of the terms in (6.9) are now related by
on(i, j 14, k) = (1= rx = 1y) (i, .,
GnCi, T T11,70) = 50y £ )i, 1.6 6.11)

The the reduced fluctuations BGRW is implemented similarly to (6.8). As shown in Ap-
pendix B.3, the BGRW algorithm fulfils the requirements (2.4)-(2.8) and, unlike the unbiased
GRW, it is free of round-off errors in the representation of the drift coefficients.
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Defining the particle density p(x,y, f) = n(i, j, k), summing up the contributions coming from
the first neighbors to a lattice site, and using (6.9-6.11) one obtains

px,y, 1+ 61) — p(x,y, 1) N
5t
(Vip)(x +6x,y,1) = (Vip)(x — 6x,y,1) N
20x
(Vyp)(x,y + 8y, 1) = (Vyp)(x,y — 6y, 1)
26y B
(Dyp)(x + 0x,y,1) = 2(Dp)(x, y, 1) + (Dyp)(x = 6, y, 1) N
ox?
(Dyp)(x,y + 6y, 1) = 2(Dyp)(x, y, 1) + (Dyp)(x,y — 6y, 1)
6y? '

6.12)

The relation (6.12) is the forward-time centered-space finite difference scheme for the Fokker-

Plank equation
2 2

o 0 9 3 d
L L L W)+ —(Vyp) = — (Do) + —(D,p). 13
+ o (Vap) + 6y( W) = 75 (Do) + ayZ( V) (6.13)

ot
As follows from (6.11), the BGRW algorithm is subject to the following restrictions

retry <Ll <1 ] <0y (6.14)

By the last two inequalities in (6.14), the Courant numbers V,6t/6x and V,0t/dy are sub-
unity, which ensures that the BGRW algorithm is free of overshooting errors. If, in addition,
one imposes the conditions r, < 0.5 and r, < 0.5, the von Neumann’s criterion for stability
is also satisfied, Thus, the convergence of the scheme (6.12) is implied by the Lax-Richtmyer
Equivalence Theorem [91].

Under the conditions stated above, the numerical solutions of the BGRW algorithm (6.9-6.11)
converge with the order O(6x*) to the solutions of the Fokker-Planck equation (6.13) for initial
value problems.

As shown by (6.12), the BGRW algorithm is equivalent to a finite difference scheme even
if the velocity field is a space-time function, unlike in case of unbiased GRW, for which the
equivalence holds only for constant velocity. Instead, since advection is accounted for by biased
jump probabilities, BGRW is no longer equivalent to an Euler scheme for the Itd equation.

The advection-diffusion equation which corresponds to Fick’s law,

dp

[P
-t a(vxp)_*_

; 0 op 0 op
Vip) = —(D. Ly + Z(D, L),
ot vP) Bx( ax) * By( )8y)

=
y
is equivalent to the Fokker-Planck equation (6.13) if the drift coefficients are defined by V, =
Vi +0Dy/0x and Vy = V| + 0D, /dy (see (2.3)).

The BGRW algorithm is highly accurate but more expensive than the unbiased GRW, because
of the restriction of sub-unity Courant numbers in (6.14). Therefore, BGRW was mainly used to
validate the faster but less accurate unbiased GRW algorithm (see [97, 96, 94]).

6.4. Coupled MFEM-GRW simulations

Flow and transport problems associated to (3.1) and (3.2) can be efficiently solved by coupling
flow solutions obtained by a mixed finite element method (MFEM) [81, 13] and GRW solutions
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of the advection-diffusion problem. The coupled MFEM-GRW approach benefits of accurate
velocity fields while avoiding the drawback of numerical diffusion in MFEM methods.

The new approach was illustrated for two-dimensional transport of a passive scalar in a ran-
dom velocity field with short-range correlation [107]. A log-normal hydraulic conductivity field
K with exponential correlation was generated by the Kraichnan method as a superposition of ran-
dom periodic modes [81], which ensures reliable simulations of transport if the number of modes
is of the order of the total simulation time [95, 35]. MFEM solutions to the incompressible flow
problem associated to (3.2), for given samples of the K field, were computed in a rectangular
domain and GRW simulations of the passive transport described by (3.1) were performed in a
smaller region inside the domain, to avoid boundary effects. Velocity values defined on MFEM
elements were then interpolated to the nodes of the GRW lattice. A good resolution of the veloc-
ity field and small overshooting errors were ensured with a mean Courant number of 2/3.

