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Abstract

The onset of convection in a horizontal layer of fluid heated from below in the presence of a gravity field varying across the layer
is numerically investigated. The eigenvalue problem governing the linear stability of the mechanical equilibria of the fluid, in the
case of free boundaries, is a sixth order differential equation with Dirichlet and hinged boundary conditions. It is transformed into a
system of second order differential equations supplied only with Dirichlet boundary conditions. Then it is solved using two distinct
classes of spectral methods namely, weighted residuals (Galerkin type) methods and a collocation (pseudospectral) method, both
based on Chebyshev polynomials. The methods provide a fairly accurate approximation of the lower part of the spectrum without
any scale resolution restriction. The Viola’s eigenvalue problem is considered as a benchmark one. A conjecture is stated for the
first eigenvalue of this problem.
© 2008 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

It is a matter of evidence that the hydrodynamic stability problems become more complex due to incorporation of
technologically important effects. Consequently, the order of the differential equations increases rapidly.

Generally the discretization methods applied to such problems lead to matrices which become less conditioned
as both the order of approximation and the order of differentiation increase. This fact is particularly true for spectral
methods. Roughly, for N = 29 (N stands for the spectral parameter), the condition number for the second order
Chebyshev differentiation matrix is of order O(1018), that of the fourth order differentiation matrix attains something
of order O(1024) and eventually that of the eighth order differentiation matrix raises to something of order O(1030).

In this context, the aim of this paper is two-fold. First, we introduce a new method to solve numerically high order
and even two-point eigenvalue (boundary value) problems with Dirichlet and hinged boundary conditions. It reduces
the problem to a system of second order differential equations supplied only with Dirichlet boundary conditions.
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Further, accurate spectral methods are used in order to solve that Dirichlet boundary value problem numerically.
Second, the method is applied to solve a hydrodynamic stability problem of Bénard type.

It is well known that, the classical Orr–Sommerfeld eigenvalue problem, which is encountered in the linear hydro-
dynamic stability analysis of some basic flows, was first solved using a direct (tau) spectral method by S. Orszag in
1971 in his seminal paper [20]. He determined the critical Reynolds number associated with the most unstable shear
mode corresponding to Poiseuille flow, i.e., Re = 5772.22.

Two other important papers, of Dongarra et al. [5] and that of Melenk et al. [19], consider in a general mathemat-
ical framework spectral methods for hydrodynamic stability problems. They analyze the Orr–Sommerfeld equation
supplied with homogeneous boundary conditions which contain derivative up to the first order. The pseudospectra and
the numerical range of this Orr–Sommerfeld operator is also investigated by Reddy, Schmid and Henningson in their
paper [24].

The high accuracy of tau, Galerkin and collocation spectral methods was subsequently, intensively exploited in
solving second order as well as higher order (especially fourth order) differential eigenvalue problems (see also [16]).
The main difficulty with the later problems consists in imposing boundary conditions which involve derivatives of
order higher than one. From the mathematical point of view this reduces to a Hermite interpolation problem. In a
quite general setting it was solved by Huang and Sloan in their paper [17]. Unfortunately, in practical computations,
the resulting trial and test functions lead to tedious computations with significant rounding errors.

Up to our knowledge there are two main strategies to avoid these difficulties. The first one requires a special
attention in choosing the spaces of test and trial functions. It is important to design spaces of functions which satisfy as
many as possible boundary conditions. In our previous paper [11] we built up a Chebyshev tau method in order to solve
a hydrodynamic stability problem connected with the Marangoni–Plateau–Gibbs convection. The eigenvalue problem
was a non-standard one, i.e., two out of the four boundary conditions attached to the Orr–Sommerfeld equation
contained derivatives of order two and three as well as the eigenparameter. Our numerical results were lately confirmed
by Greenberg and Marleta [13]. A more recent paper of Blyth and Pozrikidis [1], on the same topic, deals with
analogue eigenproblems. The main drawback of this approach consists in the fact that it depends strictly on the
problem at hand.

