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Forschungszentrum Jülich GmbH
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Abstract

Technical aspects of modeling the long time behavior of diffusion in random velocity fields
are discussed from theoretical and numerical points of view. First, a general mathematical
model of diffusion in random environments is presented. In this frame, the hypothesis which
make possible a Lagrangian description are explicitly presented and the conditions for asymp-
totic diffusive behavior are analyzed. Next, the Global Random Walk algorithm for numerical
modeling of diffusion is described. The issues of numerical modeling of diffusion in random
velocity fields suggest a deeper analysis of computations of effective diffusion coefficients. In
the following, the effective diffusion coefficient is expressed as a function of velocity correlations
along the paths starting in grid points inside the contaminant plume and developed for several
time iterations. This approach provides us with a new tool to analyze the asymptotic behavior
and to characterize the numerical codes which generate discrete random fields.
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1 Introduction

The stochastic approach of diffusion in random media is based on three assumptions: the
heterogeneity of the natural porous media can be described by random space functions, for large
times the transport process behaves asymptotically diffusive and, diffusion in a single realization
of the medium produces the same concentration distribution as that given by average over the
ensemble of realizations. Mathematically, this corresponds to the “self-averaging property”
of the process [Avellaneda et al., 1991]. Then one expects that the stochastic model has
predictive force for individual realizations of the porous medium [Attinger et al., 1999]. “A
major motivation of stochastic analysis of transport in a heterogeneous porous medium has
been to derive an effective equation for the concentration that may be used to make decision
in real life contamination events” [Kapoor and Gelhar 1994a]. First, the existence of the
asymptotic diffusive behavior and the self-averaging property must be checked. Further, the
fluctuations of concentration in individual realizations should be studied, in order to find the
superior bound which delimits the “unsafe zone” [Kapoor and Gelhar 1994b].

In this report we restrict our discussion to transport of passive scalars, i.e. without sorption
or chemical reactions, and to saturated aquifers. The Darcy velocity field with high variability,
due to the heterogeneity of the aquifer, is described by a random space function. The math-
ematical theory of diffusion processes provides a rigorous frame in which diffusion in random
velocity fields can be defined as a stochastic process. Although general necessary conditions for
diffusive behavior can be stated, sufficient condition can be established mainly for simple exam-
ples, as Langevin-kind equations or the stratified aquifer model of Matheron and de Marsily. In
more complex cases, the connection between the Lagrangian statistical description and exper-
imentally measured velocity correlations is obtained by the use of strong assumptions, which
essentially produces the same effect as the Corsin conjecture of factorizing in average over the
ensemble of realizations of the random field [Suciu, 2001]. The Eulerian approach based on
advection-diffusion equations allows a more accurate mathematical presentation of the problem
but hypotheses for asymptotic diffusive behavior are still mater of controversies [Kapoor and
Gelhar 1994a, Dagan and Fiori, 1997]. In some analytical approaches, using special (Gaussian)
forms for correlation function involved, the approach towards the asymptotic state can be de-
scribed [Attinger et al., 1999]. In general, this is not easy and the travel time/distance at which
the transport can be described by the effective diffusion equation as well as the validity of this
equation for single aquifer can not be established on the basis of the mathematical model only.
Overall, the mathematical stochastic models require strong continuity properties of random
functions used as models for velocities and trajectories [Taylor, 1921] which is unlikely to hold
in real processes.

Numerical models are used to verify and to go beyond the limits of mathematical theory of
stochastic processes. When diffusion in random fields processes are numerically simulated, both
the problem of asymptotic behavior and of “self-averaging” property are difficult to be solved
and they imply high computing resources. In [Schwarze et al., 2001], to obtain the approach
to asymptotic value of longitudinal effective diffusion coefficient, 3200 particle trajectories were
simulated with “particle tracking” (PT) procedure, for times corresponding at 5000 correlation
lengths. In other studies [Salandin and Fiorotto, 1998], the reliability of the computations
is achieved using 20 000 trajectories (500 realizations of the field and 40 particles in each
realization), up to 20 correlations lengths but the asymptotic regime is not reached. The
computational effort needed to obtain statistically significant results “has serious implication”
when the behavior in a single realization is studied [Bellin et al., 1992]. Because comparison with
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field measurements rises questions about the validity of effective equation for single realization
[Vanderborght and Vereecken, 2001] sometimes a more pragmatic approach is adopted in which
no effective equation is used and direct simulations of transport and concentration variations
are preferred [Tompson et al., 1998].

Global random walk algorithm (GRW) [Vamoş et al. 2001a, Vamoş et al. 2001b] is not
concerned with limitations related to number of particles. Unlike the usual random walk algo-
rithms, PT included, the trajectories of the particles must not be simulated individually and
stored. With GRW, all particles lying at a given grid point are simultaneously scattered in
space according the random walk (which simulates the local diffusion) and transported with
velocity of the random field realization. This is done by the use of the Bernoulli repartitions
or by determinist rules. In this way the maximum number of particle representable on a com-
puting platform can be handled, without increasing computing time. Using large grids, GRW
allows simulation of large times behavior and the checking of “self-averaging”.

Section 2 presents a frame of mathematical theory of transport in random media and dis-
cusses the basic definitions, (random variables, processes and fields, concentration field and con-
centration variance, drift and diffusion coefficients) equations (Liouville, Fokker-Plank, master,
Itô, Langevin) and properties (self-averaging, existence of effective diffusion coefficients, Corsin
conjecture and relation between Lagrangian an Eulerian statistics). These basic notions are
used to draw the main lines of the model of “diffusion by continuous movements” of Taylor
[1921], on which the actual models of Lagrangian passive transport are based. In Section 3 the
random walk and GRW algorithms are presented and their relation with continuous diffusion
processes is discussed. A simulation of asymptotic behavior of diffusion in random velocity
filed is presented in Section 4. The Section 5 presents the new numerical tool in analyzing
asymptotic behavior, based on a “path decomposition” of the effective diffusion coefficient as
function of velocity correlations. Section 6 contains some conclusion of this report and ideas
for further works.

2 Elements of theory of transport in random media

2.1 Random variables, processes and fields

2.1.1 Random variables

Stochastic description of systems associates probabilities to states and to transitions between
states. The heuristic definition of probability can be introduced as the limit for large number
of trials of the relative frequency of occurrence of an event. Further, the probability can be
axiomatically defined as an positive and additive function of sets of events so that the occurrence
of any one event from the set of all possible events, i.e. the “sure event”, has the probability
one. A parameter describing the state of the system with the associate probability is modeled
by a random variable. The random variable is the basic mathematical object used to build
stochastic descriptions of real processes. Stochastic processes, random fields and dynamical
systems are random variables, defined on particular spaces of events.

The mathematical model of random variables uses σ-algebras of sets and measures defined
on σ -algebras. The σ-algebra A is a set of subsets of a generic set Ω which is closed with respect
to intersection and countable reunion operations. The pair (Ω,A) is a measurable space; the
set A ⊂ Ω is a measurable set with respect to A if A ∈ A. A measure P on a σ-algebra
A is defined as a positive and countable additive function of sets on A, P : A �−→R+. The
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triplet (Ω,A, P ) defines a measure space. When P (Ω) = 1 then P is a normalized measure and
(Ω,A, P ) becomes a probability space.

Let (Ω,A, P ) be a probability space and (X,B) a measurable space with property {x} ∈ B,
∀x ∈ X. A random variable is an (A,B)-measurable application η : Ω �−→ X, i.e. endowed
with the property

{η ∈ B} ∈ A,∀B ∈ B, (2.1)

where {η ∈ B} = {ω ∈ Ω | η (ω) ∈ B}.
In physics terminology, X is the phase space, the sets B ∈ B are realizations, Ω is the space

of elementary events, the sets A ∈ A are events and P (A) is the probability of occurrence of
the event A [Gardiner, 1983, Wentzell, 1981].

The distribution of the random variable η is a measure Pη : B �−→R+, defined by

Pη (B) = P ({η ∈ B}), ∀B ∈ B. (2.2)

The distribution of the realization B is thus defined as the probability of occurrence of the event
{η ∈ B}. In particular, Pη(X) = P ({η ∈ X}) = P (Ω) = 1, which shows that the distribution
organizes the phase space X as a probability space, (X,B, Pη).

The notion of distribution allows the connection of the mathematical model of random
variable with experimental data and numerical models. For example, we consider the measure-
ments of the positions of a particle at different distances along a straight line. The number of
occurrences of a measured value, inside the interval ∆x centered in x, Nocc divided by total
number of measurements N , i.e. the relative frequency Nocc/N , approximates the repartition
of a random variable describing the measurement.

Probabilistic descriptions of practical interest are given by stochastic average defined as a
Lebesgue integral,

M(η) =

∫
Ω

η(ω)P (dω) , (2.3)

the variance, M((η − M(η))2), n order moments, n > 2, M((η − M(η))n) and correlation
functions of two variables η and ς, Cor(η, ς) = M( ης − M(η)M(ς)).

When B = X then {η ∈ X} = Ω and a change of variables theorem shows that the average
over the space of elementary events, M

Ω
, equals the average over the phase space, M

X
,

M
Ω

(f) =

∫
Ω

f(η(ω))P (dω) =

∫
X

f(x)Pη(dx) = M
X
(f) , (2.4)

where, x = η(ω) [Malliavin, 1993, p180]. Both averages are mathematical models of “average
over the statistical ensemble”.

2.1.2 Random functions, processes and fields

Let Λ be a set of parameters, (Ω,A, P ) a probability space and (Y,B) a measurable space. A
random function is defined as a random variable on Ω taking values in the “Cartesian product”
space Y Λ,

η : Ω �−→ Y Λ, η(ω) = yω, yω ∈ Y Λ, ∀ ω ∈ Ω. (2.5)

If BΛ is a σ -algebra in Y Λ, the (A,BΛ) -measurability of the random variable η is given by
the condition {η ∈ C} ∈ A for every set C ∈ BΛ. The distribution of the random function is
defined by (2.2) as

Pη (C) = P ({η ∈ C}), ∀C ∈ BΛ, (2.6)
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and organizes the space Y Λ as a probability space, (Y Λ,BΛ, Pη). The function yω : Λ �−→ Y
is called a sample (or realization) of the random function and its values, yω(λ) = yλ, λ ∈ Λ,
are points in the space Y , called the state space. The phase space for the random function η is
the space of functions Y Λ and the realization are sets of functions yω in Y Λ. The definition of
the random function as a random variable on a space of function is referred to as the definition
in the sense of Doob, originally introduced in [Doob, 1953, Cap.2]. When Λ ⊆ R and λ has
the meaning of physical time, the random function is called a stochastic process. The samples
of a stochastic process are called trajectories. When Λ ⊂ R

d, the random function is a d-
dimensional random field (this is the mathematical object used as model for velocity field in
turbulent diffusion and transport in heterogeneous porous media [Dobrushin and Pecherski,
1981, p.261, Wentzel, 1981, pp.25-26, Taylor, 1921]).