For validation purposes, full MFEM solution to both flow and transport for a small grid-Peclet
number of 0.1 were compared with coupled MFEM-GRW solutions. The Lagrangian velocity
and the effective dispersion coefficients estimated by the two methods were in a very good agree-
ment, with a small overestimation of the longitudinal dispersion coefficient by the full MFEM
solution, identified as the inherent numerical diffusion of the MFEM scheme [81]. The coupled
MFEM-GRW achieved a speed-up of computation of a factor of ten as compared to the full
MFEM solution [107].

7. GRW solutions to PDF evolution equations

7.1. Modeled PDF evolution equations

Analytical and semi-analytical solutions for the evolution of the PDF of the solute concen-
trations governed by dispersion and reaction in random velocity fields have been developed for
particular cases and under simplifying hypotheses [83, 85, 29]. By neglecting the local dispersion
and assuming small fluctuations of the velocity field, the explicit expressions derived by Dorini
and Cunha [32] for both one-point and two-points PDF of nonreactive concentrations could be
used in the frame of the consistent first-order approximation (Sect. 5.2). PDF equations and clo-
sure approximations for advective-reactive transport, amenable to analytical solutions, derived
by Venturi et al. [115] account for the randomness of both velocity field and reaction rates.
Functional PDF evolution equations were also introduced, by forcing the application to partial
differential concentration balance equations of the van Kampen’s Lemma [53, 54, 86], valid
however only for systems of ordinary differential equations [116, Sect. 18]. Formal functional
Fokker-Planck equations associated to stochastic partial differential reaction-diffusion equations
presented in the textbook of Gardiner make sense as discrete schemes, but effective computa-
tional tools still have to be developed [43, Chap. 13]. Moreover, such numerical approaches
for functional probabilities are being developed for additive noise, whereas the usual situation in
hydrogeological problems is that of multiplicative noise, induced by random coefficients.

A consensus seems to be emerging that the appropriate approach is to adapt to transport in
groundwater [83, 68, 115] well established methods for reactive flows in turbulence and com-
bustion theory [78, 49, 47]. An advantage of this approach is that the PDF evolution equation
can be put in the form of a Fokker-Planck equation and numerical solutions for the equivalent
Itd equations can be used to approximate the solution. A numerical solution similar to PDF
methods in turbulence has been proposed by Meyer et al. [68]. In their approach, the PDF of a
passive scalar is represented by an ensemble of notional particles tracked in space by the random
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Lagrangian velocity, modeled by an It6 equation, and in the concentration space by a “mixing
model”, accounting for the effect of the local scale dispersion. Since turbulence models, based
on Navier-Stokes equations cannot be used for groundwater flows, the parameters of the velocity
Itd equation have been calibrated by Monte Carlo simulations of the Darcy flow governed by the
equations (3.2).

Lagrangian “composition” PDF codes used in turbulence [41, Sect. 7.3] solve a system of or-
dinary stochastic differential equations describing the evolution of an ensemble of notional parti-
cles in physical and concentration spaces. The corresponding Fokker-Planck equation describes
the evolution of the joint concentration-position PDF p(c, x, t), where c is a vector composed of
the random concentrations associated to the system of chemical reactions. The Eulerian PDF of
¢, for given x and ¢, is the conditional probability density p(c | x, 1) = p(c, X, 1)/ p(X, t). If the po-
sition PDF p(x, ) is chosen to be uniform for all ¢, the Fokker-Planck equation coincides with the
Eulerian PDF evolution equation derived from the concentration balance equation [41, p. 291].
With this choice, the coefficients of the PDF equations can be inferred from turbulence models
[78, 16, 41]. Uniform p(x, ¢) is ensured by uniform initial locations of the notional particles [41].
Giving up this restriction, p(X, ) is the probability to find a notional particle at the position X,
at the time ¢, in the ensemble of all the realizations of the diffusion process and of the random
velocity field; that is, p(X, f) has the meaning of an ensemble mean concentration.

Hence, a general representation of the PDF by notional particles can be designed by con-
sidering an upscaled process driving the mean concentration, with trajectories {X;,i = 1,2,3}
described by the Itd equations

dXi(t) = VX, Hdt + dWi(X, 1), (7.1)

where V; is an upscaled velocity, W; is a Wiener process with E{VNV[Z(X, 1} =0and E{WE(X, H} =
2 fol DX, t')dt', and D;; are upscaled dispersion coefficients [108]. In case of stochastic upscal-
ing, V; is the mean Lagrangian velocity, equal with the constant mean Eulerian velocity [104,
Fig. 2], and D;; is the ensemble dispersion coeflicient derived from the second moment X;; of
the ensemble mean concentration. In case of upscaling by spatial averages, the probabilistic
description is given by a “filtered” density function (FDF), V; describes the filtered velocity
field, and D;; is the upscaled coeflicient accounting for local dispersion and unresolved velocity
fluctuations [16].

