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SUMMARY

The aim of this paper is to show that the Jacobi-Davidson (JD) method is an accurate and robust method for
solving large generalized algebraic eigenvalue problems with a singular second matrix. Such problems are
routinely encountered in linear hydrodynamic stability analysis of flows that arise in various areas of con-
tinuum mechanics. As we use the Chebyshev collocation as a discretization method, the first matrix in the
pencil is nonsymmetric, full rank, and ill-conditioned. Because of the singularity of the second matrix, QZ
and Arnoldi-type algorithms may produce spurious eigenvalues. As a systematic remedy of this situation, we
use two JD methods, corresponding to real and complex situations, to compute specific parts of the spectrum
of the eigenvalue problems. Both methods overcome potentially severe problems associated with spurious
unstable eigenvalues and are fairly stable with respect to the order of discretization. The real JD outperforms
the shift-and-invert Arnoldi method with respect to the CPU time for large discretizations. Three specific
flows are analyzed to advocate our statements, namely a multicomponent convection—diffusion in a porous
medium, a thermal convection in a variable gravity field, and the so-called Hadley flow. Copyright © 2012
John Wiley & Sons, Ltd.
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1. INTRODUCTION

In a linear hydrodynamic stability analysis, one first considers the linearization of the governing
equations around a steady-state flow. The perturbation variables are described by a linear system
of coupled partial differential equations supplied with a set of boundary conditions. The discretiza-
tion of this system frequently leads to some non-Hermitian generalized eigenvalue problems with
singular second-order matrix in pencil of the form

A-x=AB-x, (D

where the matrices A and B satisfy rankB < rankA.

The singularity of B can have two different reasons. First reason can be physical, that is, in incom-
pressible flows, this matrix is associated with the transition terms in governing equations, and then,
the singularity comes from the fact that continuity equation for such flows does not have a time-
dependent term. Second, the singularity comes from the numerical method of discretization. We are
mainly interested in this second situation. This singularity is responsible for the so-called spurious
eigenvalues or eigenvalues at infinity. They complicate the numerics because most iterative methods
favor the eigenvalues with the largest modulus, not those with largest real part. However, there are
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many examples of such problems. One of the first was obtained in [1] in connection with stability of
convective motion in a variable gravity field. In [2], the authors analyze the stability of convective
flows in porous media, and in [3-5], the authors consider various physical situations such as thermal
convection in a box, a multicomponent convection—diffusion, and the so-called Hadley flow. All
the previously quoted papers are connected with the name of B. Straughan. The same phenomenon
is noticed in [6] for various incompressible flows. When the linear stability analysis of some two-
phase flows and free-surface flows (in MHD) are considered, the presence of eigenvalue at infinity
in solving problems of type (1) is observed in [7] and [8].

The level of discretization needed to describe accurately the perturbed fields gives rise to large
matrices, that is, of order of thousands and larger. This large dimension of problems rules out the
calculation of the entire spectrum: usually, only the leading eigenvalues (those with the largest or the
smallest real part) are computed. In spite of this fact,up to our knowledge, the classical QZ method
was used in quasitotality of such singular generalized eigenvalue problems encountered in linear
hydrodynamic stability; see [9] for one of the first applications of QZ in this context. Our papers
[10] and [11] are not an exception to this situation.

Unfortunately, the QZ method has two main drawbacks. First, its complexity is of order O(n?),
and because of large CPU times required, it is hardly applicable to large problems. Second, because
of the singularity of B, it provides eigenvalues at infinity.

In [6], the authors carry out a short review of method available to eliminate nonphysical eigenval-
ues in such non-Hermitian singular problems. They observe that the most effective techniques are
based on some form of preconditioning and Krylov subspace projection methods [12]. They also
remark that such techniques are computationally expensive and, in fact, do not eliminate the eigen-
values at infinity from the spectrum because the dimension of the transformed problem is the same
as the original one. The eigenvalues are only mapped to a part of spectrum of the transformed eigen-
problem that will not be favored by the iterative methods. Eventually, in [6], some ad hoc methods,
based essentially on the physics of the flow, were designed to eliminate these spurious eigenvalues.