The value of yω for a fixed parameter λ defines a random variable, ηλ(ω) = yω(λ), ηλ :
Ω �−→ Y . The phase space of ηλ coincides with the state space Y . The family of random
variables {ηλ | ηλ : Ω �−→ Y }λ∈Λ defines a random function in the Wiener sense. Another
useful representation of the random function is as a two variables function, ηλ (ω) = η (λ, ω) ,
η : Λ × Ω → Y. The sufficient condition of measurability is that for every fixed ω the function
η be (left or right) continuous as function of λ [Wentzell, 1981, p.22]. General conditions of
equivalence of these definitions are presented in [Iosifescu and Tăutu, 1972, p.164]. While
the Wiener and two variables function definitions are useful in specific application, the Doob
definition remains the main tool to build a coherent frame for a general theory of Markov and
diffusion processes.

The distribution of the random function is completely defined by a hierarchy of consistent
finite dimensional distributions. The n-dimensional distributions are the distributions of the
random vectors {ηλ1 , ..., ηλn}, obtained from η for fixed values of the parameter λ,

Pλ1...λn (B) = P ({ηλ1 ∈ B1, ..., ηλn ∈ Bn}), B ∈ Bn, Bi ∈ B. (2.7)

The distributions (2.7) are called consistent when they verify the conditions

Pλi1
,...,λin

(Bi1 × ... × Bin) = Pλ1...λn (B1 × ... × Bn) , (2.8)

for all permutations {i1, ..., in} of indices {1, ..., n} and any B1, ..., Bn ∈ B, and

Pλ1...λnλn+1 (B1 × ... × Bn × Y ) = Pλ1...λn (B1 × ... × Bn) . (2.9)

The existence of the process in the sense of Doob (2.5) and the definition of the distribution
Pη are stated in the Kolmogorov Theorem on finite-dimensional distributions:

Theorem 1. If Pλ1...λn are probability measures on (Rn,Bn), associated to finite sets
of parameters λ1, ..., λn from the set of parameters Λ, and if Pλ1...λn verify the consistency
conditions (2.8-9),

Then, there exists a random function η in the probability space (RΛ,BΛ, Pη), uniquely
defined in the sense of Doob, and the distribution is defined by

Pη (Cn) = Pλ1...λn (B) , for all Cn ∈ BΛ, Cn = {(yλ1 ....yλn) ∈ B | B ∈ Bn}, (2.10)

and, reciprocally, finite dimensional distributions distributions associated to a random function
by (2.10) are consistent.

The simplest example of random function is the infinite sequence of independent random
variables. Let Λ = Z, where Z is the set integer numbers, and (Y,B, P0) a state space. The
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Cartesian product space endowed with the product probability measure P =
⊗∞

−∞P0, (Y Z

,BZ, P ) is the phase space for the random function

η : Y Z �−→ Y Z, η(y) = y′, y′
i = yi+1, −∞ < i < ∞,

defining a translation along the components of infinite vectors from Y Z = {(yn)n∈Z | yn ∈ Y }.
It is straightforward that P verify (2.10) and the finite dimensional distributions are consistent.

The first random function build by the use of Kolmogorov theorem was the Wiener process
[Wentzell, 1981, pp.83-84]. The 1-dimensional Wiener process is the random function w : Ω �−→
R

[0,∞), w(ω) = yω, with trajectories on real axis, yω : [0,∞) �−→ R, defined by the following
three properties:

(w1) w0(ω) = 0, ∀ω ∈ Ω, (the process starts from 0),
(w2) for fixed times, 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn, the corresponding random variables wt1 − wt0 ,

wt2 − wt1 , · · · , wtn − wtn−1 , are independent (independent increments), and
(w3) the random variables wt − ws, 0 ≤ s ≤ t, have Gaussian distribution with zero mean

and variance (t − s),

P(wt−ws) (B) = [2π (t − s)]−1/2

∫
B⊂R

exp{−(yt − ys)
2/2 (t − s)}dys. (2.11)

The distribution of the sequence of independent increments from the property (w2) is the
product of distributions (2.11). By the means of a linear transformation of the vector of
independent increments, one obtains the finite-dimensional distribution of the random vector
(wt1 , · · · , wtn) as,

Pwt1 ···wtn
(B) =

n∏
i=1

[2π (ti − ti−1)]
−1/2

∫
B⊂Rn

exp

[
−

n∑
i=1

(yi − yi−1)
2

2 (ti − ti−1)

]
dy1 · · · dyn, (2.12)

where t0 = 0 and y0 = 0 [Wentzell, 1981, p.13].
The Wiener process is a random variable defined on the probability space (C0(R

[0,∞)),B[0,∞),
Pw), where C0(R

[0,∞)) is the set of continuous real functions defined on [0,∞) , starting at
t = 0 from the point 0, and Pw is the distribution completely defined by finite-dimensional
distributions (2.12) through (2.10) and Kolmogorov theorem. The averages over the phase
space M (f) (t) from (2.4) (and the higher order moments) are given by their values at fixed
times t, by integration with respect to the measures (2.12).

2.1.3 Densities for finite dimensional probabilities

Let (Y,B) be a state space, µ a measure on B and Pη the distribution of the random variable
η : Ω �−→ X. If the measure Pη is absolutely continuous with respect to µ, i.e. Pη(B) = 0 for
every B ∈ B, with µ(B) = 0, then the Radon-Nikodym theorem defines the probability density
pη of the distribution Pη: ∫

B

pη(y)µ(dy) = Pη(B). (2.13)

By (2.13), one associates to the set function Pη the point function pη, which is Lebesgue
integrable with respect to the measure µ and uniquely defined up to sets of null Lebesgue
measure, i.e. it belongs to the set of integrable functions, pη ∈ L1(Y,B, µ). Also, as a density
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of a probability measure, pη has the normalization property
∫

Y
pη(y)dy = 1. In the case of real

random variables, i.e. Y ⊆ R, µ(dy) = dy is the Lebesgue measure on the Borel σ-algebra B
(defined on the set of all open sets from Y ) and, from (2.13), one obtains Pη(dy) = pη(y)dy.

From Radon-Nikodym theorem one obtains also the densities of higher order finite dimen-
sional distributions. Let η : Ω �−→ Y Λ, be a random function defined on the probability space
(Ω,A, P ), with trajectories yω : Ω �−→ Y, yω(λ) = ηλ(ω), into the measurable space (Y,B).
When we consider the set B = B1 ×· · ·×Bn, Bi ∈ B, and the characteristic function of the set
Bi, 1Bi

(y) (defined by, 1Bi
(y) = 1 when y ∈ Bi and 1Bi

(y) = 0 when y 	∈ Bi), the n-dimensional
distribution (2.7) can be written as

Pλ1,...,λn(B) =

∫
Ω

1B1(ηλ1(ω))...1Bn(ηλn(ω))P (dω). (2.14)

The value of the function 1Bi
in ηλi(ω) can formally be written using the Dirac function [Kol-

mogorov and Fomine, 1975, p.200],

1Bi(ηλi(ω)) =

∫
R

δ(yi − ηλi(ω))1Bi
(y)dyi =

∫
Bi

δ(yi − ηλi(ω))dyi, (2.15)

With (2.15), (2.14) becomes

Pλ1,...,λn(B) =

∫
B1

dy1...

∫
Bn

dynMΩ
[δ(y1 − ηλ1(ω))...δ(yn − ηλn(ω))], (2.16)

where M
Ω

is the averaging operator defined in (2.4). If B is a set of null measure in Bn, then at
least one of the integrals from (2.16) vanishes, thus Pλ1,...,λn(B) is an absolutely continuous mea-
sure with respect to the Lebesgue measure on Bn. Then, in conditions of the Radon-Nikodym
theorem, (2.16) defines the n-dimensional density (i.e. the density of the n-dimensional distri-
bution Pλ1,...,λn), as an integrable function from L1(Y n), through

p(y1, λ1; ...; yn, λn) = MΩ[δ(y1 − ηλ1(ω))...δ(yn − ηλn(ω))]. (2.17)

The formula (2.17) is used in [van Kampen, 1981, Cap.3] to introduce the hierarchy of finite-
dimensional distributions associated with a stochastic process and is also used in studies on
turbulent diffusion [Lundgren and Pointin, 1975, Romanof, 1988]. For n = 1 and fixed λ, (2.17)
gives the 1-dimensional density

p(y, λ) = M
Ω
[δ(y − ηλ(ω))] =

∫
Ω

δ(y − ηλ(ω))P (dω). (2.18)

The density (2.18) verify the normalization condition
∫

Y
p(y, λ)dy = 1. Indeed, because ηλ(ω) ∈

Y, ∀ ω ∈ Ω we have 1Y (ηλ(ω)) ≡ 1. Then,∫
Y
p(y, λ)dy =

∫
Ω
P (dω)

∫
R
1Y (y)δ(y − ηλ(ω))dy =

∫
Ω
P (dω)1Y (ηλ(ω)) =

∫
Ω
P (dω) = 1.

From (2.17) it follows that p(y1, λ1; ...; yn, λn) is an invariant function with respect to permu-
tation of pairs (yi,λi) and it verifies the relation∫

Y

p(y1, λ1; ...; yn, λn)dyn = p(y1, λ1; ...; yn−1, λn−1). (2.19)
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Thus, the finite-dimensional densities defined by (2.17) have the consistency property for den-
sities [van Kampen, 1981, Cap.3]. From this, it follows that the distributions

Pλ1,...,λn(B) =

∫
B1

dy1...

∫
Bn

p(y1, λ1; ...; yn−1, λn−1)dyn (2.20)

verify the consistency conditions (2.8-9), and the Kolmogorov theorem ensures the existence of
the random function η. The average, moments and correlation functions can be calculated as
integrals weighted with the probability densities (2.17).

2.2 Markov processes

Let η be a stochastic process with real trajectories, η : Ω �−→ Y T , Y ⊆ R, T ⊆ R.
The conditional probability density is obtained from (2.20) and the usual Bayesian definition

from the theory of probability [Gardiner, 1983, Chap.3], as

p(y1, t1; ...; yr, tr | yr+1, tr+1; ...; yn, tn) = p(y1, t1; ...; yn, tn)/
p(yr+1, tr+1; ...; yn, tn).