A much more flexible and general strategy is considered in this paper. Mainly it transforms the original problem
into one containing lower order derivatives in the differential equation as well as in the boundary conditions. Some-
times this means to rewrite a problem as a first order system of differential equations. The shooting method and the
compound matrix method are examples of such method. Instead we suggest a method which takes into account the
particularities of the problem (parity of order of differentiation, symmetries, etc.). It reduces a fourth or sixth order
eigenvalue problem (generally, an even order problem) with Dirichlet and hinged boundary conditions to a system of
second order equations supplied exclusively with Dirichlet boundary conditions. These boundary conditions are much
more simple to handle than the hinged one. Further, this procedure simplifies considerably the construction of test and
trial functions in tau and Galerkin methods as well as the formulation of differentiation matrices in the collocation
(pseudospectral) method. Thus, it is applicable to any differential boundary value problem which contains only even
order of differentiation supplied with Dirichlet and hinged boundary conditions. This is our main theoretical result.

Actually, we used the Galerkin and Petrov–Galerkin methods as well as a collocation method in order to approx-
imate the lower part of the spectrum. It is important to observe that the computations were carried out without any
scale resolution restriction. The Chebyshev collocation was the most accurate, the fastest and the most flexible with
respect to the implementation process.

The Viola’s eigenvalue problem is considered as a benchmark one. This is a fourth order singularly perturbed
differential eigenvalue problem. We use two strategies in order to solve it. First, we solve the problem as a second
order one supplied only with Dirichlet boundary conditions (“D2” strategy) and observe that the differential singularity
deteriorates considerably the conditioning of the discretization matrices. In spite of this inconvenience, our Chebyshev
collocation method provides numerical results which improves those reported by Straughan in the Appendix of his
monograph [27]. Second, we alternatively handle the problem as a fourth order one using in our collocation method
shape functions which fulfill all boundary conditions. Unfortunately, in this case, even for moderate values of N, i.e.,
N = 128, the algorithm becomes unstable showing that the “D2” strategy is plainly superior with respect to accuracy.
One drawback of this strategy is the superior cost of the computation of algebraic eigenvalues. As we work with the
qz algorithm in solving the algebraic eigenvalue problem, the cost is eight times larger than that of solving the fourth
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order problem. In spite of this aspect, even for the hydrodynamic stability problem, where the cost is 27 times larger,
the computing time and the memory requirements remain reasonable.

Eventually, the above “D2” strategy was implemented making use of some weighted residuals (Chebyshev Galerkin
type) methods as well as of a Chebyshev collocation method in order to solve a hydrodynamic stability problem of
Bénard type involving variable gravity field.

2. The hydrodynamic stability problem

Variations in the gravity field occurring in, on and above the Earth’s surface have their importance in some physical
problems such as the crystal growth, e.g., [29], some convection problems from porous media, e.g., [21], and other
convective flows from biomechanics, chemistry or geophysics. Consequently, their effects on the stability bounds
must be investigated.

In the present paper we are concerned with a problem governing the convection-conduction in a horizontal layer
bounded by two impermeable walls of a fluid heated from below. Across the layer the gravity field will vary according
to some specific laws. The heat conducting viscous fluid is contained in a layer situated between the planes z = 0 and
z = h. For t > 0 the conduction and convective motion is governed by the conservation equations of momentum, mass
and internal energy ([27], p. 93)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂v
∂t

+ (v · grad)v = − 1

ρ
gradp + ν�v + g(z)αT ,

div v = 0,

∂T

∂t
+ (v · grad)T = k�T,

(1)

where, as usual, ν is the coefficient of kinematic viscosity, ρ is the density, α the thermal expansion coefficient, k the
thermal diffusivity, p the pressure, T the temperature, and v the velocity field. g(z) := g(1 + εh(z))k stands for the
variable gravity field, with g constant, k the unit vector in the z-direction, and ε the scale parameter. Consequently,
εh(z) represents the gravity variation.