To avoid any confusion, we have to underline that the classical Orr—Sommerfeld equation, when
solved with spectral methods, generates regular generalized eigenvalue problems. When coupled
with other equations, which implies nonstandard boundary conditions, just a few spurious eigenval-
ues could appear. Thus, in [13], the authors couple this equation with the Squire’s equation (normal
vorticity equation), discretize them by Chebyshev collocation, and then use a transformation that
maps the spurious eigenvalues to an arbitrary location in the complex plane to remove them. In
[14] and [15], for spectral Galerkin and Chebyshev tau (Lanczos), respectively, the authors sug-
gest practical tricks to remove the spurious modes in similar problems. The authors of [16] obtain
reliable results for the rightmost eigenvalue of Orr—Sommerfeld equation provided that a scale res-
olution assumption is fulfilled, that is, the ratio between the Reynolds number and the square of
the cut-off parameter is ‘small’. The sequence of quotations could be much longer, but we restrict
ourselves to these works and observe that, whenever the boundary conditions are exactly enforced,
the eigenvalues at infinity can be avoided in such problems.

Hence, there is a need for a more specialized algorithm that computes only a few specific eigen-
values of such singular generalized algebraic eigenvalue problems. In the case of hydrodynamic
stability problems considered hereafter, one is typically interested in the eigenvalues closest to zero.
Consequently, in this paper, we propose to use (a real variant [17] of) the Jacobi—Davidson (JD)
method [18] to solve the arising generalized eigenvalue problems. Advantages of the JD method are
that it is applicable to large-scale eigenvalue problems and that it can deal with spurious eigenvalues
at infinity [19]. Concerning the eigenvalues at infinity, in principle, JD can also be hampered by
their presence. However, by clever selection strategies, this can be avoided. Furthermore, in the
paper [19] on purification, it is described how shift-and-invert/Cayley transformation strategies can
be employed to avoid convergence to eigenvalues at infinity.

However, we want to stress that, up to our knowledge, the JD method has not been applied
previously to these singular hydrodynamic stability problems, and hence, it is a novelty of our paper.

On the other hand, we are thoroughly aware of the existence of several methods designed to
compute a specified subset of eigenspectrum, such as Krylov-based methods (see the paper of
Golub and van Loan [20] for the main research developments in the area). The reason we focus
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on JD and Arnoldi is that, in our paper, we have to deal with pencils (A,B) with singular B, for
which both JD and Arnoldi are reliable methods [17, 19]; JD may have an advantage over Arnoldi
when the matrices become large because no direct solutions are required, as they are required for
shift-and-invert Arnoldi.

A partially similar study with ours is that of Valdettaro et al. [21]. The authors solve a two-
dimensional eigenvalue problem by spectral collocation on the basis of Legendre and Chebyshev
polynomials. The generalized eigenvalue problem is solved by a Krylov subspace-type method
(incomplete Arnoldi—-Chebyshev). For this method, a detailed analysis of round-off error is provided.
But whereas our study refers to singular pencils, Valdettaro et al. consider regular pencils.

The paper is organized as follows. In Section 2, we first introduce a linear hydrodynamic sta-
bility problem, comment on its weak and minimization formulations, and use the ‘D?’ strategy
from [10] to transform it into a second-order system supplied with Dirichlet boundary conditions.
By Chebyshev collocation, the generalized algebraic eigenvalue problem is obtained. Then, second
and third singular problems are discretized with the same strategy. In Section 3, the JD method is
described. Numerical experiments are reported in Section 4 along with comments concerning the
convergence and round-off errors involved. Conclusions are contained in Section 5.

2. THREE SPECIFIC SINGULAR LINEAR HYDRODYNAMIC STABILITY PROBLEMS

In [10], the following even-order eigenvalue problem was considered:

(D? —a?)?>W = R(1 + &h(z))a?®, 5
(D2 —a%)® = —RW, )

W=D>W=0=0 at z=0,1. (3)

In these equations, as well as in the following two problems, D stands for the derivative with
respect to the variable z. Ra := R? is the Rayleigh number that represents the eigenparameter of
the problem (2)-(3), a is the wavenumber, W and ® are the amplitudes of the vertical velocity and
temperature perturbation, and e/(z) signifies the gravity variation in the layer of fluid.