(2.21)

Markov processes are characterized by the dependence of conditional probabilities on only
one of the previous states and not on the hole history of the process η. For t1 > · · · > tn, the
Markov property is expressed by

p(y1, t1; ...; yr, tr | yr+1, tr+1; ...; yn, tn) = p(y1, t1; ...; yr, tr | yr+1, tr+1). (2.22)

From (2.21-22) one obtains

p(y1, t1; ...; yn, tn) = p(y1, t1 | y2, t2)...p(yn−1, tn−1 | yn, tn)p(yn, tn). (2.23)

From the relation (2.23) and Kolmogorov theorem it follows that Markov processes are com-
pletely described by the 1-dimensional probability and conditional probability for two states,
called transition probability. For t1 > t2 > t3 and using (2.22), the consistency condition (2.19)
written for Markov processes becomes the Chapman-Kolmogorov equation,

p(y1, t1 | y3, t3) =

∫
Y

p(y1, t1 | y2, t2)p(y2, t2 | y3, t3)dy2. (2.24)

The property (2.23) of Markov processes establishes a connection between the 1-dimensional
distribution at successive times. From the definition of finite-dimensional densities (2.7) and
the consistency property (2.9), it follows that Pt1(B) = P (ηt1 ∈ B) = P (ηt1 ∈ B; ηt2 ∈ Y ), for
every B ∈ B. With formula (2.20) and relation (2.23), written for two successive times, we
obtain

Pt1(B) =
∫
B

p(y1, t1)dy1 =
∫
B

dy1

∫
Y

p(y1, t1; y2, t2)dy2

=
∫
B

dy1

∫
Y

p(y1, t1 | y2, t2)p(y2, t2)dy2.

Thus, the 1-dimensional density at t1 can be calculated from the corresponding density at t2
and transition probability with the relation

p(y1, t1) =

∫
Y

p(y1, t1 | y2, t2)p(y2, t2)dy2. (2.25)
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2.3 Diffusion processes

2.3.1 Definition, drift and diffusion coefficients

Let η : Ω �−→ Y T , Y ⊆ R
3, T ⊆ R, be a Markov process defined on the probability space

(Ω,A, P ) valued into the trajectories space {yω ∈ Y T | yω : T �−→ Y, yω = η(ω), ω ∈ Ω},
where (Y,B) is a measurable space, Y ⊆ R

3 and B is the Borel σ-algebra. For this process one
defines the densities of finite dimensional distributions, absolutely continuous with respect to
Lebesgue measure, using (2.17) and the corresponding transition densities.

The Markov process defined in above, is a diffusion process in the sense of Kolmogorov
[Gardiner, 1983, Sect.3.3, 3.4], if for any ε > 0 the transition probabilities satisfy, uniformly in
x and t as ∆t −→ 0, the conditions

i) lim
∆t→0

1
∆t

∫
|y−x|≥ε

p(y, t + ∆t | x, t)dy = 0,

ii) lim
∆t→0

1
∆t

∫
|y−x|<ε

(yi − xi)p(y, t + ∆t | x, t)dy = Ai(x, y) + O (ε) ,

iii) lim
∆t→0

1
∆t

∫
|y−x|<ε

(yi − xi)(yj − xj)p(y, t + ∆t | x, t)dy = 2Bij(x, t) + O (ε) .

The condition i) ensures the continuity with probability 1 for the trajectories of the Markov
process [Gardiner 1983, p.46, Wentzell, 1981, p.167]. This property means that for almost all
values of ω (excepting sets of null measure, E ∈ A, P (E) = 0) the trajectories yω are continues
time functions. Continuous Markov processes are called “diffusion processes in a large sense”
[Falkner, 1997].

If there exist partial derivatives of Ai, Bi,j and transition probabilities p, then, in the limit
ε −→ 0, from i) − iii) the Fokker-Planck, equation

∂tp(x, t | x0 , t0) = −∇[Ap(x, t | x0 , t0)] + ∇2[B̃ (x, t) p(x, t | x0 , t0)], (2.26)

is derived, where A is the drift vector and B̃, the diffusion tensor. For positively defined A and
B̃, the equation (3.1) can be solved if initial condition p(x, t | x0 , t) = δ(x − x0) and suitable
boundary conditions are assumed [Gardiner, 1983, Sect.3.42].

The integrals from ii)-iii) have the meaning of local averages, M|y−x|<ε[f(y) | x, t](t +
∆t; x, t), of some functions f(y) defined on Y . These averages are calculated inside a sphere
of radius ε, at time moment t + ∆t and conditioned by the value x at t for the trajectories of
the process. Using the mean theorem and the condition i), one estimates the average over the
state space at t + ∆t as it follows:

M [f(y) | x, t](t + ∆t; x, t) =
∫

|y−x|<ε

f(y)p(y, t + ∆t | x, t)dy

+M|y−x|≥ε[f(y) | x, t](t + ∆t; x, t)
∫

|y−x|≥ε

p(y, t + ∆t | x, t)dy

= M|y−x|<ε[f(y) | x, t](t + ∆t; x, t) + o (∆t).

(2.27)

We found that for continuous processes the local average is of the same magnitude order for
∆t → 0 as the average over the entire state space (the Euler order relations, o, O,Os and
∼, are used in the sense of definitions from [Georgescu, 1995, Sect.1.2]). In ii)-iii) there is
no relation between ε and ∆t. Usually one assumes ε = o(∆t) [Wentzell, 1981, Cap.11]. In
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this case, when the initial time is t and the initial condition for equation (2.26) is given by
p(y, t | x, t) = δ(y − x), from (2.27), and conditions ii) and iii), we have

Ai(x, t) =
d

ds
M [(yi − xi) | x, t](t + s; x, t) |s=0, (2.28)

respectively,

Bij(x, t) =
1

2

d

ds
M [(yi − xi)(yj − xj) | x, t](t + s; x, t) |s=0 . (2.29)

This proves that for continuous processes (i.e. verifying the condition i) the existence of the
coefficients (2.28-29), into the hypothesis of order relation ε = o(∆t), is equivalent with the
diffusion conditions ii)-iii). The coefficients (2.28-29) are “forward” derivatives with respect
to time of mean value and variance of (yi − xi), conditioned by initial state (x, t) (the variance
is obtained when the product M [(yi − xi) | x, t]M [(yj − xj) | x, t], which is of the order o(s)
for s → 0, is subtracted from the mean in (2.29)). Only in these conditions, the diffusion
coefficients can be defined as time derivatives of displacement variances as in [Taylor, 1921,
Dagan, 1989].

The typical diffusion process is the 1-dimensional Gauss process (Y ⊆ R), defined by its
average x0 and variance σ2 = 2D(t − t0), D > 0, and the Gauss density

p(x, t | x0 , t0) = [4πD(t − t0)]
− 1

2 exp[−(x − x0)
2/4D(t − t0)]. (2.30)

The Gauss process has two important properties. Its mean value and variance are linear
functions of duration of the process, (t−t0), and their derivatives are constant. The consequence
is a remarkable reproducibility property: processes starting from any initial time have, after
an identical time interval, an identical variance. In was shown that their image in state space
is a fractal set [Lasota Mackey, 1985, p.206]. Also, using (2.30) and the corresponding (set
function) measure, Px,t(B) =

∫
B
p(y, t + ∆t | x, t)dy, it is easy to check that for every finite

constant K,

Px,t({ 1

∆t
(| y − x |) > K}) −→

∆t→0
1,

i.e. the limit defining the time derivative is “almost sure infinite” al all times t. This argu-
ment proves that the trajectories of Gaussian diffusion process are nowhere differentiable with
probability 1.

Using (2.28-29), one obtains the coefficients for the Fokker-Planck equation which corre-
sponds the process with transition density (2.30). The result is the diffusion equation

∂tp = D∂2
xp. (2.31)

More generally, if the average is x0 + u(t − t0), the advection-diffusion equation

∂tp + u∂xp = D∂2
xp (2.32)

is obtained.
The solutions of parabolic equations, as (2.31-32), are uniquely determined by initial and

boundary conditions [Gardiner, 1983, Chap.5, Lasota and Mackey, 1994, Chap.11, Crank, 1975,
Carslaw and Jaeger, 1959]. For instance, the transition probability (2.30) is a solution for the
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equation (2.31) with initial condition p(y, t0 | x, t0) = δ(y − x) and conditions to infinity
lim

|x|→∞
p(y, t0 | x, t0) = 0, lim

|x|→∞
∂xp(y, t0 | x, t0) = 0. The 1-dimensional probability density

p(x, t) =

∫
R

p(x, t | x0 , t0)p(x0 , t0)dx0

also verifies the equation (2.31), with initial condition p(x, t0) = p(x0 , t0). This proves that the
transition probability density, p(x, t | x0 , t0), is the Green function for the equation (2.31).

The continuity condition i) can be generalized as

i’ ) lim
∆t→0

1
∆t

∫
|y−x|≥ε

p(y, t + ∆t | x, t)dy = W (y | x, t),

where W is the jump probability from the state x into the state y at time t [Gardiner, 1983,
van Kampen, 1981]. Instead of (2.26) on obtains in the same conditions, the integro-differential
form of Chapman-Kolmogorov equation,

∂tp(x, t | x0 , t0) =
−∇[Ap(x, t | x0 , t0)] a) Liouville

+∇2[B̃ (x, t) p(x, t | x0 , t0)] b) diffusion
+

∫
Y

dy[W (x | y, t)p(y, t | x0 , t0) − W (y | x, t)p(x, t | x0 , t0)]. c) master

(2.33)

When W ≥ 0, almost everywhere (a.e.), then the integro-differential equation has solutions
in the same initial and boundary conditions as the Fokker-Planck equation [Gardiner, 1983,
Sect.3.7]. The equation (2.33) shows that generally the trajectory of a Markov process can be
represented as the sum of a three functions: a continuous and derivable function, the determinist
component, with a probability density function solution of the Liouville equation (2.33a), when
B̃ ≡ 0̃ and W≡0, a continuous and nowhere derivable function, with a probability density
function solution of the diffusion equation (2.33b), when A ≡ 0 and W≡0, and a jump function
(discontinuous at all times), with a probability density function solution of the master equation
(2.33c), when A ≡ 0 and B̃ ≡ 0̃. Under some conditions, the master equation approximates
the diffusion equation [Gardiner, 1983, Cap.7] and, reciprocally, there are situations when the
master equation can be approximated by a diffusion equation [van Kampen, 1981, Cap.10].