The boundary conditions appropriate to fixed surfaces and specified constant temperature, i.e., TU on z = h, TL on
z = 0 are (see [27])

v ≡ 0, z = 0, h, T = TL, z = 0; T = TU , z = h. (2)

We assume that TL > TU .
The stationary solution of Eq. (1) has the form

v ≡ 0, T = −βz + T0, (3)

where β stands for the pressure gradient and T0 is considered as a reference temperature. In order to investigate the
linear stability of (3), we undertake a usual normal mode analysis, i.e., for instance, for the first velocity component u,
we write u := exp(σ t + imx + iny)W(z). Consequently, the following two-point boundary value problem governing
the linear stability of this conduction stationary solution results (see [27] for technical details){

(D2 − a2)2W = R(1 + εh(z))a2Θ,

(D2 − a2)Θ = −RW,
(4)

W = DW = Θ = 0 at z = 0,1. (5)

Throughout this paper we use the notation D(·) := d(·)/dz. The nondimensional quantity Ra := R2 = αgβh4/kν

is the Rayleigh number and it represents the eigenparameter of the problem (4)–(5), where a is the wavenumber,
and W and Θ are the amplitudes of the vertical velocity and temperature perturbation respectively. They form the
eigenfunction of the eigenvalue problem (4)–(5). This case is considered in detail in the monograph of Straughan [27].

The boundary conditions on a free surface are that the perturbations of the stress components are zero. This implies
that a free surface behaves as a rigid one with tangential slip but without any tangential stress [10]. In our case, for
normal modes perturbations, the boundary conditions reduce to

W = D2W = Θ = 0 at z = 0,1. (6)
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We will treat here only the free boundaries case, so the corresponding eigenvalue problem is (4)–(6). In the paper of
Herron [15], it was proven that in this situation the principle of exchange of stabilities is valid.

B. Straughan provided in the above quoted monograph numerical evaluation of the Rayleigh number in the case
of rigid boundaries by using the energy method. In our paper [7], for linearly decreasing gravity fields, we obtained
two stability criteria using isoperimetric inequalities and showing that in this case the domain of stability enlarges.
Stability bounds were found by us in the case of both free and rigid boundaries [6] using spectral methods based
on trigonometric series. In [8] and [9] the eigenvalue problem (4)–(6) was studied using expansion series based on
polynomials (Legendre and Chebyshev polynomials).

Taking into account the order of differentiation in (4)–(6) we introduce the new variable

Ψ := (D2 − a2)W. (7)

Thus, the two-point boundary value problem (4)–(6) can be rewritten as the second order system⎧⎪⎨⎪⎩
(D2 − a2)W − Ψ = 0,

(D2 − a2)Ψ − R(1 + εh(z))a2Θ = 0,

(D2 − a2)Θ + RW = 0,

(8)

with the homogeneous Dirichlet boundary conditions

W = Ψ = Θ = 0 at z = 0,1. (9)

This means a generalized eigenvalue problem.
It is worth noting at this moment that the eigenvalue problem (4)–(6) can be rewritten more compactly as a sixth

order differential equation

(D2 − a2)3W = −Ra
(
1 + εh(z)

)
a2W, (10)

supplied with the Dirichlet and hinged boundary conditions, namely

W = D2W = 0 at z = 0,1. (11)

The new variable Ψ introduced by the transformation (7) reduced this problem to a Dirichlet problem, i.e., (8)–(9).
The mathematical formalism requires one more boundary condition to be added to the boundary conditions (11) in
order to close the eigenvalue problem (10)–(11). We introduce the condition DW = 0 at z = 0,1 and observe that
with usual variational arguments it is simply to show that Ra is indeed positive.

It is fairly important to underline why we integrate numerically the problem (8)–(9) instead of the problem (10)–
(11). The main reason is the rapid worsening (increasing) of the condition number of the discretization matrices as
both the order of differentiation and the spectral parameter N (number of terms in the spectral series) get larger. For
the Chebyshev differentiation matrices, the fact is illustrated in Fig. 1.

3. The Viola’s eigenvalue problem

As we do not have theoretical estimations for the spectrum of our hydrodynamic stability problem we will use
the following eigenvalue problem as a benchmark one. More than that we try to make more explicit the reason we
prefer to transform high order eigenvalue problems in systems of differential equations containing only second order
derivatives, i.e., “D2” strategy.

The Viola eigenvalue problem reads (see Straughan [27] p. 218 and the works quoted there){
D2[(1 − θx)3D2u] − λ(1 − θx)u = 0, x ∈ (0,1),

u = D2u = 0, x = 0,1,
(12)

where the parameter θ satisfies 0 � θ < 1. The problem becomes singular as θ → 1−.