To reduce the order of differentiation in this problem, we introduce the new variable

U= (D?>—ad*>)W. 4)
Consequently, the two-point boundary value problem (2)—(3) can be rewritten as a second-

order system

(D% —a®>)W —W =0,
(D? —a®)¥ — R(1 + eh(z))a*® = 0, ®)
(D? —a?)® + RW =0,

supplied with the homogeneous Dirichlet boundary conditions
W=¥U=0=0at z=0,1. (6)

It is important to observe that problem (2)-(3) can also be formulated as a sixth-order
differential equation

(D? —a®)*W = —Ra(l + ¢h(z))a*W, (7
supplied with the hinged boundary conditions, namely
W =D>W=D*W=0 at z=0,1. ®)

A weak formulation for the new problem (7)—(8) reads as follows: find w € K\{0} and Ra € C
such that
1

1 1 1
/ D3wD3vdz+3aZ/ DZtzvdz+3a4/ DwDvdz +06/ wvdz =
0 0 0 0 )
1
= azRa/ (1 + &h(z))wvdz, Yv e K,
0
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where the set K is a closed subspace of H*(0, 1) defined by
K :={ve H*0,1)|v0)=v (1) = D*v(0) = D*v(1) = D*v (0) = D*v(1) = 0}.

More than that, the critical Rayleigh number can be characterized by the following minimiza-
tion problem

R — min fol (D3v)%dz + 3a? fol (D?v)2dz + 3a* fOI(Dv)zdz +a® fol v2dz
vek a? [, (1 + eh(z))v2dz
whenever the quantity 1 + eh(z) remains positive. In fact, in all our experiments, this condition
is fulfilled.

The ‘D?’ strategy implemented with Chebyshev collocation method to solve problem (5)—(6)
leads to a singular generalized eigenvalue problem of type (1), namely

, (10)

A-x= RaB -x, (11)
where the matrices A and B are
4D2 — a1 I Z 7 7 Z
A= Z 4D2 — a’l Z ,B= 7 7 1-¢Dx |. (12)
Z Z 4D2 — a’1 -1 72 Z

The submatrices D2, I, and Z stand respectively for the second-order differentiation matrix on the
Chebyshev nodes of the second kind x :={xy,...,xy—1}, the unitary matrix of order N — 1, and
the matrix with all zero entries of order N — 1, N being as usual the spectral (cut-off or resolution)
parameter. They have the same significance in the forthcoming two problems. The matrix Dx sig-
nifies the diagonal matrix diag(/(x)). It is important to note that, in the differentiation matrix D2,
the boundary conditions are enforced; thus, the rows and columns corresponding to the first node
Xo and the last node xp are deleted. All the differentiation matrices we have used come from [22].
The matrix B is singular of rank N — 1.

As a second test problem, we consider another representative singular hydrodynamic stabil-
ity problem. In this case, we solve an eighth-order differential system that models multicompo-
nent convection—diffusion in a porous medium. In defining a? to be the wavenumber and A the
eigenparameter, the nondimensional linear perturbation equations read [4]:

(D% —a®>)W —2(¢ —2)a?*S —a? V' —a?¥? =0,
(D2 —a?)S — RW = AS,

13
(D% —a®>)¥! — R\W = AP V!, (13)
(D? —a?)¥2 — RyW = AP, V2, 7 €(0,1),
supplied with the boundary conditions
W=8S=v!'=0v2=0,z=0,1. (14)

In the system (13), W, S, W!, and W? are the perturbations of velocity, temperature, and two
solutes, R and Rg are thermal and solute Rayleigh numbers, respectively, and Pg are salt Prandtl
numbers, 8 = 1,2 . Eventually, ¢ signifies a quantity connected with the temperature of the upper
boundary. The *D?’ strategy casts this problem into a generalized eigenvalue one with the matrices
A and B defined as follows:

4D2 —a*1 —2(¢ —z)a’l —a’l —a’1
A= —RI 4D2 —a?1 Z Z
T —Rq1 V/ 4D2 — a1 Z ’
—RyI Z y/ 4D2 — a*1
(15)
7 7 7 Z
B:— Z P1 Z Z
’ Z 7 Pl Z
Z 7 7 Pl
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As a third test problem, we consider the stability of the so-called Hadley flow. It refers to
convection in a layer of porous medium where the basic temperature field varies in the vertical
(i.e., z direction) as well as along one of the horizontal directions, which is defined as x direction.
The nondimensional perturbation equations [4] are

(D? —a®>)W +a?S =0, (16)
(D?—a*—io—ikU(2))S +ika>RgDW — (DT)W =0, z € (-1, 1).
supplied with boundary conditions
1