The asymptotic behavior of solutions is governed by the following theorem.
Theorem 2. [Gardiner, 1983, Sect.3.7]: If the 1-dimensional stationary density is ps(x) 	= 0

a.e., the state space Y is simply connected and the diffusion tensor B̃ and jump probability W
are a.e. positively defined, then the solutions of integro-differential Chapmann-Kolmogorov
equation (2.33) tend to the stationary solution ps: ‖p(x, t) − ps(x)‖L1(Y ) −→ 0, as t → ∞. �

2.3.2 Lagrangean framework

Gaussian white noise. The solution of the advection-diffusion equation (2.32) is of the
form (2.30) where the mean value x0 must be replaced by x0 +u(t−t0). Because the coefficients
(2.28-29) do not significantly change in small time intervals, all diffusion processes behave lo-
cally as a process described by advection-diffusion equation with constant coefficients (2.32)
[Gardiner, 1983, Sect.3.5.2]. The transition dx between the states of this process, for infinites-
imal time intervals dt, can be interpreted using the definitions (2.28-29) as a superposition
between a translation udt and a fluctuation the mean of which is

√
σ2 =

√
2Ddt, i.e.,

dx (t) = udt +
√

2D
√

dt. (2.34)
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The second term in right hand of (2.34) is significant as compared with the first term only
when

√
dt = O(dt). This order relation comes in conflict with the usual rules of differential

calculus. That is why new rules, called “Itô calculus” are introduced. Heuristically, one looks
for a stochastic process ζ, ζ : Ω �−→ ZI , Z ⊆ R, I ⊆ R, so that, at fixed time moments t,
ζt(ω) = ζ(t, ω) is a random variable describing the “fluctuation velocity” in (2.34),

ζ(t, ω)dt =
√

dt. (2.35)

Using (2.35), the integral form of (2.34) becomes

x (t) = x0 +

t∫
t0

udt +
√

2D

t∫
t0

ζ(t, ω)dt. (2.36)

The solution of (2.36) corresponds to the process with transition probabilities verifying (2.32)
only when it has the same mean value and variance, i.e.,

M [ζ(t, ω)] = 0 (2.37)

and,

2D

t∫
t0

dt′
t∫

t0

dt′′M [ζ(t′, ω)ζ(t′′, ω)] = 2D(t − t0).

The last relation holds only when the correlation function of random variables ζ(t′, ω) and
ζ(t′′, ω) has the singular form of Dirac function,

M [ζ(t′, ω)ζ(t′′, ω)] = δ (t′ − t′′) . (2.38)

The process ζ with zero mean and Dirac correlated, as required by (2.37-38), is called Gaussian
white noise [van Kampen, 1981, Cap.8]. One remarks that, with the following change of
variables

dw (t, ω) = ζ(t, ω)dt, (2.39)

and with x0 = 0 and u = 0, from (3.12-13) on obtains the property w3) of the Wiener process
defined in Section 2.1.2. Sometimes, the relation (2.39) is also used to define the white noise
as “derivative” of the Wiener process [Lasota and Mackey, 1985, p.293], but this has only
an intuitive meaning because, as we have seen in previous section the Wiener process, as all
Gaussian processes, is not derivable.

Itô stochastic equation. The Itô calculus uses the properties of the Wiener process.
From (2.39) and (2.35) one obtains (dw(t, ω))2 = dt, thus the new rule is that dt and (dw)2 are
of the same order of magnitude.

As defined by (2.12), the Wiener process is a Gaussian process with the transition proba-
bilities given by (2.30), diffusion coefficient D = 0.5, and starting from x0 = 0 at t0 = 0. The
representation as a two variables function, w(t, ω), w : [0,∞] × Ω �−→ Y, and (2.39) allows the
generalization of (2.34) as a Itô stochastic differential equation

dx(t) = a(x(t), t)dt + b̃(x(t), t)dw(t), (2.40)
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where for sake of simplicity we dropped the dependence on ω. If for every fixed ω there exists
a unique solution of (2.40), x(t) = X(w(t, ω), x0 , t0) = X(t, ω, x0 , t0), which satisfies the initial
condition x0 = x(t0), then the time function x(t) is the trajectory of a stochastic process
χ : Ω × Y �−→ Y [0,∞], defined in the Cartesian product space Ω × Y .

Considering the density of initial states given by p(x0 , t0) and using the definition (2.18) we
obtain the 1-dimensional density at t,

p(x, t) = MΩ×Y [δ(x − X(t, ω, x0 , t0))]

=

∫
Y

MΩ[δ(x − X(t, ω, x0 , t0))]p(x0 , t0)dx0 .

Comparing (2.41) and (2.25), we find that the transition probability density of the process χ
is given by

p(x, t | x0 , t0) = MΩ[δ(x − X(t, ω, x0 , t0))]. (2.41)

The average of a function f(x), conditioned by the initial state (x0 , t0), is an integral weighted
with the previous transition density,

M [f(x) | x0 , t0 ](t; x0 , t0) =
∫
Y

f(x)p(x, t | x0 , t0)dx =
∫
Ω

P (dω)
∫
Y

f(x)δ(x−
X(t, ω, x0 , t0))dx = MΩ[f(X(t, ω, x0 , t0))],

thus,
M [f(x(t)) | x0 , t0 ](t; x0 , t0) = MΩ[f(X(t, ω, x0 , t0))]. (2.42)

When the coefficients a and b̃ are determinist functions or endowed with special statistical
properties (the so called “nonanticipative functions”), using (2.42), the coefficients of (2.28-29)
of the Fokker-Planck equation can be related to the coefficients of the Itô equation (2.40) by

A(x, t) =a(x, t), and B̃(x, t)=1
2
b̃b̃T (x, t). (2.43)

In this case, the probability density of the process χ obeys a Fokker-Planck equation with
coefficients (2.43) [Gardiner, 1983, chap.4].

The descriptions realized by the Fokker-Planck equation and probability densities as space-
time functions are called Eulerian statistics and the description which uses the trajectories of
fictitious particles given by Itô equation and averages over realizations as (2.42), are Lagrangian
statistics [Avellaneda et al., 1991]. In Lagrangian statistics the definition iii) of the diffusion
coefficients becomes

Bij(x, t) =
1

2

d

ds
(σ̃2)ij(t + s; x, t) |s=0, (2.44)

where (σ̃2)ij(t + s; x, t) are the variance coefficients computed at t + s, over the trajectories
starting from (x, t) (conditional averages computed with (2.42)) [Suciu, 2001].

2.3.3 Langevin equation

A useful example of Itô equation is the Langevin equation,

dx(t) = −kx(t)dt +
√

2Ddw(t), (2.45)
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where x ∈ R, k > 0 and D > 0. The solutions of (2.45) are trajectories of the Ornstein-
Uhlenbeck process. Solving (2.45), in initial condition x(t0) = x0 [Gardiner, 1983, Sect.4.4.4],
one obtains the mean value

MΩ[x(t)] = x0 exp(−k(t − t0)), (2.46)

and variance

σ2(x(t)) =
D

k
[1 − exp(−2k(t − t0))]. (2.47)

The coefficients of the corresponding Fokker-Planck equation are, from (2.43), A = −kx
and B = D. The equivalence between Langevin and Fokker-Planck equation can be rigorously
proved [van Kampen, 1981, p.241]. Comparing with the Gaussian process with variance σ2 =
2D(t − t0) linearly increasing in time and without stationary state, from (2.46-47) we can
see that the Ornstein-Uhlenbeck process has a stationary state with zero mean and constant
variance D/k. This process fulfils the conditions from Theorem 2 (D > 0), and all solutions
tend to the stationary solution when (t − t0) −→ ∞.

2.3.4 Asymptotic diffusive behavior

Both diffusion processes described by equations (2.31-32) and Ornstein-Uhlenbeck process
have the remarkable self-averaging property [Avellaneda et al., 1991],

lim
t→∞

σ2(t)

t
= 2D∗, (2.48)

where D∗ is an effective diffusion coefficient.
The self-averaging property is common for diffusion processes. For diffusion processes de-

scribed by equations (2.31-32) the effective coefficient (2.48) coincides with the diffusion coeffi-
cient D. For the Ornstein-Uhlenbeck process with variance given by (2.47), (2.48) gives D∗ = 0,
which shows that the diffusion ceases when the asymptotic stationary state is reached.

The definition (2.48) can be used to check the existence of asymptotic diffusive behavior
for more complex processes described by Itô stochastic differential equation of form (2.40)
even when the correspondence with a Fokker-Planck equation can not be established and the
properties i) − iii), defining diffusion processes, do not hold.

2.3.5 Green-Kubo formula

The following example is a process with nontrivial asymptotic diffusive behavior, used as
model for equilibrium thermodynamics, entropy law and Gibs relation for “canonical ensemble”
[Mackey, 1989, Suciu2000, Suciu2001].

Consider a physical system consisting of a single particle, of mass m and moving under the
action of a Newtonian force perturbed with a white noise,

dx

dt
= v,

dv

dt
= −γv +

√
2Dζ, (2.49)

where x is the position and v the velocity of the particle, (x, v) ∈ R
2, γ > 0, D > 0 and

dw (t) = ζ (t) dt. (It is to be noted that, in this example, the physical dimension of D is L2/T 3,
where L stands for length and T for time units, i.e. D is a diffusion coefficient for velocity).
The second equation (2.49) is the Langevin equation and its solutions are the trajectories of
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an Ornstein-Uhlenbeck process describing the particle velocity. The density of the transition
probability tends to a Gaussian stationary density, according to Theorem 2, [Gardiner, 1983,
Sect.3.8.4],

p(v, t − t0 | v0) −→
t−t0→∞

ps(v) =

[
2πD

γ

]− 1
2

exp

[
− v2

2D
γ

]
. (2.50)

For each velocity realization, the first equation (2.49) provides a trajectory of the particle
x(t) =

∫ t

t0
v(t′)dt′. The average over the velocity ensemble gives the displacements variance

σ2(x(t)) =

t∫
t0

t∫
t0

M{[(v − M(v))(t′)][(v − M(v))(t′′)]}dt′dt′′. (2.51)

The limit (2.48) can be written, using the L’Hopital rule from differential calculus, as the
limit of the derivative of the variance σ2,

D∗ = lim
t→∞

σ2(t)

2t
= lim

t→∞
1

2

d

dt
σ2(t). (2.52)

From (2.51-52) on obtains

D∗ = lim
t→∞

t∫
t0

M{[(v − M(v))(t′)][(v − M(v))(t)]}dt′, (2.53)

and using (2.50) one finds the value D∗ = D/γ2 for the effective diffusion coefficient (the
physical dimensions of D∗ are now L2/T ) [Suciu 2001]. Thus the process describing the position
of a particle moving with a velocity described by the Ornstein-Uhlenbeck process has the self-
averaging property and behaves asymptotically diffusive.

The stationary density from (2.50) describing the equilibrium state has zero mean value,
[M(v)]e = 0 and the variance [M(v2)]e =

∫
R
v2ps(v)dv = D/γ. From (2.46), the mean value at

t′′of the velocity process staring at t′ from v′ is
∫

R
v′′p(v′′, t′′ − t′ | v′)dv′′ = v′ exp[−γ(t′′ − t′)].

