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Abstract For various grids on a finite interval we measure the accuracy of pseudospectral (col-
location) differentiation matrices using two parameters. The first one is the the rank
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such matrices transform a constant vector into the null vector.

Keywords: pseudospectral differentiation; Chebyshev-Gauss-Lobatto grid; Legendre grid; equidistant
grid; accuracy; floating-point arithmetic.
2010 MSC: 65D25 (Primary), 65M70; 65N35 (Secondary).

1. INTRODUCTION

Fundamental results from approximation theory refers to the best uniform ap-
proximation of a smooth function by polynomials and the uniform approximation
of a smooth 27 periodic function by trigonometric polynomials. These results are
reviewed for instance in the monograph [1], Ch. 3. Thus, the Chebyshev equi-
oscillation theorem states that a best approximation is unique for important classes of
approximating functions but the set of nodes on which this approximation is realized
is not necessarily unique. On the other hand, the spectral collocation methods essen-
tially depend on the set of nodes on which the differential equation is collocated. In
order to implement these methods one needs very accurate differentiation matrices of
various orders.

Consequently, the accuracy at which the pseudospectral (collocation) differenti-
ation matrices operate is of utmost importance in numerical analysis. In this note
we will address the issue of the dependence of the accuracy of differentiation pro-
cess on the node distribution in a grid covering a finite interval. We will consider an
equispaced grid, an arbitrary one and then Legendre and Chebyshev grids. For non
algebraic polynomials we will consider the Fourier interpolate.
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2. ARBITRARY AND EQUIDISTANT GRIDS

It is well established that spectral collocation methods for solving differential
equations is based on weighted interpolants of the form

a(x)
%5

where u; := u(xj), u : [a,b] — R, the set of interpolating functions ¢ j X)), j=
1,..., N satisfy ¢j (xx) := 0 j (the Kronecker delta), the set of nodes x;, j=1,...,N
in [a, b] C R is distinct but otherwise arbitrary and the weight @ (x) is an arbitrary
continuously differentiable positive function (see for instance our contribution [3]).
Typically, u (x) is the solution of an initial/boundary value problem.

The baricentric form of interpolation polynomial writes (see for instance the sem-

u(x) ~ py-1 (%) = ¢; () uj, (D

inal paper [7])
a (x) Z s a(x
pN—] (x) - N B
wj
X—Xj
j=1
N
where wj‘.l = H (x = xm). This means that py_; (x) defined above is an inter-
m=1, m#j

polant of the function u (x) in the sense that

u(xp) =pn-1x), k=1,...,N.

The collocation derivative operators are generated by taking various order deriva-

tives of (1) and evaluating them at nodes x;, k =1,..., N, i.e.,
N
d | a(x)
0] ~ _
u (xp) ~ Zdl ( )qﬁj()} ug, k=1,...,N.
X=X

Consequently, the / — th order differentiation matrices associated to this operator are
computed by

1
ph - 4
ki dxd

a(X)%()] s k,j=1,...,N, €N, )

() e

where ¢ ; (x) are given by Lagrange’s formula

N
(x—xm

xj—xm

¢j(x)3= ),j=1,...,N.

m=1, m#j
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The approximation theory dictates that the set of nodes x;, j = 1,..., N cannot be
just any set of nodes. The main aim of this note is to make this statement more
clear. Thus we use the MATLAB code poldif.m from [7] in order to perform the
differentiation in (2).

In order to quantify the performances of every set of nodes we compute two spe-
cific parameters, namely:

m the norm of the error in approximating the zero vector, i.e.,
1y := ones(N, 1);

D(l)-lN” where

= the rank (D(l)) for various values of approximation parameter N.

Instead of the first parameter we could use another one reflecting the fact that the
matrix DV has to satisfy
N
>DP=0,1<i<N,
J=1

i.e., the derivative of a constant vanishes.
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Fig. 1.: The accuracy of equidistant differentiation (starred line Euclidean norm,

circled line inf norm) vs N and the accuracy of differentiation on grid (4) (diamonded
line Euclidean norm, squared line inf norm) vs N.

Let’s consider a set of equidistant nodes

Jj-1 .
= — j=1,...,N. 3
x] N _ 19 J ] ’ b ( )
where N takes in turn the value from the first row of Table 3.1. Thus the interval
[0, 1] is successively divided in N — 1 subintervals each of length 1/(V — 1).
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Functions Spectral derivatives
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Fig. 2.: The collocation derivative of hat function and exp (sin (nx)), n = 10 on 20
equispaced nodes.

Along with the equidistant grid (3) we consider first an arbitrary one, namely

j-1y
Yj=|——].,j=1....N. 4
Xj (N—l) J 4)

It is fairly clear that this new grid is a non uniform one with nodes clustering to
the left margin 0. The extent at which the differentiation matrices perform on both
grids is depicted in Fig. 1. The error in approximating the zero vector takes huge
values. The collocation derivatives of the hat function and of a highly oscillatory
but fairly smooth function, i.e., exp (sin (nx)), with n = 10 on 20 equispaced nodes
are depicted in Fig. 2. They show large oscillations which cluster to the ends of the
interval [—1, 1].They are the direct consequence of the numerical instability of the
differentiation process.