In (16), W(z) and S(z) are the third component of velocity and temperature field perturbations,
respectively. The steady-state solutions have the form

U(z) .= Rpyz,
T(z):=—Ryz+ 5 R% (z—42%) — Rux,

where Ry and Ry are the horizontal and vertical Rayleigh numbers, respectively, a? := k? + m?
with k and m being the x and y wavenumbers, and o is the eigenparameter. The same strategy casts
this problem into a generalized eigenvalue one with the matrices A and B defined as follows:

4D2 — a?1 a’l
A:: R%"I R%_[ kR%_[ 2 k . Rpyx s
~ S+ Ry )1 (S8 ) X+ ik g8 | D1 4D2 - a1~ ik - ding (24%)

(7 Z
B'_(Z I)’
(18)

where X := diag(x?/4) and D1 is the first-order differentiation matrix. We finish this section with
the remark that problem (16)—(17) can be reduced to a fourth order one in W containing the leading
term (D? — c12)2 )

Our strategy is strongly motivated by the conditioning of the matrices A, (4D2 — a’I) and its
second, third, and fourth powers. In Figure 1, the log of the condition numbers of these matri-
ces is depicted. In logarithmic terms, this picture shows that conditioning of the fourth-order
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Figure 1. Log of the condition number of the matrices D* — aZI, (D* - azl)z, (D* - 321)3, and (D* — azl)4
versus N in ascending order; a = 4.92.
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differentiation matrix doubles, and that conditioning of the sixth-order differentiation matrix triples,
the conditioning of second-order matrix. The conditioning of the eighth-order differentiation matrix
is (roughly) only 3.43 times larger than that of the second-order differentiation matrix. It means
powers two, three, or 3.43 of the conditioning of second-order differentiation matrix, for the con-
ditioning of higher-order differentiation matrices, respectively. It is the main reason for which we
did not apply directly collocation scheme to problem (7)—(8) or to its weak formulation (9) or even
to its minimization formulation (10). A completely analogous remark holds for problems (13)—(14)
and (16)—(17).

3. COMPUTING A FEW SPECIFIC EIGENVALUES

As mentioned in Section 1, the major drawback of full space methods such as the QR method
(for ordinary eigenvalue problems) and the QZ method (for generalized eigenvalue problems) [23]
is their computational complexity of O(n3), where n is the dimension of the problem. Consequently,
for n > 5000, direct computation of the complete spectrum is no longer feasible using the QR or
QZ method (see the uppermost curve in Figure 2).

On the other hand, for the application described in this paper (and for many other applications as
well), one is not interested in the complete spectrum but in a few specific eigenvalues: the eigenval-
ues closest to zero. In fact, the eigenvalue closest to zero is the most important. Before describing
the proposed algorithm, first, the requirements for an eigensolution method for the application of
this paper are summarized:

1. Given the number k of wanted eigenvalues and a target (e.g., closest to zero), the methods
must produce k eigenvalues closest to the target.

2. The method must be scalable with respect to the dimension of the eigenvalue problem.

3. The method must produce real approximate values for real eigenvalues and complex
(conjugated pairs of) approximate values for complex eigenvalues.

4. The method must not be hampered by eigenvalues at infinity of the eigenvalue problems
(11)-(12), (15), and (18).

In the following, we briefly describe the JD method [18], an iterative method for the compu-
tation of a few specific eigenvalues. We also show why this method satisfies the aforementioned
requirements. For more details, see [17, 18,24].
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Figure 2. CPU time versus n = (N — 2) x 4 for problem (15). Star line corresponds to rJDQZ, circle line to
Arnoldi, diamond line to JDQZ, and square line to QZ.
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3.1. The Jacobi—-Davidson method

The JD method [18] combines two principles to compute eigenpairs of eigenvalue problems
Ax = Ax. The first (Davidson) principle is to apply the Ritz—Galerkin approach with respect to
the search space spanned by the orthonormal columns of Vi = [vy,...,vi] € C"*k:

AVkS— QVkS 1 {Vl, A ,Vk},

which leads to k Ritz pairs (6;,q; = Vis;), where (6;,s;) are eigenpairs of V;* AV and star symbol
stands for the hermitian conjugate or adjoint. The second (Jacobi) principle is to compute a correc-
tion t orthogonal to the selected eigenvector approximation q (e.g., corresponding to the largest Ritz
value 6) from the JD correction equation

(I —qq*)(A—0I)(I —qq*)t = —(Aq — 0q).