The velocity correlation in the equilibrium state can be computed as

{M [v(t′)v(t′′)]}e =
∫
R

∫
R

v′v′′p(v′′, t′′ − t′ | v′)ps(v
′)dv′dv′′

=
∫
R

v′ps(v
′)dv′ ∫

R

v′′p(v′′, t′′ − t′ | v′)dv′′

= exp[−γ(t′′ − t′)]
∫
R

(v′)2ps(v
′)dv′.

Thus we have the equilibrium correlation given by

{M [v(t′)v(t′′)]}e =
D

γ
exp[−γ(t′′ − t′)]. (2.54)

Replacing the correlation from (2.53) with (2.54) we find that the effective diffusion coeffi-
cient can be derived from the equilibrium correlation with relation

D∗ = lim
t→∞

t∫
t0

{M [v(t′)v(t)]}edt′ =
D

γ2
. (2.55)
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This is a Green-Kubo formula [Evans and Morris, 1990, chap.4] for transport coefficients.
The difference with respect to the Ornstein-Uhlenbeck positions process, described by the

Langevin equation (2.45), is that the process described by (2.49), where the velocity is an
Ornstein-Uhlenbeck process, has a nontrivial stationary state. In the stationary state the
process behaves asymptotically diffusive with an effective diffusion coefficient given by (2.55).
This example shows that the integral of velocity correlation (2.53) must be finite for large times,
as a necessary condition for diffusive behavior. Also, the exponential decay of correlation (2.54),
was a sufficient condition for the existence of the finite diffusion coefficient D∗.

The velocity correlation can be characterized by the correlation time τc,

τc = lim
t→∞

t∫
t0

{M [v(t′)v(t)]}e

[M(v2)]e
dt′.

A finite correlation time is a necessary condition for an asymptotic diffusive behavior. In the
case described by (2.29), the correlation time is τc = 1/γ and we have the relation D∗ =
[M(v2)]eτc.

2.4 Diffusion by continuous movements

Taylor [1921] derived a process with asymptotic diffusive behavior, induced by a space ran-
dom velocity field, as model for turbulent diffusion in atmosphere. This is a pioneering work
in the theory of stochastic processes (it was only in ’30 years that the mathematical bases of
modern theory of diffusion processes where published by Kolmogorov). The paper of Taylor
also was the staring point for a vast literature on turbulent diffusion, transport in porous media
and plasma physics [Suciu, 2001].

We choose “Diffusion by continuous movements” as title for this Section, the same as the
title of original paper of Taylor, with the intention to underline the strong continuity properties
required by the mathematical theory. Because in many works on asymptotic diffusion the
presentation of mathematical theory is incomplete and can be found only in a cumbersome
way, following cross references over hundreds of papers published in the last three decades, we
present here a minimal mathematical frame based on definitions and notions from previous
sections of this report.

2.4.1 Movement in random fields.

The problem can be formulated as it follows. Let ϑ : Ω �−→ Y Λ
V , YV ⊆ R

3, Λ ⊆ R
3, be a

random field, with a range of parameters in physical space. We make the following hypotheses
about the properties of the random field:

H1) For every fixed ω ∈ Ω the sample V (ω), V (ω) : Λ �−→ YV , is a nonsingular vector field.

H2) For all the samples ω ∈ Ω the functions V (ω)(x), V (ω) : Λ �−→ YV , and their derivatives
are continuous with respect to the space variable x.

The nonsigularity of the samples of the velocity files (H1 ) means that the field can not
vanish. The continuity hypothesis H2) ensures the existence of a function of x and ω defined
by the samples of the field, V (x, ω) = V (ω)(x), measurable with respect to (x, ω) which can be an
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equivalent representation of the field ϑ. The measurability gives the property of commutation
between the space integration and stochastic average∫

Λ

MΩ[V (x, ω)]dx = MΩ[

∫
Λ

V (x, ω)dx],

which is often used in applications [Suciu, 2001, Wentzell, 1981] (we will use it in the next
Section, to derive the connection between Lagrangian and Eulerian correlations). Because the
function V (x, ω) is defined by the sample V (ω), using it in (2.17) one obtains a hierarchy of
consistent distributions which define the distribution of a random field, in condition of the
Kolmogorov theorem, as we have seen in Section 2.1.3. In these conditions the two variable
function representation V (x, ω) is equivalent with the random field ϑ [Iosifescu and Tăutu,
1973, p. 164, Suciu, 2001, p. 19].

Under the hypotheses H1) and H2), all the realizations ω of the random field ϑ gener-

ate differentiable dynamical systems {S(ω)
t }t∈R, with trajectories in Yx ⊆ R

3, x(ω)(t; x0 , t0) =

S
(ω)
t−t0

(x0) = X(t, ω, x0 , t0) [Arnold, 1978]. For physical reasons, the space Yx, on which the tra-
jectories are defined, and the space Λ, on which the velocity realizations are defined, coincide
but we will use different notation to prevent confusions. The trajectories x(ω) are solutions of
the differentiable system

dx(ω)

dt
= V (ω)(x(ω)). (2.56)

The relation (2.56) may represent the description of a “fluid particle”, as in continuum me-
chanics, or even of a real particle. The infinite set of dynamical systems corresponding to the
realizations of the random field forms a statistical ensemble. The 1-dimensional density has the
meaning of a concentration field, p ≡ c. When the physical system contains N particles, then∫

Yx
c(x, t)dx = N , and the normalization condition for 1-dimensional densities,

∫
Yx

p(x, t)dx = 1,
implies that concentration and probability density are related by

c(x, t) = N p(x, t). (2.57)

The stochastic model of the previous statistical ensemble is the process χ : Ω × Yx �−→
Y R

x , where, for fixed ω ∈ Ω and x0 ∈ Yx, χ(ω, x0) = X(t, ω, x0 , t0) is a trajectory of the

dynamical system {S(ω)
t }t∈R. We consider that the space of elementary events (for random

field) is organized as a probability space (Ω,A, P ), endowed with a measure P , and the state of
initial positions Yx, is a probability space (Yx,B, Px), with σ-algebra Borel B, and probability
measure Px, defined by

Px(B) =

∫
B

c(x0 , t0)dx0 , for all sets B ∈ B,

where the density c(x0 , t0) is given by the initial concentration. Then, we define the measure of
the probability space Ω × Yx (of elementary events) of the process χ as a normalized product
measure, PPx, and the stochastic average (2.3) becomes

MΩ×Yx (f) =

∫
Ω

P (dω)

∫
Yx

f(ω, x0)c(x0 , t0)dx0 = MΩ[

∫
Yx

f(ω, x0)c(x0 , t0)dx0 ].
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In the sequel, the shortcut “the process χ” refers to this model. The properties of χ allows us
to use the definitions and results concerning random variables (Section 2.1), Markov processes
(Section 2.2) and diffusion processes (Section 2.3).

The dynamical system is a determinist process in Yx ⊆ R
3, with a “degenerate” transition

probability [Suciu, 2001],

p(ω)(x, t | x0 , t0 ; ω) = δ(x − X(t, ω, x0 , t0)), (2.58)

which is a solution of the Liouville equation

∂tp
(ω) + ∇x(V

(ω)p(ω)) = 0, (2.59)

with initial condition p(ω)(x, 0 | x0 , 0; ω) = δ(x − x0) [Gardiner, 1983, Sect. 4.3.4].
When the probability density of initial positions is given by the concentration c(x0 , t0), then

the concentration at t (equal to 1-dimensional density, according (2.57)), in a single realization
ω of the velocity field, is given by (2.25) in the form

c(ω)(x, t) =

∫
Yx

p(ω)(x, t | x0 , t0 ; ω)c(x0 , t0)dx0 , (2.60)

and is also a solution of (2.59). We recognize in relation (2.60) the definition of “concentration
in a single realization of the Darcian velocity field” used the Lagrangian framework (see for
instance [Dagan and Fiori, 1997], and eq. 1 in [Vanderborght, 2001]). Because (2.60) is a
solution of the Liouville equation (2.59), there is no diffusion, i.e. the initial concentration
c(x0 , t0) “is not diluted”, as pointed out in [Vanderborght, 2001]. In a single realization of
the velocity field the initial concentration is only advected with the velocity V (ω), without any
deformation of the concentration profile. Even when the effect of a diffusion superposed on the
advection process is present in trajectories X, the relation (2.60) alone is not complete. It is
necessary to perform an average over the realizations of the diffusion process to obtain the real
concentration field, as we shall show in the next section. In this way, (2.60) becomes identical
with the equation (5) in [Vanderborght, 2001]. We also can see that, as long as no diffusion is
considered, equation (1) and (5) from [Vanderborght, 2001] are both identical with (2.60).

The concentration field corresponding to a fluid particle moving according to the process χ
is, from (2.57) and (2.18), the 1-dimensional density obtained as an average over the probability
space Ω × Yx,

c(x, t) = MΩ×Yx [δ(x − X(t, ω, x0 , t0))]
=

∫
Yx

MΩ[δ(x − X(t, ω, x0 , t0))]c(x0 , t0)dx0

=
∫
Yx

p(x, t | x0 , t0)c(x0 , t0)dx0 .
(2.61)

where p(x, t | x0 , t0) is a transition probability as that defined by a relation of form (2.41), with
the difference that now Ω is the probability space on which the random field ϑ is defined, while
in (2.41) it was the probability space of the Wiener process. Comparing with (2.60), we remark
that the second line in (2.61) is the average over Ω of the concentration in a single realization
c(ω)(x, t), i.e. c(x, t) = MΩ[c(ω)(x, t)]. Thus, the equation (2.61) is the same with the equation
(10) in [Vanderborght, 2001], when no local diffusion is considered.
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The concentration correlation and variance can also be obtained as average over Ω. Using
(2.60) and (2.58) we obtain

MΩ[c(ω)(x1 , t1)c
(ω)(x2 , t2)] − MΩ[c(ω)(x1 , t1)]MΩ[c(ω)(x2 , t2)] =∫

Yx

∫
Yx

MΩ[δ(x1 − X(t1 , ω, x01 , t01))δ(x2 − X(t2 , ω, x02 , t02))]c(x01 , t01)c(x02 , t02)dx01dx02

−c(x1 , t1)c(x2 , t2).