The evolution of the time-random concentrations sampled at the positions of the notional par-
ticles Co(t) = Co(X(?)), where @ = 1, - - - , N,, with N, denoting the number of chemical species,
is described by the equations

dCo(t) = Moy(Co())dt + S o(C())dt, (7.2)

where S,(C(?)) are reaction terms and the coefficients M,(C,(#)) describe the mixing in the
concentration space due to local dispersion [78, 16]. Eventually, if the system of reactions
involves immobile species C defined by functions with spatial support on the surface of the
solid matrix, then S, = S o(C(#), C()) and (7.2) have to be supplemented by new equations
dCy(t) = Sp(C(1), C(t))dt, B = 1,-+ ,Ng [108].

Pope [78] proposed a mixing model in the form of an It6 equation describing a diffusion
process in the concentration space,

Mo (Co(1))dt = Ag(Co())dl + Bo(Co(1)dW (1),
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where W(#) is the standard Wiener process. The drift term is the so called “interaction by ex-
change with the mean” (IEM) mixing model, A, « (C, — (C,)). The diffusion coefficient in
concentration space proposed by Pope has the generic form B, o« ((C, — (C,)*)'/? [78]. In
FDF approaches, a supplementary drift term which describes the attenuation of the mean con-
centration by diffusion may be considered to improve the IEM model [69]. Since this diffusion
process would generate negative concentrations, Fox [41] derived a diffusion model with suit-
able boundary constraints to keep the concentrations in the allowable range [0, 1]. Discussions
on advantages and limitations of the above, and some other, mixing models can be found in
[41,47,48].

By the equivalence of the Itd and Fokker-Planck representations of the diffusion processes
[31, 43], one associates to the position (X;) and concentration (C,) It6 equations a Fokker-Planck
equation describing the evolution of the joint concentration-position PDF p(e, x, ),

32
6xi¢9xj

o 9 9 B
i + a—xi((ViP) + 6—00(Ma17) =

Dijp) - ai(S aP)- (7.3)
Ca

Equation (7.3) has the form of PDF/FDF equations for the conditional Eulerian PDF p(c | x, 1)
derived, by different methods, in studies on turbulent reacting flows [78, 41, 16, 47]. The reaction
terms S, are in a closed form, the same as in the concentration balance equation, which is a
considerable advantage of the PDF methods with respect to averaging procedures for upscaling
reactive transport [78, 16]. The drift and diffusion coefficients in physical space, V; and D;;, and
the mixing terms M, are not closed and require modeling.

The coeflicients V; and D;; needed to solve the PDF transport equation (7.3) correspond
to stochastic upscaling and can be estimated by Monte Carlo simulations (Section 4) or first-
order approximations (Section 5). For the FDF approach, these coefficients can in principle
be obtained from homogenization MFEM approximations for non-periodic media and random
coefficients (e.g., [74, 82]). The IEM mixing model performs well in FDF approaches, where
only unresolved concentration fluctuations about the local resolved-scale need to be modeled [48,
p. 125]. In case of transported PDF, the I[EM model, which preserves the shape of the initial PDF,
has to be replaced by more complex descriptions of the mixing [41]. Once all the coefficients
have been established, (7.3) may be efficiently solved by a GRW algorithm in physical and
concentration spaces. In case of filtering upscaling, MFEM solutions of filtered flow may be
imported into the GRW lattice to compute the transported FDF by the coupled MFEM-GRW
approach (see Section 6.4).

7.2. GRW solutions to modeled PDF equations

The feasibility of the GRW-PDF approach has been illustrated in [108] for the two-dimensional
passive transport problem considered in Section 4. The Monte Carlo results for transverse slab
sources of length 1004 presented in [95] were processed statistically to infer various correlations
and PDFs [106]. The strong correlation of the cross-section space-average concentration at the
plume center of mass, C(¢), with the longitudinal dispersion coefficient and the smallness of the
other input-output correlations [106, Fig. 6] provide numerical support for a one dimensional
model (7.1), with constant V and time-variable 9. For passive transport, the evolution of the
random concentration C(¢) is described by the equation (7.2) without reaction terms.