The search space is expanded with (an approximation of) t. A Ritz pair is accepted if
Irll2 = [|Aq — 84| is smaller than a given tolerance. The basic JD method is shown in Algorithm 1.
A variant for generalized eigenvalue problems is described in [24].

If the correction equations are solved exactly, JD is an exact Newton method [18,25], but one
of the powerful properties of JD is that it is often sufficient for convergence to solve the correc-
tion equation up to moderate accuracy only, using, for instance, a (preconditioned) linear solver
such as the generalized minimal residual algorithm (GMRES) [26]. For our applications, how-
ever, the linear systems arising in the correction equation can be solved exactly in an efficient way.
JDQR (QZ) methods, which compute partial (generalized) Schur forms for standard (generalized)
eigenproblems, are described in [24,25].

Reflecting on the requirements listed previously, the JD method is known to be able to satisfy
requirements 1 and 2. In the following section, we describe how the other two can be dealt with.

Algorithm 1 The Jacobi-Davidson method
INPUT: n x n matrix A, initial vector vq, tolerance ¢
OUTPUT: approximate eigenpair (0, q) with ||Aq — 0q|| < €
1: t=wvq
2: %:WO:HO:H
3: fori=1,2,...do
4: v; = MGS(V;_1,t) {Modified Gram-Schmidt [24]}

5: V; :Vi/”viHQ

6:  Vi=[Vie1, vy

7 w; = Av;

8: Wl = [Wi—lywi]

0. H — Hiv Viyw;

viWi_1  viwg

10:  Select suitable eigenpair (6,s) of H;

11: q=Vis/||[Vis|2

122 r=Aq-10q

13:  if ||r||2 < € then

14: Stop

15:  end if

16:  Solve (approximately) t L q from correction equation

(I —aq")(A—-0I)(I —qq")t = —r

17: end for
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3.2. Computing a partial generalized real Schur form

The JDQZ [24] method for generalized eigenvalue problems computes a partial generalized Schur
form [23]

AQi Sk = BZ Ty, (19)

where Qg,Zy € C™* contain the generalized Schur vectors and S, Ty € Ck*k are upper
triangular matrices whose generalized eigenvalues A(Sk, Tk) are approximations (called Petrov
values) of eigenvalues of (A, B). Note that k < n.

Although the JDQZ method can be used for the problem described in this paper, there is one
property that makes JDQZ in its current form less applicable: although matrices A and B are known
to be real and, hence, have real or complex-conjugated pairs of eigenvalues, the produced partial
Schur form is complex. In principle, this should not be an issue. However, JDQZ does not guarantee
that approximations to real eigenvalues are real, which could lead to confusion when computing
eigenvalues of large systems. In other words, because approximations of real eigenvalues might, in
fact, be complex-conjugated pairs of eigenvalues (with negligible although nonzero imaginary part),
this could lead to wrong conclusions in practice.

In [17], a variant of JDQZ, called rJDQZ, is proposed that computes partial generalized real Schur
form for then pencil (4, B):

AQk Sk = BZy T, (20)

where Oy, Z € R™** contain the generalized Schur vectors, Sy € R¥*¥ is upper triangular, and
Ty € R¥*¥ is quasi-upper triangular (i.e., the diagonal contains a 1x I entry for real eigenvalues and
a 2 x 2 block for complex-conjugated pairs of eigenvalues). The generalized eigenvalues A(Sg, Tk)
are approximations (called Petrov values) of eigenvalues of (A, B). Note again that k < n.

The key difference between JDQZ and rJDQZ is that the latter uses only real search spaces,
whereas JDQZ uses complex search spaces. Because rJDQZ uses real search spaces, the approx-
imate eigenvalues are either real or appear in complex-conjugated pairs, which is in line with
requirement 3. Apart from this, it was shown in [17] that because less complex arithmetic is used in
rJDQZ, the method is also faster and more memory-efficient compared with JDQZ.

Finally, because we are interested in the eigenvalues closest to zero, we do not expect any
numerical problems caused by eigenvalues at infinity (requirement 4), as also described in [19].
However, when one is interested in, for example, the rightmost finite eigenvalues, one might consider
purification techniques described in [19,27].