It is well known that given N nodes each of the differentiating matrices should
be rank N — 1, a differentiating has the constant vector as its null space. Thus, it is
important to point out that this equispaced approach works accurately for a very small
number of nodes. As differentiating matrix D" should be rank one deficient, this
simple test shows that even for a very rough approximation D" has additional null-
spaces. Moreover, in case of quadratically spaced grid X}, the differentiation matrices
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N |11 |21 |31 |41 |51 |61 71|81 |91]101]
rank(DM)-3) | 10 [ 20 | 30|37 [42]9 |8 |8 |7 |7
rank(DW)-4) |10 | 196 |4 |4 |3 [3 |3 |3 |3

Table 1: The evolution of rank deficiency of differentiation matrices for equidistant
grid (3) and squared grid. (4)

become much more degenerated. Table 3.1 shows that the situation dramatically
deteriorates as N increases.

3. CONSECRATED GRIDS

In this section we will analyze some well known grids such as Legendre, Cheby-
shev and Fourier applied to a finite interval. First, let’s reconsider two illustra-
tive examples, the Chebyshev and Legendre derivatives of the hat function 4 (x) :=
max(0, 1—abs(x)) and of the smooth but fairly oscillatory function exp (sin (nx)), n >
2.

Functions Spectral derivatives

Hat function

exp(sin(nx))

Fig. 3.: Chebyshev and Legendre derivatives of hat function and exp (sin (nx)), n =
10. The order of approximations equals 128.

The differentiation on the roots of Legendre polynomials presents an intermediate
situation. As it is apparent from Fig. 4 the differentiation matrices for N < 700



60 Calin Ioan Gheorghiu

10° 5

10

Error

10—10

-15

100 200 300 400 500 600 700 800
N

Fig. 4.: Semilogy plot of the accuracy of Legendre differentiation (squared line for
Euclidian norm and diamonded line for inf norm) vs N.

perform satisfactorily well. Our numerical experiments have showed that all differ-
entiation matrices keep a rank of order N — 1. Most notably, for N larger than 700 the
Legendre differentiation process rapidly becomes unstable.

The best situation with polynomial differentiation is encountered when Chebyshev
nodes of second kind

k-Dnr

,k=1,...,N, 5
o ) 5)

Xg = cos(
or equivalently Chebyshev-Gauss-Lobatto quadrature nodes (see for instance [5] or
our contribution [4] p. 11) are used. The corresponding differentiation matrix has the
entries (see for instance [2], p. 69)

(=17

Cj(xk_xj), ] * k, J,k = 1, 2, ...,N,
—s e, j=k# 1N,
D,(clj) _ 2(1-7) J
2(N—61) AR
2

ST
The above differences (xk - X j) may be subject to floating-point cancellation errors
for large N. Various tricks based on simple trigonometric identities have been used

in [7] in order to avoid such errors in floating-point arithmetic. Thus, the MATLAB
code chebdif.m has been fairly stable algorithm in computing these matrices.

The upper curve in Fig 5 correspond to this situation.
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Beyond this polynomial differentiation we will pay a particular attention to the
Fourier differentiation matrices (see [7]). The Fourier interpolate reads

N
ty (x) := ¢, (xX) uj,

j=1
where

¢J-(x) = %sin%(x—xj)cot%(x—xj), N even,

¢;(x) = % sin ¥ (x—x;)esc § (x - xj), Nodd, j=1.2,...N.

Using the baricentric form of the interpolate (see [6] Sect. 13.6) the MATLAB code
fourdif.m from [7] provides the Fourier differentiation matrices on the nodes

2w
xp:=(k=1)h, hzﬁ, k=1,...,N.

Their performances are the best as it is apparent from Fig. 5 (see the lower curve).
For N = O (26) it is of utmost importance to underline that Fourier and even Cheby-
shev differentiation matrices work fairly close to the machine precision. Excellent
approximations are also attained when the cut off parameter ranges up to 2!!. It is
also important to notice that all differentiation matrices conserve a correct rank. It is
a practical illustration of the spectral accuracy.
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Fig. 5.: Semilogy plots of the accuracy of Fourier differentiation (starred line Eu-

clidean norm, circled line inf norm) vs N and of the accuracy of Chebyshev differen-
tiation (diamonded line Euclidean norm, squared line inf norm) vs N.
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CONCLUDING REMARKS

In ([7]) p.478 the authors state that no general error analysis applicable to differ-
entiation process on arbitrary grids has been undertaken. We hope that the present
note fills this gap at least partially. Fourier and Chebyshev differentiation matrices
have proved to be fairly reliable. This facts explain to some extent the success of the
collocation spectral methods based on them.
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