Self-averaging estimates of the ensemble dispersion coefficient D = D;; = %dEll /dt have
been obtained by using a single trajectory of the diffusion in a realization of the Kraichnan
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Figure 12: Transported PDF at the plume center  Figure 13: GRW and Monte Carlo cumulative
of mass, p(c | x = Vr). distribution functions cdf(c) at t =0, 10, 30, 50,
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velocity field, sampled at S constant time intervals 7, with the discrete version of (5.11) [102],

DEST) = (XX ST - XA(ST-1)/(27),
where

s S=18-r

X(ST) = Z SX2+2 Z Z 6X,0X 1, 60Xy = Xor — Xis—1yr-

s=1 r=1 s=1
The drift term V in (7.1) was set to the constant mean Eulerian velocity. The initial condition
for the GRW solution to the Fokker-Planck equation (7.3) was given by the PDF of the cross-
section spatially averaged concentration at the first time step in the Monte Carlo simulations
[106], multiplied by N = 10?* computational particles.

Some tests with combinations between the IEM model and diffusion in the concentration space
as models for the mixing term M showed that IEM alone preserves the initial PDF and a small
amount of diffusion is needed to transport the PDF in the concentration space. The marginal
probability density p(x, ) of the one-dimensional position process (7.1), obtained by integrating
over ¢ the GRW solution p(c, x, f), was found to be very close to the Monte Carlo estimate of
the ensemble averaged cross-section concentration, which is a consistency requirement for the
GRW-PDF approach based on equations (7.1) and (7.2). However the simulated PDF remained
significantly different from the reference Monte Carlo PDF [108].

If the rate of decrease of the mean concentration at the center of mass is considered instead of
the IEM model, the results of the GRW-PDF simulations improve considerably. In this approach,
the mixing model M consists of a sum of a smooth drift, given by the rate of decrease on the en-
semble mean concentration (C(¢)) inferred by Monte Carlo simulations [106], and a noise term
with decreasing amplitude, similar to those separated from single-realization concentration se-
ries C(¢) by an automatic algorithm [113]. The evolution of the joint concentration-position PDF
p(c, x,t) is simulated with a GRW algorithm which spreads the initial distribution of computa-
tional particles on a two-dimensional (c, x) lattice. The Eulerian concentration PDF is further
computed as conditional PDF by p(c | x,1) = p(c, x,1)/p(x,t) [41, 68]. Figure 12 shows the
behavior of the PDF on the trajectory x = V't of the center of mass. The comparison given in
Figure 13 of the cumulative probability distributions at the center of mass shows a good agree-
ment with the Monte Carlo results.
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Fairly good results are also obtained if one replaces the rate of decrease of the mean concentra-
tion (C(¢)) by that of a single-realization of the process C(f). One expects therefore that mixing
models, adapted to specific transport problems, can be inferred from concentration data, provided
by simulations or by in situ measurements, using methods well established in time series analysis
[111, 112, 114]. For the transported PDF problem considered here, one can reasonably assume
the ergodicity of the concentration process C(¢). Then, the drift and the noisy components of
the mixing model M could be inferred by separating the deterministic trend and the stationary
noise from a single-realization of C(¢) with the automatic trend estimation algorithm of Vamos
and Craciun [113].

8. Conclusions

The mathematical model of diffusion in random velocity fields can be parameterized by ex-
perimentally inferred local dispersion and drift coefficients. For applications to contaminant
transport in groundwater, the space variable drift coefficients are given by solutions of boundary
value problems for the flow equations, with hydraulic conductivity provided as a sample of a
random space function inferred by geostatistical interpretations of field-scale measurements.

For either diffusion in velocity fields with short-range correlations or anomalous diffusion
in Gaussian fields with power law correlations, the first two moments are finite at finite times
and the variance of the process can be decomposed exactly into dispersion and memory terms.
The former describe the enhanced spreading of the solute, which explains the scale effect, and
the latter account for the dependence on initial conditions. The memory effects are quantified
by correlations of the increments of the process induced by the spatial variability of the drift
coefficients. The memory may be transitory, for short-range velocity correlations, or indefinitely
persistent, in case of power-law correlations.