With a change of variable analogous to (7), i.e.,

v := (1 − θx)3D2u,
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Fig. 1. Logarithm of the condition number of the Chebyshev differentiation matrices D2, D4, D6 and D8, versus N .

the problem (12) reduces to an eigenvalue problem for the pair (u v)T containing only Dirichlet boundary conditions,
namely⎧⎪⎨⎪⎩

(1 − θx)3D2u − v = 0, x ∈ (0,1),

D2v = λ(1 − θx)u,

u = v = 0, x = 0,1.

As we make use of Chebyshev polynomials, the linear transformation of independent variables z := 2x − 1 shifts
our problem on the close interval [−1, 1]. To go further with our method we solve this eigenvalue problem by
the Chebyshev collocation method. This method transforms the problem into the following generalized algebraic
eigenvalue problem

A · w = λB · w, (13)

where the matrices A and B are

A =
(

(Dx)3 · D2 −I

Z D2

)
, B =

(
Z Z

Dx Z

)
, (14)

and the submatrices D2, Dx, I and Z stand respectively for the second order differentiation matrix on the Chebyshev
nodes of the second kind x := {x1, . . . , xN−1},diag(1 − θx), the unitary matrix of order N − 1 and the matrix with all
zero entries of order N − 1. It is important to underline that in the differentiation matrix D2 the boundary conditions
are enforced, thus the rows and columns corresponding to the first node x0 and the last node xN are deleted. The vector
w contains the values of the approximations of u and v in the nodes of x, i.e., w := (u1, . . . , uN−1, v1, . . . , vN−1)

T .
All the differentiation matrices we have used (chebdif,cheb2bc) come from the work of Weideman and Reddy
[30]. The problem (13) was solved using the MATLAB code eig. Our results confirm up to some point those of
Straughan [27]. Apart from those we conjecture that the first eigenvalue λ1 approaches 1 as θ → 1−! It is sustained by
the numerical results reported in Fig. 2. They were obtained when N = 512. Then, corresponding to θ = 1− (1.0e–06)

we got λ1 = 1.054343. More than that, for N = 600 and the same θ we obtained λ1 = 1.035803. We have to observe
that all the computations involved by the collocation method were performed in full precision (64 bit arithmetic).

An inconvenience of our approach consists in the fact that corresponding to all zero rows in the matrix B the
eigenvalues equal infinity (the rank of matrix B equals N − 1). The MATLAB code eig, which implements the
qz algorithm and gives access to intermediate results in the computation of generalized eigenvalues, explains this
phenomenon. In fact the left generalized eigenvalues for those zero rows are zero.
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Fig. 2. The behavior of the eigenvalue λ1 as θ approaches 1− .

Table 1
The first two eigenvalues and their sensitivities

θ λ1 S(1) S1(1) λ2 S(2) S1(2)

0.5 28.615798 1.88 1.44 517.93 7.66 1.55
1 − (1.0e–6) 1.054343 56.42 16.11e+05 130.72 42.54 16.11e+05

As a further check on accuracy, we computed two types of sensitivities defined as

S(i) := ‖xi‖‖yi‖
xH
i yi

, S1(i) := ‖xi‖‖yi‖√
|yH

i Axi |2 + |yH
i Bxi |2

, (15)

for the ith eigenvalue where xi and yi are the right and left eigenvectors of (13), respectively. They were introduced
by Stewart and Sun [26] and used in an analogous problem by Dongarra et al. [5]. Corresponding to Chebyshev
collocation method applied to problem (13) with N = 512 we summarize the situation in Table 1. It is fairly clear
from this table that both measures of sensitivities increase drastically with the parameter θ increasing to 1. In other
words, the more singular is the differential problem the more sensitive are the eigenvalues. Since the quantity log10 S(i)

is a measure of the number of digits one lose in accuracy this table provide useful information on the accuracy of the
actual computations. It is also clear that the first eigenvalue is less sensitive than the second.