The first term in this relation can also be written as

MΩ×Yx [δ(x1 − X(t1 , ω, x01 , t01))δ(x2 − X(t2 , ω, x02 , t02))] = p(x1 , t1 ; x2 , t2) =∫
Yx

∫
Yx

p(x1 , t1 ; x2 , t2 |x01 , t01 ; x02 , t02)p(x01 , t01 ; x02 , t02)dx01dx02 ,

where we used the definition (2.17) of 2-dimensional density and the definition (2.21) of condi-
tional probability. When t01 = t02 = t0 , where t0 is the initial moment, then the 2-dimensional
density of the determinist initial concentration factorizes, p(x01 , t0 ; x02 , t0) = c(x01 , t0)c(x02 , t0),
and we finally obtain the concentration correlation function

MΩ[c(ω)(x1 , t1)c
(ω)(x2 , t2)] − MΩ[c(ω)(x1 , t1)]MΩ[c(ω)(x2 , t2)] = (2.62)∫

Yx

∫
Yx

p(x1 , t1 ; x2 , t2 |x01 , t0 ; x02 , t0)c(x01 , t0)c(x02 , t0)dx01dx02 − c(x1 , t1)c(x2 , t2),

which corresponds to equation (23) from [Vanderborght, 2001]. For t1 = t2 , (2.62) gives the
variance of the concentration field.

The hypotheses H1 ) and H2 ), allow us to describe the movement in random fields by the
trajectories of the dynamical system (2.56) and to use the Lagrangian statistics to look for
the existence of the diffusive behavior. Because the particle moves along the trajectories of
a differentiable dynamical system {S(ω)

t }t∈R, for each realization ω of the random field, the
process χ is continuous, i.e. it verifies the property i) of diffusion processes (see section 2.3.1).
The coefficients (2.28-29) of the Fokker-Planck equation (equivalent with diffusion properties
ii) and iii)) can be computed using the conditional averages of the form (2.42).

For fixed ω, the values of the function V (x, ω) in points x lying on the trajectory of the pro-
cess χ, which starts in the initial point x0 , define the function V (t, ω, x0 , t0) = V (X(t, ω, x0 , t0), ω),
and the solution of (2.56) is

(X(t, ω, x0 , t0) − x0) =

t∫
t0

dsV (s, ω, x0 , t0). (2.63)

The drift coefficient (2.28), conditioned by a state (x0 , t0), is obtained using (2.63) and
conditional average (2.42), as

A(x0 , t0) =
d

dt
MΩ[(X(t, ω, x0 , t0) − x0)] |t=t0

=
d

dt
{

t∫
t0

dsMΩ[V (s, ω, x0 , t0)]} |t=t0
.

21



Thus, the local mean velocity, V (x0 , t0) = MΩ[V (t0 , ω, x0 , t0)], defines the drift coefficient of
the Fokker-Planck equation,

A(x0 , t0) = V (x0 , t0). (2.64)

The diffusion coefficients can also be computed using (2.63) and the Lagrangian definition
(2.44). The tensor of displacements’ variance, conditioned by the state (x0 , t0), is

σ̃2(t; x0 , t0) =
t∫

t0

ds
t∫

t0

ds′{MΩ[V (s, ω, x0 , t0)V (s′, ω, x0 , t0)]

−MΩ[V (s, ω, x0 , t0)]MΩ[V (s′, ω, x0 , t0)]},
(2.65)

and from (2.44) we obtain the diffusion tensor

B̃(x0 , t0) =
1

2

d

dt
σ̃2(t; x0 , t0) |t=t0

= 0̃. (2.66)

The coefficients (2.64) and (2.66) have the same form in all points (x, t), and the Fokker-Planck
equation take the form (2.33a) of the Liouville equation,

∂tc(x, t) + ∇x(V (x, t)c(x, t)) = 0. (2.67)

The equation (2.67) is just the average over velocity realizations of the Liouville equation
(2.59) associated with dynamical systems in each realization of the field. Since the coefficients
B̃ defined by local time derivative (2.44) vanish, there is no local diffusive behavior for the
considered particle moving in random velocity field.

2.4.2 The existence of asymptotic diffusive behavior

When the asymptotic diffusive behavior property (2.48) holds, one expects that, at large
scale, the process χ, described locally by the Liouville equation (2.67), may be approximated
by a diffusion equation. Also, one expects that behavior in single realization is similar with the
average over realizations of the random field. Only in these conditions, the stochastic model
predicts the evolution of the concentration field for transport in heterogeneous media. We
will see that even when the asymptotic diffusive behavior can be proved, the existence of an
effective diffusion equation and the asymptotic diffusive behavior in all realizations of the field
still remains open problems.

In order to check the asymptotic diffusive behavior, one uses the Lagrangian correlation of
the velocity field, defined by the integrand in the expression of variance (2.65). Because we
have proved in the previous section that there is no local diffusive behavior, we define now
the tensor function of Lagrangian correlation as a complete average over the entire probability
space Ω × Yx, of the process χ,

R̃L(s, s′) = MΩ×Yx [V (s, ω, x0 , t0)V (s′, ω, x0 , t0)]− (2.68)

MΩ×Yx [V (s, ω, x0 , t0)]MΩ×Yx [V (s′, ω, x0 , t0)].

With (2.68) the variance (2.65), averaged over Yx, becomes

σ̃2(t) =

t∫
t0

ds

t∫
t0

R̃L(s, s′)ds′. (2.69)
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In particular, when the Lagrangian correlation is a homogeneous time function, R̃L(s, s′) =
R̃L(τ), where τ = s − s′, and R̃L is an even function of τ, R̃L(−τ) = R̃L(τ), (2.69) can be
written as

σ̃2(t) = 2

t∫
0

(t − τ)R̃L(τ)dτ.

This is the well known “Taylor formula” [Monin and Yaglom, 1965, eq. (9.30′)].
The asymptotic diffusive behavior (2.48) requires the order relation σ2 = O(t) for t −→ ∞.

From (2.69) we find the necessary condition

lim
t→∞

t∫
t0

R̃L(s, s′)ds′ < ∞,

the same as the condition for the process presented in Section 2.3.5. Similarly with (2.52), the
condition (2.48) defines the effective diffusion coefficient by

D̃∗ = lim
t→∞

σ̃2(t)

2t
= lim

t→∞
1

2

d

dt
σ̃2(t) = lim

t→∞

t∫
t0

R̃L(t, s′)ds′, (2.70)

i.e. the effective coefficient is given by a Green-Kubo type relation.
In these conditions one asserts that it is possible to approximate asymptotically the advec-

tion equation (2.59) with the advection diffusion equation

∂t c(x, t) + V ∗∇c(x, t) = D̃∗∇2c(x, t). (2.71)

where V ∗ = MYx [V (x0 , t0)] = MΩ×Yx [V (t0 , ω, x0 , t0)] is the mean velocity. This is the general
framework of all theories of “Lagrangian passive transport in turbulent fields” and Green-Kubo
type approaches from statistical mechanics [Taylor, 1921, Monin and Yaglom, 1965, chap.9].
One remarks that while the existence of derivatives (2.28-29) determines the Fokker-Planck
equation, the existence of the limit (2.70) does not ensure the existence of the diffusion equation
as an asymptotic approximation of exact Liouville equation (2.67). Also, due to the absence
of local diffusion, in this model the asymptotic diffusive behavior in single realization makes
no sense. Indeed, using (2.63) and (2.65), without average over realizations, σ2 = O(t2) for
t −→ ∞.

In experiments, the velocity field is measured in fixed space points, which corresponds to
an Eulerian description. To pass to an Eulerian description we write Lagrangian correlation
(2.68) as

R̃L(s, s′) =

∫
Yx

∫
Yx

dxdx′MΩ×Yx [δ(x − X(s, ω, x0 , t0))δ(x
′ − X(s′, ω, x0 , t0))V (x, ω)V (x′, ω)]

(2.72)

−
∫
Yx

dxMΩ×Yx [δ(x − X(s, ω, x0 , t0))V (x, ω)]

∫
Yx

dx′MΩ×Yx [δ(x
′ − X(s′, ω, x0 , t0))V (x′, ω)].
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In (2.72) we considered the extensions to R
3 of function V (x, ω), V (x, ω) : Λ �−→ YV defined

by V (x, ω) = 0 for x /∈ Yx (we remember that Λ and Yx coincide), we used the commutation
between the space integral and stochastic average given by H2), and the Dirac function to write

V (s, ω, x0 , t0) =

∫
R3

δ(x − X(s, ω, x0 , t0))V (x, ω)dx =

∫
Yx

δ(x − X(s, ω, x0 , t0))V (x, ω)dx.

The Corsin Conjecture (in the form used by Saffman [1969] in problems of turbulent diffu-
sion) says that the averages over Ω × Yx factorizes as it follows:

MΩ×Yx [δ(x − X(s, ω, x0 , t0))δ(x
′ − X(s′, ω, x0 , t0))V (x, ω)V (x′, ω)] =

MΩ×Yx [δ(x − X(s, ω, x0 , t0))δ(x
′ − X(s′, ω, x0 , t0))]MΩ×Yx [V (x, ω)V (x′, ω)],

(2.73)

and

MΩ×Yx [δ(x − X(s, ω, x0 , t0))V (x, ω)] = MΩ×Yx [δ(x − X(s, ω, x0 , t0))]MΩ×Yx [V (x, ω)], (2.74)

MΩ×Yx [δ(x
′ − X(s′, ω, x0 , t0))V (x′, ω)] = MΩ×Yx [δ(x

′ − X(s′, ω, x0 , t0))]MΩ×Yx [V (x′, ω)].

According to (2.17), the first factor in (2.73) defines the 2-dimensional density of the process χ

p(x, s; x′, s′) = MΩ×Yx [δ(x − X(s, ω, x0 , t0))δ(x
′ − X(s′, ω, x0 , t0))], (2.75)

and the first factors in (2.74) define the 1-dimensional density

p(x, s) = MΩ×Yx [δ(x − X(s, ω, x0 , t0))]. (2.76)

The second factor in (2.73) can be written as

MΩ×Yx [V (x, ω)V (x′, ω)] = MΩ[V (x, ω)V (x′, ω)]

∫
Yx

c(x0 , t0)dx0 = MΩ[V (x, ω)V (x′, ω)]

=

∫
YV

∫
YV

vv′MΩ[δ(v − V (x, ω))δ(v′ − V (x′, ω))]dvdv′,

where we used the commutation property H2) and the Dirac function, as in (2.72). Introducing
the 2-dimensional density of the field ϑ, defined by (2.17),

pv(v, x; v′, x′) = MΩ[δ(v − V (x, ω))δ(v′ − V (x′, ω))],

we have

MΩ×Yx [V (x, ω)V (x′, ω)] =

∫
YV

∫
YV

vv′pv(v, x; v′, x′)dvdv′. (2.77)

Similarly, for the second factors in (2.74) we obtain:

MΩ×Yx [V (x, ω)] =

∫
YV

vpv(v, x)dv = V (x), (2.78)

MΩ×Yx [V (x′, ω)] =

∫
YV

v′pv(v
′, x′)dv′ = V (x′).
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Using (2.73-78) in (2.72), we finally obtain

R̃L(s, s′) =

∫
Yx

∫
Yx

dxdx′p(x, s; x′, s′)R̃E(x, x′), (2.79)

where R̃E is the Eulerian correlation tensor

R̃E(x, x′) =

∫
YV

∫
YV

[vv′ − V (x)V (x′)]pv(v, x; v′, x′)dvdv′. (2.80)

To establish the connection between the Lagrangian and Eulerian descriptions by means of
relations of the form (2.79) is one of the main aims in modeling turbulent diffusion and transport
processes in heterogeneous porous media [Isichenko, 1992, Reuss and Misguish, 1996].