Diffusion processes with variable drift coefficients can be approximated numerically by par-
ticle methods. Their efficiency is considerably increased by the global spreading of the compu-
tational particles on regular lattices. GRW algorithms are not only free of numerical diffusion
but also insensitive to the increase of the number of particles, which allows accurate represen-
tations of the concentration fields. GRW based Monte Carlo investigations on dispersion in
velocity fields with short-range correlations highlighted the transitory memory effects as well
as the asymptotic ergodic and self-averaging behavior of the solute dispersion, consistent with
theoretical predictions based on first-order approximations.

First-order approximations of dispersion coefficients may be used to derive useful approximate
expressions for the mean and the variance of the concentration fields [40]. Assessments of con-
tamination risk require, beyond characterizations by mean values and variances, the knowledge
of the full concentration PDF. The model of diffusion in random fields for transport in ground-
water allows a straightforward derivation of the PDF evolution equation, based on It6 equations
for the upscaled transport process and mixing models describing the dynamics of the species
concentrations. Efficient solutions to PDF evolution equations can be obtained by GRW simu-
lations of transport in physical and concentration spaces of large ensembles of particles which
represent the PDF. The GRW-PDF approach avoids the increase with the number of particles of
the computational costs as well as the numerical diffusion associated with incomplete localness
of the mixing step in grid-free particle methods [58].

A major challenge in modeling the evolution of the concentration PDF is to identify suitable
mixing models for the dynamics of the concentration at fixed spatial locations of the computa-
tional particles. Mixing models used in turbulence and combustion theory may be a starting point
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[68]. However, given the structural difference between Navier-Stokes and Darcy flows, they can-
not be simply transferred and applied in subsurface hydrology. Preliminary results with the use
of concentration time series in modeling the mixing process are promising and suggest the need
to get closer to experiments. The deterministic trend and the noisy component of a time series,
which may be separated automatically in some cases [113], could provide the coefficients of the
Itd process describing the mixing in the concentration space. Given the hierarchical structure of
scales and the low flow velocity in groundwater systems, it is also possible that measured con-
centration time series show features of a polydispersive processes, consisting of a superposition
of Gaussian processes associated to local thermodynamic equilibrium states at different scales
[46]. A mechanism which generates such polydispersive time series may then serve as a mixing
model.
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Appendix A. Relations between spatial moments of probability densities and statistics of
the process trajectories

Appendix A.1. Finite-dimensional probability distributions

Letbe B = By X---X By, B; € B (the Borel o -algebra on R), 1,(y) the characteristic functions
of thesets B;,i = 1,2,3 (15(y) = 1ify € Biand 15,(y) = 0ify ¢ B)), {X/(w) = X(t,w),t > 0, w €
Q} a stochastic process defined on the canonical probability space (Q, A, P), (-) the stochastic
average with respect to P, and (-) the singular Dirac function. Further, consider the set function

Py, (B)= fdxl... fdx,, (6(x1 — X, (W))...0(x, — X;, (W))) (A1)
B] Bn

By Fubini’s theorem, integration permutes with stochastic averaging [59, p. 59]. Then, if
B, = R, the integral with respect to dx, in (A.1) equals 1 (as value of the Dirac functional) and
one obtains the marginal set function P;_, ,. Obviously, (A.1) is invariant to permutations in
the order of integrals. Thus, (A.1) fulfils the formal consistency conditions for finite-dimensional
probability distributions [31, 59].

Considering the characteristic functions

15i(X;,(w)) = f 0(xi — Xy ()1 (x)dx; = f 6(xi — X (w))dx;,

R B;

(A.1) can be rewritten as

Q
= P({XI] € Blv "'9Xt,l € Bn})s
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which shows that (A.1) is a measure of cylindrical sets on $”, that is, the distribution of the
n-dimensional random vector {X;, - - - X, }. Thus, (A.1) defines consistent n-dimensional distribu-
tions [31] of the process {X,(w)}.

The integrand from (A.1) was used by van Kampen [117] to define consistent finite-
dimensional probability densities. Similar stochastic averages of § functions are often used in
the literature and are referred to as “probability densities” (e.g., [78]). Even though these densi-
ties are singular space functions, their integration with respect to the spatial variables yields well
defined stochastic averages, as applications of Dirac functionals.