A similar conclusion provides Fig. 3. As the curves log10 cond(A) versus θ, for N = 256 and N = 512, respec-
tively, are quite parallel and horizontal for 0.6 � θ < 0.95 they sharply increase for θ → 1−. An attempt was made
to solve the problem (12) as a fourth order one. In order to fulfill the boundary conditions we use this time the more
complicated weighted functions

(1 − x2)3Ti(x), i = 0,1,2, . . . ,N,

and in order to obtain the corresponding differentiation matrices we make use of the code poldif from the same
paper of Weideman and Reddy [30]. In this situation the right-hand side matrix of the generalized eigenvalue problem
is a diagonal one and consequently it is easy invertible. This way we are in the situation to solve an usual eigenvalue
problem. For values of N around 128, the MATLAB code qz as well as the MATLAB code invshift (see
Quarteroni and Saleri [23] p. 175) which evaluates the eigenvalue of minimum modulus of a matrix by the inverse
power method, provide positive values for λ1. However, they are far larger than those obtained above. For N beyond
128 the situation is even worse. The eigenvalue of minimum modulus becomes negative and also complex eigenvalues
appear in the spectrum. This means numerical instability.
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Fig. 3. The conditioning of matrix A with respect to N and θ .

4. Spectral methods for hydrodynamic stability problem (4)–(6)

Actually we look for the smallest eigenvalue Ra (the Rayleigh number) in the problem (8)–(9) defining the neutral
manifold.

In order to accomplish that, we reduce the problem to a generalized algebraic eigenvalue one, first by a weighted
residual (Galerkin) type method. To this end we formulate the eigenvalue problem in an operatorial framework by
introducing the vectorial unknown U as U := (W Ψ Θ)T , the operator L :X → X, and the functional space X :=
H 2

w(−1, 1) × H 2
w(−1, 1) × H 2

w(−1, 1) where

L := L1 + R · L2,

and

L1 :=
⎛⎝ (4D2 − a2) −I O

O (4D2 − a2) O

O O (4D2 − a2)

⎞⎠ ,

L2 :=
⎛⎝O O O

O O −(1 + εh(x))a2

I O O

⎞⎠ ,

I and O stand for the identity and null operator, respectively. The space H
p
w(−1, 1), p � 0, is a subspace of the

Sobolev space Hp(−1, 1). Endowed with the inner product (·, ·)p,w, defined as usual by

(u, v)p,w :=
p∑

k=0

1∫
−1

dku(x)

dxp

dkv(x)

dxp
w(x)dx,

with the weight w(x) := 1/
√

1 − x2, it is a Hilbert space. When p = 0 we suppress this index from the definition of
the scalar product.

It is clear that L1 is invertible and L2 does not have this property.
As in the case of Viola’s problem we first translate the problem on the interval [−1,1].
Consequently, our problem reads:

find Ra and U ∈ X \ {0} such that{
L1(U) + R · L2(U) = 0,

U = 0 at x = ±1.
(16)
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Various numerical methods can be used in order to solve the problem (16). In the monographs [2], [3], [18] or [28]
to quote but a few, details on the spectral methods are provided including the approximation results in the weighted
Sobolev spaces H

p
w(−1, 1), p � 0. In our recent monograph [12] we tried to collect some classical and at the same

time difficult eigenvalue problems and compare the results obtained by spectral methods with their exact solutions or
at least other numerical results (see [22] for such a collection).

Let us consider now the following two finite dimensional spaces XM , YM , both subspaces of X, made up by
functions which satisfy the Dirichlet boundary conditions U = 0 at x = ±1. In our case an approximation UM ∈
XM \ {0} of the solution U ∈ X has the form UM = (WN ΨN ΘN)T , with the N index related to the discretization
process. As usual, WN , ΨN , ΘN are defined as truncated series of orthogonal functions (trial functions)

WN =
N∑

k=0

Ŵke
W
k (x), ΨN =

N∑
k=0

Ψ̂ke
Ψ
k (x), ΘN =

N∑
k=0

Θ̂ke
Θ
k (x). (17)

In (17) the coefficients Ŵk , Ψ̂k , Θ̂k , k = 0,1,2, . . . ,N , are unknown and the sets {eW
k (x)}k=0,1,...,N ,

{eΨ
k (x)}k=0,1,...,N , {eΘ

k (x)}k=0,1,...,N , are the sets of trial functions. This implies the equality M = 3(N + 1). The
spectral approximation UM is obtained by imposing the vanishing of the projection of the residual on the finite
dimensional space YM , subspace of X, so a general weighted residual formulation for the problem (16) reads:

find Ra and UM ∈ XM \ {0} such that(
L1(UM),VM

)
w

+ R · (L2(UM),VM

)
w

= 0, ∀VM ∈ YM. (18)

Whenever we perform an integration by parts of D2 in the above formulation, in order to lower the order of
differentiation, the formulation is called week and the method becomes a Galerkin–Petrov one. When the space of
trial functions XM and that of test functions YM are identical we come up with the well-known Galerkin method.