2.4.3 Diffusion in random fields and macrodispersion

Sometimes at local scales the transport processes in natural porous media are well described
by advection-diffusion equations but at larger, global scales, the diffusion coefficients experi-
mentally derived, during the calibration of the model, present an apparent increase as compared
to the local ones. This is the so-called “scale effect” [Saffman, 1969, Fried, 1975]. This effect
can be explained by the heterogeneity of the aquifer properties. The main question is: may the
transport be globally described by an effective diffusion equation? This could be the case when
the variability of the Darcy velocity produces a hydrodynamic dispersion of the solute which, at
a suitable large scale, behaves similarly to a diffusion process. This phenomenon is sometimes
called “macrodispersion” and the corresponding effective diffusion coefficient “macrodispersion
coefficient” [Dagan, 1989]. The macrodispersion problem requires a two scale description: the
Darcy scale where the process of local diffusion is important and a macrodispersion scale, where
the solute transport is dominated by the variability of the advection velocity. A stochastic two-
scale model can be obtained considering a diffusion process in random velocity field.

Let the velocity field be described by the random function ϑ : ΩV �−→ Y Λ
V , YV ⊆ R

3,

Λ ⊆ R
3, and consider the Wiener process w : Ωw �−→ Y

[0,∞]
w , Yw ⊆ R

3. For every fixed ω
V
∈ ΩV

one considers the Itô equation

dx(ω
V

)(t) = V (x(ω
V

)(t), ω
V
)dt + (2D)

1
2 dw(t). (2.81)

If there is a unique solution of (2.81), for every trajectory of w and sample of ϑ, x(ω
V

,ωw)(t) =
X(t, ωw, ω

V
, x0 , t0), with the initial condition x0 = x(ω

V
ωw)(t0), then using X(t, ωw, ω

V
, x0 , t0)

one defines a stochastic process χ, in the direct product probability space, χ : ΩV ×Ωw×Yx �−→
Y

[0,∞]
x , Yx ⊆ R

3. To do that, the nonsingularity (H1 ) and continuity (H2 ) properties of ϑ, from
Section 2.4.1, should be supposed.

The concentration is given by the 1-dimensional density of the process χ,

c(x, t) = MΩV ×Ωw×Yx [δ(x − X(t, ωw, ω
V
, x0 , t0))]. (2.82)

The definition (2.82) generalizes (2.61-62) from Section 2.4.1. So, (2.61) becomes identical
with (10) and (2.62) generalizes (23) from [Vanderborght, 2001].
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To simplify the computations we suppose MΩV
[V (x, ω

V
)] = 0. Using the integral form of

(2.81) and Itô calculus (the “correlation formula” in [Gardiner, 1983, eq. (4.242)]), one obtains
the variance of the process χ, as average over the probability space ΩV × Ωw × Yx,

σ̃2(t) = 2D(t − t0)+
t∫

t0

ds
t∫

t0

ds′MΩV ×Ωw×Yx [V (s, ωw, ω
V
, x0 , t0)V (s′, ωw, ω

V
, x0 , t0)].

(2.83)

At finite times the second term from (2.83) behaves as (t− t0)
2, which is an explanation of the

“scale effect”. Indeed, the effective diffusion coefficients are D̃∗ = σ̃2(t)/(2t) ∼ t and increase
with travel time.

The Lagrangian correlation under the integral in (2.83) is an average over the product
probability space ΩV × Ωw × Yx. Using the Dirac function, we have

R̃L(s, s′) =
MΩV ×Ωw×Yx [

∫
Yx

∫
Yx

dxdx′V (x, ω
V
)V (x′, ω

V
)δ(x − X(s, ωw, ωV , x0 , t0))

δ(x′ − X(s′, ωw, ω
V
, x0 , t0)] =

∫
Yx

∫
Yx

dxdx′MΩV
{V (x, ω

V
)V (x′, ω

V
)

MΩw×Yx [δ(x − X(s, ωw, ωV , x0 , t0))δ(x
′ − X(s′, ωw, ω

V
, x0 , t0)]}.

(2.84)

When one uses the Corsin conjecture in average over ω
V
, the second factor from (2.84) defines

the 2-dimensional probability of the process χ:

p(x, s; x′, s′) =
MΩV ×Ωw×Yx [δ(x − X(s, ωw, ω

V
, x0 , t0))δ(x

′ − X(s′, ωw, ω
V
, x0 , t0))].

(2.85)

The first factor from (2.84) gives the Eulerian correlation (2.80). From (2.80), (2.85) and (2.84)
one obtains the relation

R̃L(s, s′) =

∫
Yx

∫
Yx

dxdx′p(x, s; x′, s′)R̃E(x, x′), (2.86)

which gives the Lagrangian correlation as a space average of the Eulerian correlation, over the
solute plume and weighted with the 2-dimensional density of the process χ.

If the Lagrangian correlation R̃L decreases to zero fast enough as t → ∞, then the process
χ behaves asymptotically diffusive and from (2.48) it follows

D̃∗ = D1̃ + lim
t→∞

t∫
t0

ds′R̃L(t, s′). (2.87)

When the coefficients (2.87) exist, one asserts that for large times the concentration (2.82)
is described by the diffusion equation

∂tc(x, t) = D̃∗∇2c(x, t).

The Lagrangian correlation from (2.84), is an average over Ωw of the correlation in the
absence a of local diffusion. Thus, the effective diffusion coefficients for diffusion in random
fields are not the sum between the local coefficient D and the effective coefficient computed in
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the case without local diffusion (2.70). Because of the Gaussian form of distributions of the
Wiener process, implicitly considered in (2.85), local diffusion make the decay of R̃L faster and
enhances diffusive behavior [Suciu, 2001].

In a single realization of the velocity field, dropping the average over ω
V

in (2.84), we have

R̃
(ω

V
)

L (s, s′) =

∫
Yx

∫
Yx

dxdx′p(ω
V

)(x, s; x′, s′)V (x, ω
V
)V (x′, ω

V
),

where

p(ω
V

)(x, s; x′, s′) = MΩw×Yx [δ(x − X(s, ωw, ω
V
, x0 , t0))δ(x

′ − X(s′, ωw, ω
V
, x0 , t0))]

is the 2-dimensional density of the diffusion process in the realization ω
V

of the random field.

Thus, the Lagrangian correlation in a single realization R̃
(ω

V
)

L is given by a space average over
the solute plume (i.e. weighted with the probability density p(ω

V
) describing the diffusion

process in a single realization). It is straightforward that the correlation (2.84) is the average
over realizations of the correlations in individual realizations,

R̃L(s, s′) = MΩV
[R̃

(ω
V

)

L (s, s′)].

The effective diffusion coefficient in a single realization is

D̃∗(ω
V

) = D1̃ + lim
t→∞

t∫
t0

ds′R̃
(ω

V
)

L (t, s′).

and comparing with (2.87) we find the relation

D̃∗ = MΩV
[D̃∗(ω

V
)]. (2.88)

Due to (2.88), the existence of self-averaging in all realizations implies the self-averaging of
the process χ describing diffusion in random fields. Also, when the process χ has the self-
averaging property, then all the coefficients D̃∗(ω

V
) from the average over ΩV in (2.88) have

finite values (otherwise the average cannot be finite). This means that all the realizations
ω

V
have the self-averaging property. If the Lagrangian correlation in each realization equals

the Lagrangian correlation of the process χ, R̃
(ω

V
)

L = R̃L, for all ω
V
∈ ΩV , then the effective

diffusion coefficients have the same value D̃∗ in all realizations. A weaker (necessary) condition
for equality of effective diffusion coefficients in all realizations is

lim
t→∞

t∫
t0

ds′(R̃
(ω

V
)

L (t, s′) − R̃L(t, s′)) = 0, for all ω
V
∈ ΩV .

The conclusion of this discussion is that the existence of the finite diffusion coefficient (2.87)
of the process χ do not ensure the validity of the effective diffusion equation in a single real-
ization of the random field. The use of an effective diffusion equation to describe the solute

transport is justified when the Lagrangian correlation R̃
(ω

V
)

L can be estimated from measure-
ments, as space average over the plume, and it behaves in time so that the effective diffusion
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coefficient D̃∗(ω
V

) exists. But in this case the construction of the process χ is no more necessary.
This could avoid some conceptual inconveniences. Indeed, in Section 2.4.1, this process was
derived under the assumptions of nonsingularity of the velocity field (H1 ) and the continuity
of each realization as a space function (H2 ). In most of stochastic approaches [Schwarze et.
all, 2001, Schwarze 1999] Lagrangian stationarity is also assumed. This supposes, implicitly,
the nonsingularity and continuity of the velocity field, because only in these conditions the
existence of a stochastic process χ can be inferred and Lagrangian correlation can be defined.
In some cases, these hypotheses could be unrealistic and scarcity of experimental data makes
it difficult to validate the stochastic model.

2.4.4 The model of Matheron and de Marsily

An example where a Lagrangian description and the connection with the Eulerian statistics
can be rigorously derived is the stratified aquifer model of Matheron and de Marsily [1980].
The model describes the movement in the plan R

2 of a particle, due to a 2-dimensional dif-
fusion process, with longitudinal diffusion coefficient DL and transversal diffusion coefficient
DT , on which one superposes a horizontal random field function only on transverse coordinate,
V (z, ω

V
):

dx(ω
V ) (t) = V (z(t), ω

V
)dt + DLdw (t) ,

dz (t) = DT dw (t) .
(2.89)

In this case, the tensor of Lagrangian correlations (2.84) reduces to the component corre-
sponding to horizontal velocities,

RL(s, s′) =∫
R

∫
R

dzdz′MΩV ×Ωw×R2 [δ(z − Z(s, ωw, z0 , t0))δ(z
′ − Z(s′, ωw, z0 , t0))V (z, ω

V
)V (z′, ω

V
)] =∫

R

∫
R

dzdz′MΩw×R2 [δ(z − Z(s, ωw, z0 , t0))δ(z
′ − Z(s′, ωw, z0 , t0))]MΩV

[V (z, ω
V
)V (z′, ω

V
)].