3.3. Alternatives

An alternative method to compute a few specific eigenvalues is the Arnoldi method [28]. Because
the Arnoldi method was originally derived for ordinary eigenvalue problems of the form Ax = Ax,
it is not directly applicable to problems of the form Ax = ABx (cf. (11)). However, if it is pos-
sible to solve systems Ay = b, one can apply the Arnoldi method to the transformed problem
A7'Bx = px, where A = 1/u. Note that A is not inverted explicitly; during the Arnoldi process,
systems Ay = b are solved instead (for more details see, e.g., [29]). If solves with A can be done
efficiently and accurately, the Arnoldi method may be an interesting alternative for the JD method
(note that the JD method is still applicable if solves with A are not feasible).

For the problem at hand, the Arnoldi method is applicable because of the sparsity of matrix B and
relatively cheap solves with A.

4. NUMERICAL RESULTS

In this section, we will report some representative numerical results obtained in solving the gen-
eralized algebraic eigenvalue problems defined by (11), (15), and (18). All numerical compu-
tations reported in [10] and [11] were carried out using the MATLAB code eig, which is an
implementation of the QZ method. Alternatively, we use in this paper the JDQZ implementation
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from http://www.math.uu.nl/people/sleijpen/JD_software/JDQZ.html, the rJDQZ implementation
described in [17], and compare the results with those obtained using the MATLAB code eig for the
QZ method (see also Table 3 in [10]), and the MATLAB code eigs for the Arnoldi method. As far
as we know and as the Matlab help shows, the eigs implementation relies on the implicitly restarted
Arnoldi method from ARPACK library. All computations were carried out using MATLAB 2010a
on an HP xw8400 workstation with clock speed of 3.2 Ghz.

The computed values of the first three eigenvalues, that is, Ry, Ry, R3, A1, A2, A3, corresponding
to problems (11) and (15), respectively, are displayed in Table I. The eigenvalues o1, 05, 03 corre-
sponding to problem (18) are reported in Table II. The CPU times reported in these tables, as well
as in Figure 2, measure the time required for the computation of the first six eigenvalues except QZ
method, which computes the whole spectrum.

They are obtained for the following sets of fixed physical parameters: a? = 21.344, ¢ = 0.14286,
R = 228.009, Ry = —291.066, Ry = 261.066, P; = 4.5454, P, = 4.7619, in case of problem
(15); ¢ = 0.03 and a = 4.92 in case of problem (11); and k =0, m = 10, Ry = 114.2, Ry = 100,
in case of problem (18).

It is fairly clear from both tables that numerical approximations of the first three leading
eigenvalues computed by all JDQZ, QZ, and Arnoldi are almost indistinguishable.

The CPU times required by the all four methods are depicted in Figure 2. It is important to observe
that rJDQZ computed only the first two eigenvalues for spectral parameter N larger than 1000.

With respect to the memory usage, we have to mention that for all three methods Arnoldi, JD,
and rJD, this is of order O(kn), k being the maximal dimension of the search space, and O(n%)
with 1 < o < 3 for the system solves, where for sparse systems o < 2 may be expected. For o > 2,
costs increase rapidly, and JD/rJD would be only alternative because inexact solves could be used
(e.g., GMRES, of course of costs O(mn), where m is the number of GMRES iterations).

However,the actual performance of JD relies on many factors, including the size of the search
spaces, construction of projection spaces, shift selection (Ritz, Petrov, harmonic), and the accuracy
of correction equation solves.

The real variant of JDQZ, rJDQZ, does produce real eigenvalues because it uses real search
spaces, as explained in Section 3.2.

Both Arnoldi and the JD-based methods did not show any difficulties with spurious eigenvalues.

Table I. Numerical evaluations of the first three eigenvalues by using JDQZ, rJDQZ, and Matlab functions
eig and eigs, for N = 512.

IDQZ rJDQZ eig (QZ) eigs (ArnoldiA~1 B)

Ry 25.8365 25.836514 25.836514 25.836514
R> 134.387 134.386749 134.386750 134.386749
R3 412.323 412.323554 412.323571 412.323571
CPU (s) 48.7 9.36 57.15 9.75

A1 —5.60913 —5.609129 —5.609129 —5.609129
A2 —8.96417 —8.964170 —8.964170 —8.964170
A3 —11.1226 —11.122552 —11.122552 —11.122552
CPU (s) 133.0 16.14 157.12 30.70

Table II. Numerical evaluations of the first three eigenvalues by using JDQZ, rJDQZ, and Matlab functions
eig and eigs, for N = 256 (n = 508).