In [9] the analytical study of the eigenvalue problem (8)–(9) was performed by using complete sets of orthogonal
functions directly on [0,1], i.e. shifted Chebyshev and Legendre polynomials.

For the particular varying gravity field h(x) = −(2x − 1) we solve the problem (18) using several basis in the test
and trial spaces.

(i) Weighted residuals Galerkin methods (WRG). We considered two family of functions as basis of the finite
dimensional spaces XM , YM . They have the form

{Fj }j=1,2 = {Sjk × Sjk × Sjk}j=1,2; k=0,1,...,N

with the Shen’s basis {S1k}k=0,1,...,N , denoted (SB1) and defined by (see [25])

S1k(x) := Tk(x) − Tk+2(x), k = 0,1, . . . ,N, (19)

and {S2k}k=0,1,...,N , which is another Shen’s basis, denoted this time (SB2) and having the form

S2k(x) := Tk(x) − 2(k + 2)

k + 3
Tk+2(x) + k + 1

k + 3
Tk+4(x), k = 0,1, . . . ,N. (20)

The functions from both Shen’s basis satisfy boundary conditions of the form

Sjk(±1) = 0, j = 1,2; k = 0,1, . . . ,N.

Then, in each case, the unknowns W , Ψ , Θ are approximated respectively by

WN =
N∑

k=0

SjkŴk, ΨN =
N∑

k=0

SjkΨ̂k, ΘN =
N∑

k=0

SjkΘ̂k, j = 1,2.

This means that we specify the sets of the trial functions as

eW
k = eΨ

k = eΘ
k := S1k, k = 0,1, . . . ,N,

for the first variant of the method, and

eW
k = eΨ

k = eΘ
k := S2k, k = 0,1, . . . ,N,

for the second variant of the method.
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Let us introduce now the vector of the unknown coefficients Ŵk , Ψ̂k , Θ̂k by

Ucoef
M := (Ŵ0 Ŵ1 . . . ŴN Ψ̂0 . . . Ψ̂N Θ̂0 . . . Θ̂N )T .

With this notation the equation (18) becomes

L·Ucoef
M = 0, (21)

where the matrix L is defined by

L :=(L1Sjk, Sji)w + R · (L2Sjk, Sji)w, j = 1,2; k, i = 0,1, . . . ,N,

which means a homogeneous linear algebraic system of 3(N + 1) equations and 3(N + 1) unknowns.
For the Galerkin method the secular equation has the form∣∣∣∣∣∣

((4D2 − a2)Sji , Sjk)w −I Z

Z ((4D2 − a2)Sji, Sjk)w −R((1 + εh(x))Sji, Sjk)w

R · I Z ((4D2 − a2)Sji , Sjk)w

∣∣∣∣∣∣ = 0,

i, k = 0,1, . . . ,N for j = 1,2. (22)

I and Z stand here for the identity and zero matrices, respectively, both of order N + 1.

All the scalar products from (22) are based on the properties of Chebyshev polynomials (see for instance [18]), i.e.,

(Tk, Ti)w =
{ π

2
ckδki , if k = i,

0, otherwise,

(T ′′
k , Ti)w =

{
k(k2 − i2)

π

2
ci, if k = j + 2, j + 4, . . . ,

0, otherwise,

(xTk, Ti)w =
{ π

4
ci, if i = k − 1, k − 3,

0, otherwise,

with

ci =
{

2, if i = 0,

1, if i � 1.

Eventually, for the Galerkin method the secular equation becomes∣∣∣∣∣∣
((4D − a2)Sji ,D(Sjk))w −I Z

Z ((4D − a2)Sji ,D(Sjk))w −R((1 + εh(x))Sji , Sjk)w

R · I Z ((4D − a2)Sji ,D(Sjk))w

∣∣∣∣∣∣ = 0,

i, k = 0,1, . . . ,N for j = 1,2. (23)

(ii) Weighted residuals Petrov–Galerkin methods (WRPG). We considered two variants. At first, in the method
(WRPG1), the set of trial functions is of the form {Ψk × Ψk × Ψk}k=0,1,...,N ∈ XM with the Heinrich’s basis
{Ψk}k=0,1,...,N [14] defined as

Ψk(x) := (1 − x2)Tk(x), k = 0,1, . . . ,N (24)

and the set of test functions is F1 defined as before. For the second variant (WRPG2) we choose the same set of trial
functions as for (WRPG1) and as a set of test functions we choose F2.