Appendix A.2. Diagonal components of the covariance (2.11)

Consider Q = R? x Qp, where Qp, is the space of events of the diffusion process starting from
a fixed initial position. Let (-) = ({:), >x0 = <->DX0 be the expectation defined as average over Qp

and over the initial positions X(0) € R3. Further, consider a constant diffusion coefficient D and
the time-stationary drift coefficients V;(x). Within this setup, and using (A.1), one proves that the
diagonal components of the covariance (2.11) have the equivalent representation (2.14):

For D constant, the second tern of (2.11) gives the term 2D(t — ;) in (2.14). For i = j, the
average with respect to the joint probability density g(x,¢ | x',t")g(X’,t" | Xq, fo)c(Xo,t) =
px,t';X,1";Xg, tp) in (2.12), can be computed, according to (A.1), as average with respect to
the singular density {(5(x — X, (w))d(x" — X (w))6(xp — Xto(m)» , which gives the term in the
second line of (2.14). The third line of (2.14) is obtained s1m1lar1y by expressing the average
with respect to g(x,#" | Xo, fo)c(Xo, %) = p(X,t'; X, tp) in (2.13) as average with respect to the
singular probability density (5(x — X, (w))d(xg — Xto(w)))%

Appendix B. GRW solutions to Fokker-Planck equations

Appendix B.1. GRW approximations for continuous diffusion processes

The definition of a diffusion process can be reformulated in terms of transition probabilities
and conditional expectations, without requiring that the transition probability has a density (e.g.,
[59, p. 68 and p. 142]).

Condition (2.4), reformulated as 613% LProb{|Xi.1 — Xil > €} = 0, is fulfilled if for every € > 0

there exists a small 67 such that Prob{|Xi.; —Xi| > €} = 0. According to (6.4), 1K1 —Xe| = |v6x+§|
takes on a maximum value of (|v| + d)dx. Using (6.5), one finds that if 67 < 6" = 2D(L\l;| ol then

(vl +d)dx < € with probability 1. Thus, the condition (2.4) is fulfilled because Prob{| X1 — Xi| >
€} = 1 — Prob{|X;+1 — Xi| < €} = 0. Since transitions outside the interval (—¢, €) have probability
zero if 6t < 8t*, the conditions (2.7-2.8) for the first two moments of Rir1 — Xy are fulfilled as
well.

Condition (2.5), reformulated as an expectation for fixed Xy and 61 < 67°, yields

1 1 1
}tlg}) 5 E{Xi1 - X = (}}E}) 5 E{Vét + Avox + &} = V+g,1L1}) 5 —Avéx, (B.1)
where E{£} = 0 according to (6.5) and Av = v — Vg—; defines the truncation error of the advective
displacement.
Condition (2.6) is verified exactly:
1

1 Loe U 22 2y _
5 lim < E{(Xin - X% = 5 (}}% S ENV26% +2VEst + £} = D, (B.2)



where one uses (6.5), which implies E{¢} = 0 and E {52} = 2Dét.

Thus, the discrete process X approximates, up to truncation errors, a continuous diffusion
process X(¢) with finite first two moments satisfying (2.4-2.8). Accordingly, the distribution of
the computational particles on the GRW lattice approximates the solution of the Fokker-Planck
equation (2.1).

Appendix B.2. Strict equivalence between GRW and the weak Euler scheme for constant V

In case of a constant velocity, there are no truncation errors at all if one chooses Vot = vix,
which cancels Av in (B.1). The first three moments of the random walk & with jump probabilities
given by (6.5) satisfy

E@)| +|EE)| + |EE) - 61| = 0 < Cor,

for any positive constant C, condition required for a consistent first-order truncation of the Itd-
Taylor expansion [59, Section 5.12].

Thus, if V is a real constant, then the discrete process (6.4) is a weak Euler scheme with
convergence order O(6t) for the Itd equation dX(7) = Vdt + dW(t), E(dW) = 0 and E((dW)?) =
2Dét.

Appendix B.3. BGRW approximations for continuous diffusion processes

Consider without loss of generality the one-dimensional BGRW with jump probabilities
P{6x} = r + v, P{=6x} = r — v, P{0} = | — r, where r = 2D61/5x* and v = Vé5t/6x.

Since in BRGW algorithms only jumps to neighbor lattice sites are allowed, the conditions
(2.4), (2.7), and (2.8) are verified for all € > 0 if € = dx.

Similarly to (B.1) and (B.2), one obtains

. 1 N N . 1
Jimy 57 E Xk = X = Jim <

1 1
E(V +Vv)ox + z(r — v)(—6x)]

1
= lim —véx =V,
5t—=0 Ot

NS TR B
7 00 5 E K = X} = 5 Qi

1(+)62+1( V6x2
2 Z(r—
2 V)oX 2 V)oX

Thus, BGRW fulfils exactly the conditions (2.5) and (2.6).
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