JIDQZ rIDQZ eig (QZ) eigs (ArnoldiA~1 B)
o1 —0.293433 —0.293432 —0.293432 —0.293432
02 —0.692455 —0.692454 —0.692454 —0.692454
03 —329.278 —329.2778 —311.5122 —329.2778
CPU (s) 3.21 1.90 1.38 1.31
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We also have to emphasize that, as far as we know, we have used the largest spectral order N
in such eigenvalue computations. Comparatively, in [2] and [4], values of N attain 50, in [7] the
authors work with N of order 100, in [6] the authors consider that N = 602 is fine enough to pre-
dict correctly the leading eigenvalues of the problem, and in [16] this order attains 1000. In older
papers, the authors simply work with N' much less than 100.

Some more comments on the convergence and round-off errors in rJDQZ and Arnoldi meth-
ods when singular generalized eigenvalue problems are solved are now in order. We define first
the error of a method as the absolute value of the difference between the computed eigenvalue
and the converged one, that is, obtained with the largest resolution. Then, we observe that the
pseudospectra of our pencils (A4, B) can be unbounded, that is, they extend to the whole complex
plane for sufficiently large perturbations [30]. Thus, to obtain some information, we cut up from the
whole spectrum the region surrounding the first two eigenvalues and observe that our computation is
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Figure 3. The part of pseudospectrum surrounding the first two eigenvalues of problem (15) obtained using
tJDQZ. The largest contour line corresponds to an error of order 1-107°!, and the nested contours correspond

to errors decreasing successively with 1 - 10792,
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Figure 4. Semilog plot of error versus N for the first two eigenvalues computed with rJDQZ, respec-
tively, Arnoldi.
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Figure 5. Loglog plot of error versus 1/N for the first eigenvalues computed with rJDQZ, respec-
tively, Arnoldi.

backward stable in the sense that the line of level that equals the error encloses the computed eigen-
value. By using a resolution of 256, which implies a matrix of order 1 - 1073, the pseudospectrum
is depicted in Figure 3. As the diameter of the enclosed area provides a hint of the largest possible
relative error on the respective eigenvalue, we can infer a more sensitive second eigenvalue than the
first one.

The errors of the first two computed eigenvalues, by rJDQZ and respectively Arnoldi, versus
1/N, as usual in spectral methods, are depicted in Figure 4. For resolutions larger than 1500, this
picture shows that the computation of the second eigenvalue becomes unstable in both methods. It
is in accordance with the conclusion provided by the pseudospectrum. To observe the order of con-
vergence of both methods, we depicted Figure 5. The rIDQZ method for resolutions inferior to 1700
has order of convergence that could attain unity, that is, Err is of order (1/N)?, 0 < p < 1. These
resolutions are satisfactory in hydrodynamic stability problems. Arnoldi method behaves better. It
has a comparable order of convergence but looks more accurate. The large but still acceptable error
of tJDQZ can be explained by the fact that the convergence tolerance was set to 1 - 10~°. Higher
accuracy can be obtained for lower tolerances, at the cost of additional JD iterations. With respect to
Arnoldi method, we have to observe that this method confirms its performances established in [21]
also for generalized singular eigenvalue problems.

5. CONCLUDING REMARKS

In this paper, we have shown that the JD and Arnoldi methods can be successfully used to compute
the smallest eigenvalues of large-scale matrix pencils arising in hydrodynamic stability problems.

Both methods are not hampered by eigenvalues at infinity. Because these methods are applicable
to large-scale problems, they are preferred over the QZ method, which is only applicable to small
eigenvalue problems. The variant of the JD method that uses only real search spaces, rJDQZ, takes
advantage of using such search spaces resulting in real approximations of real eigenvalues. Conse-
quently, it is the fastest method for solving such large and singular generalized eigenvalue problems.
Moreover, this method is completely independent of the physical formulation of the problem at hand.

Eventually, we want to emphasize that the Chebyshev collocation (discretization) method proved
again to be very implementable and feasible, for fairly large values of spectral parameter, provided
that accurate differentiation matrices are used.
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