The secular equation is obtained the same way as in the (WRG) method.
The numerical scheme for the generation of the spectrum in the case of weighted residual methods based on

trigonometric and polynomial expansions is a Maple code which implements the LU decomposition.
(iii) Collocation methods. The Chebyshev collocation method, (CC) for short, reduces the eigenvalue problem

(8)–(9) to an algebraic problem of the form (13) where the matrices A and B are now

A =
⎛⎝4D2 − a2I −I Z

Z 4D2 − a2I Z

Z Z 4D2 − a2I

⎞⎠ , B =
⎛⎝ Z Z Z

Z Z I − εDx

−I Z Z

⎞⎠ ,
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Table 2
Numerical values for the Rayleigh number for various values of the parameters for h(x) = −(2x − 1) obtained in [6,9]

ε a2 Ra: SCP Ra: SLP Ra: TS

0.0 4.92 657.512 675.05 657.51
0.01 4.92 660.747 678.45 660.81
0.03 4.92 667.653 685.33 667.52
0.33 4.92 787.363 808.303 787.28
0.2 5.00 730.459 749.95 730.56
0.2 9.00 829.44 846.70 829.39
0.5 7.5 930.982 952.07 930.92
0.5 9.00 994.393 1015.27 994.47
0.75 10.0 1251.178 1276.05 1251.09

Table 3
Numerical values for the Rayleigh number for various values of the parameters for h(x) = −(2x − 1) obtained in this paper

ε a2 Ra: WRG(SB1) Ra: WRG(SB2) Ra: CC

0.0 4.92 658.54 714.55 657.5133
0.01 4.92 661.88 718.62 660.8173
0.03 4.92 668.53 725.49 667.5254
0.33 4.92 792.54 859.84 787.2880
0.2 5.00 732.95 794.85 730.5647
0.2 9.00 832.09 886.91 829.3918
0.5 7.5 946.05 1013.30 930.9239
0.5 9.00 1010.50 1077.01 994.4721
0.75 10.0 1313.80 1392.61 1251.0924

with the same significance for matrices D2, I and Z as in Section 3. The matrix Dx is the diagonal matrix Dx =
diag((x + 1)/2).

The numerical results obtained for various values of ε and a2 with N = 256 are reported in the last column of
Table 3. No improvement is observed when N = 512. They were carried out using the same MATLAB code eig.

With respect to the sensitivity defined by (15) we remark that this problem is less sensitive than the singularly
perturbed Viola’s problem when θ → 1−. For the first indicator we obtained S(1) = 5.789210 which increases to
S(2) = 15.846905. This means again that the first eigenvalue is less sensitive than the subsequent ones. The second
indicator S1(i) slightly oscillates around 0.59. It is important that they remain practically independent of N.

5. Numerical results

Numerical evaluations of the Rayleigh number for the particular case in which the gravity variation is εh(x) =
−ε(2x − 1) are given. For comparison, we present in Table 2, our previous evaluations of the Rayleigh number from
[6,9]. These evaluations are obtained by spectral methods based on shifted Chebyshev polynomials (SCP), shifted
Legendre polynomials (SLP) and trigonometric series (TS).

The numerical results obtained in this paper by the weighted residual Galerkin methods (WRG) are displayed in
Table 3. The third column corresponds to the first Shen’s basis (SB1) and the fourth column to the second Shen’s
basis (SB2). The evaluations obtained by the Chebyshev collocation method (CC) are presented in the last column
of the same table. It is fairly clear that the collocation method and the spectral methods reported in Table 2, i.e.,
(SCP) and (TS) lead to very close results. The worse situation is with Galerkin method based on (SB2). However,
the results gathered in this two tables underline the same physical conclusion that a linear decreasing variable gravity
field enlarges the domain of stability.

Then numerical evaluations of Ra, obtained for the two variants of the weighted residual Petrov–Galerkin method
(WRPG1 and WRPG2), are displayed in Table 4. These numerical results are similar but quite inaccurate when
compared with the collocation results. However, the use of the (WRPG) method simplifies the numerical evaluations
and reduces the time of computation due to the fact that a larger number of scalar products in the secular equation
vanish.
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Table 4
Numerical values for the Rayleigh number for various values of the parameters for h(x) = −(2x − 1) obtained by the WRPG method

ε a2 Ra: WRPG1 Ra: WRPG2

0.0 4.92 658.59 662.80
0.01 4.92 662.03 666.05
0.03 4.92 668.84 673.19
0.33 4.92 792.70 797.38
0.2 5.00 733.06 737.45
0.2 9.00 831.80 836.02
0.5 7.5 946.05 950.55
0.5 9.00 1010.60 1015.20
0.75 10.0 1314 1319.70

Table 5
Numerical evaluations of the Rayleigh number Ra versus spectral parameter N and CPU time

Ra N Time (seconds)

658.692 4 16.66
657.6668 5 41.8
657.5219 7 386.12
657.5129 9 2679.83
657.5127 11 17834.15

All in all, by comparing Tables 2, 3 and 4 it is fairly clear that the Chebyshev collocation method and the Galerkin
method based on trigonometric polynomials provide the closest results.

It is also important to compare the two classes of methods with respect to the computational cost. First, for the
same N, all the weighted residual methods (WRG and WRPG) lead to larger algebraic problems than the collocation
methods, i.e., the two matrices involved in Eq. (23) have each the size 3(N + 1) but the matrices A and B of the
generalized eigenvalue problem corresponding to (CC) method have each size 3(N + 1). Consequently, the qz step
is more expensive for the first class of methods. Second, and more important, whenever the tedious computations of
the entries in Eq. (23) are done symbolically, the cost of the entire residual method increases more than exponentially
with N. This fact is illustrated in Table 5 where the values of the Rayleigh number for the classical case [4], i.e. ε = 0,
a2 = 4.92, obtained by (WRG) with the first Shen’s basis {S1k}k=0,1,...,N are displayed. We can infer from this table
that the computation of the matrix entries dominates all other costs.

In spite of this disadvantage, we can conclude that for a relatively small N , i.e., N = 12, fairly accurate numerical
results are obtained using these methods, i.e., (SCP) and (TS). However, for larger N the computational time highly
increases, without leading to a significant improvement of the numerical values (less than 10−5).

A better situation is observed with respect to the collocation method. The spectral order N used is much more
large than that used in the weighted residual methods, i.e., N is of order 2m with 5 � m � 10. Thus, to compare the
computational cost of the two methods for large N is useless. Anyway, our numerical experiments showed that the
collocation methods are much more rapid (the CPU time increases moderately with N ) and more flexible with respect
to the implementation process, i.e., quite independent of the problem at hand.

It is also important to notice that, both classes of the methods do not require assumptions on the scale resolution,
i.e., that Ra/N2 is “small”, as it is the case with the methods considered by Melenk et al. [19]. Eventually, in Fig. 4
graphical representations of the neutral curves for different values of the scale parameter are given, pointing out its
influence on the stability domain.

6. Conclusions

In this paper a numerical study of a linear hydrodynamic stability problem of a convective flow in the presence of a
varying gravity field is carried out. The sixth order eigenvalue problem with Dirichlet and hinged boundary conditions
is cast into a second order eigenvalue problem supplied only with Dirichlet boundary conditions. It is solved by
some weighted residual methods (Galerkin type) methods as well as by a collocation method. The algorithm is fairly
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Fig. 4. Neutral curves for various values of the physical parameters.

general and its Chebyshev collocation implementation very fast and flexible. Formally this implementation produces
some spurious eigenvalues but this fact is explicable and expected. However, the lower part of the spectrum, which is
highly important, is accurately approximated. More than that, no scale resolution restrictions are required.

In spite of the superior cost in computing the generalized algebraic eigenvalues, our “D2” strategy is plainly
superior with respect to accuracy when compared with the same numerical methods applied to the direct formulation.

The Chebyshev collocation version of our method was validated in solving the Viola’s eigenvalue problem. It is
a singularly perturbed eigenvalue problem with high sensitive eigenvalues. About this problem we conjecture that its
first eigenvalue λ1 → 1 as θ → 1−.
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