(2.90)
Because the transverse diffusion in (2.89) is not influenced by the horizontal random field,
the vertical component of the trajectory Z(s, ωw, z0 , t0) in (2.90) does not depend on ω

V
. In

this case, the average over ΩV factorizes and the connection between Lagrangian and Eulerian
correlations (2.86) holds without the hypothesis of Corsin’s factorization. The variance of the
longitudinal displacements becomes

σ2
x(t) = 2DL(t − t0)+

t∫
t0

ds
t∫

t0

ds′
∫
R

∫
R

dzdz′p(z, s; z′, s′; DT )RE(z, z′), (2.91)

where
p(z, s; z′, s′; DT ) = MΩw×R2 [δ(z − Z(s, ωw, z0 , t0))δ(z

′ − Z(s′, ωw, z0 , t0))]

is the Gaussian 2-dimensional density of the transverse diffusion process with coefficient DT .
When the same notations are used, (2.91) becomes identical with eq. (6) from [Matheron and
de Marsily, 1980, Appendix 1].

The main feature of the model is that for Gaussian correlated fields, RE ∼ e−(z−z
′
)2 , the

variance behaves as σ2
x ∼ t3/2. From (2.48) it follows that the behavior is superdiffusive at all

times. This property is often used to check the validity of the numerical models of diffusion in
random fields [Avellaneda et al., 1993, Honkonen, 1996]. In [Matheron and de Marsily, 1980] it
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is proved that when the velocity V also has a vertical component, then the behavior becomes
diffusive.

2.4.5 The Eulerian statistics of travel time

Here we present another case where, stating with a Lagrangian description, the final results
can be exactly expressed by means of Eulerian averages. The Lagrangian description of station-
ary regime of solute transport in soils, when pore scale dispersion is neglected, can be obtained
with an equation of form (2.63),

Z(t, ω) =

t∫
0

V (Z(s, ω))ds, (2.92)

where Z(t, ω) is the trajectory starting at t0 = 0 from z0 = 0. The velocity V is defined by
a realization of the random field, as in Section 2.4.1, for points z belonging on the trajectory
Z(t, ω), by V (Z(t, ω)) = V (z, ω). In (2.92) we have supposed, as often it is in literature
[Vanderborght et al., 1998], that the trajectories of solute particles are vertical.

One of the quantities which describe the process is the travel time τ(z) of a solute particle
to reach a certain depth z, and its statistics (average and variance). From (2.92) we have

z = Z(τ, ω) =

τ∫
0

V (Z(s, ω))ds,

which can be written as a function F , implicitly defining τ as function of z,

F (z, τ(z)) = z −
τ∫

0

V (Z(s, ω))ds ≡ 0. (2.93)

The total derivative of F with respect of z is

dF

dz
=

∂F

∂z
+

∂F

∂τ

∂τ

∂z
= 0,

and, using the Leibnitz-Newton formula to write the derivative with respect to τ of the integral
in (2.93) as ∂F/∂τ = −V (Z(τ, ω)) = −V (z, ω), we formally obtain the derivative of τ(z) with
respect to z:

∂τ

∂z
= −∂F

∂z
/
∂F

∂τ
= 1/V (z, ω). (2.94)

From the hypothesis H1) it follows that in one-dimensional case V can not vanish, then V > 0
. Then, F becomes a monotonous function of τ and, together with the hypothesis H2), ensures
the existence of the function τ(z), on the entire range of z, by the implicit function theorem
from differential calculus. Integrating (2.94), we obtain

τ(z) =

z∫
0

∂τ

∂z
dz =

z∫
0

1

V (z, ω)
dz. (2.95)
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Unlike the usual Lagrangian representations (see for instance [Vanderborght et al., 1998], equa-
tion (23)), (2.95) is an Eulerian representation for travel time, because the velocity is function
of fixed depth z.

The mean travel time is obtained as average of (2.95) over realizations of the velocity field.
Using the property of commutation of stochastic average and space integral (in conditions of
(hypothesis H2)), the definition (2.18) of 1-dimensional density p(v, z) and the Dirac function
representation, we have

MΩ[τ(z)] =

z∫
0

dz

∞∫
−∞

1

v
MΩ[δ(v − V (z, ω)]dv =

z∫
0

dz

∞∫
−∞

1

v
p(v, z)dv.

If one defines the harmonic average vH = 1/ (1/v), where 1/v =
∫ ∞
−∞1/v p(v, z)dv is the Eulerian

average of 1/v, we finally obtain the average travel time

MΩ[τ(z)] =
z

vH

. (2.96)

The variance of travel time can be also computed as an Eulerian average, with respect to
the 2-dimensional density (2.17),

σ2[τ(z)] = MΩ[(τ(z) − MΩ[τ(z)])2] = MΩ[(τ(z))2] − (MΩ[τ(z)])2

=

z∫
0

z∫
0

dzdz′
∞∫

−∞

∞∫
−∞

1

v

1

v′MΩ[δ(v − V (z, ω)δ(v′ − V (z′, ω)]dvdv′ − (
z

vH

)2

=

z∫
0

z∫
0

dzdz′
∞∫

−∞

∞∫
−∞

(
1

v

1

v′ − (
1

vH

)2)p(v, z; v′, z′)dvdv′.

The stochastic average in this expression defines the covariance of inverse velocities

cov 1
v
; 1
v′

(z, z′) =

∞∫
−∞

∞∫
−∞

(
1

v

1

v′ − (
1

vH

)2)p(v, z; v′, z′)dvdv.

With the hypothesis that the random field is stationary, we have p(v, z; v′, z′) = p(v, z −
z′; v′) and cov 1

v
; 1
v′

(z, z′) = cov 1
v
; 1
v′

(z − z′). Using the normalized covariance notation ρ(∆z) =

cov1/v;1/v′(z−z′) / σ2[1/v], where σ2[1/v] = cov1/v;1/v′(0) is the corresponding constant variance,
we can write the variance of the travel time as

σ2[τ(z)] = 2σ2[1/v]

z∫
0

(z − ∆z)ρ(∆z)dz. (2.97)

The average (2.86) and the variance (2.97) are identical with the relations (13-14) in [Shapiro
and Cvetkovic, 1988]. In our approach, the results for the one-dimensional case are rigorously
derived using the implicit function theorem, and the hypotheses H1) and H2) which ensure the
existence of both the Lagrangian description (2.92) and the Eulerian representation (2.95) of
the travel time.
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3 Numerical modeling by Global Random Walk

3.1 Random walk and diffusion equation

It is well known that diffusion processes can be numerically simulated with random walk
(RW) algorithm. For simple diffusion processes the RW algorithm is identical with the finite
difference (FD) scheme [Ames, 1977] but, as we shall discuss in the following, this equivalence
is not valid for more complex diffusion processes.

To show that the RW algorithm gives a numerical solution of the diffusion equation, let us
consider an infinite grid with nodes at xi = iδx, i ∈ Z, where δx > 0 is the space step. At time
tk = kδt, k ∈ N, where δt > 0 is the time step, a particle jumps to the left or right neighboring
node with equal probabilities. In this way, the RW motion can be described as a stochastic
process with discrete state space. If we denote by P (xi, tk) the probability distribution at tk and
by P (xi, tk|xj, tl) the transition probability, then the consistency property of finite dimensional
probabilities for discrete Markov processes gives a relation analogue with (2.25),

P (xi, tk) =
∑

j

P (xi, tk|xj, tl)P (xj, tl), (3.1)

where tk > tl. According to the RW law, the transition probabilities for successive time steps
are given by

P (xi, tk+1|xj, tk) =

{
1
2

for i = j ± 1
0 for i 	= j ± 1

. (3.2)

For three time steps k1 > k2 > k3, the Chapmann-Kolmogorov equation for discrete state space
processes (analogue to (2.24)) is

P (xi1 , tk1 |xi3 , tk3) =
∑
i2

P (xi1 , tk1|xi2 , tk2)P (xi2 , tk2 |xi3 , tk3),

and, with transition probabilities (3.2), it gives the master equation for the transition proba-
bility of the process starting in the state (0, 0),

P (xi, tk+1|0, 0) =
1

2
[P (xi−1, tk|0, 0) + P (xi+1, tk|0, 0)] , (3.3)

which is a discrete form of master equation (2.33c). One proves (see for instance [Gardiner,
1983]) that when δx −→ 0 and δt −→ 0, and if the limit

lim
δx,δt−→0

δx2

2δt
= D (3.4)

is finite, then the limit of the solution of (3.3) is the Gaussian transition probability with the
density

p(x, t|0, 0) = (4πDt)−1/2 exp

{−x2

4Dt

}
. (3.5)

The Gaussian process is a continuous Markov process and the probability density that a particle
has the position x at time t, given by (2.25),

p(x, t) =

∫
R

p(x, t|x′, 0)p(x′, 0)dx′,
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is the solution of the diffusion equation (2.31),

∂tp = D∂2
xp,

with the initial condition p0(x) = p(x, 0) [Gardiner, 1983].
The connection between the RW process, described by the master equation (3.3), and the

diffusion equation (2.31) is used to build up the RW algorithm. One considers N fictitious
particles moving on the previously described infinite grid, their movement being governed by
the RW law. At the initial time the distribution of the N particles approximates the values of
the initial probability density p0(x). For each particle and each time step a random number
taking the values −1 and +1 with a probability equal to 1/2 is generated. If the random number
is −1, then the particle moves to the left and if it is +1 the particle moves to the right. In
this way the distribution of the N particles at the time tk approximately describes the solution
p(x, tk) of the diffusion equation (2.31). This approximation can be improved by increasing N
and reducing δx and δt.

3.2 The GRW algorithm

The GRW algorithm [Vamoş et al., 20011a, 2001b] is identical with the RW algorithm in
its mathematical principles, only the numerical implementation of the particles displacement is
different. Hence, first we describe the RW algorithm for advection-equation (2.32). Using the
relation between the concentration field c and the probability distribution p given by (2.57), in
(2.32), we consider the advection-diffusion equation

∂tc + V (x)∂xc = D∂2
xc, (3.6)

where the advection velocity V (x) is a space function and the diffusion coefficient D is a
constant. According to (3.4), we relate the space step δx and the time step δt, for a given
constant diffusion coefficient D, by

D =
δx2

2δt
. (3.7)

The particles in xi jump either in (xi − δx) or in (xi + δx). Similarly, the realization of the
random velocity field is described on the grid by a set of integers vi , defined by

V (xi) =
δx

δt
vi , (3.8)

so that the movement of particles in xi due to advection field is given by (xi + viδx). The total
displacement of particles is obtained, similarly to PT algorithm [Tompson and Gelhar, 1990], as
sum of advective and diffusive displacements. After a time step δt, the particles starting from
the node i reach either the node (i+ vi −1) or (i+ vi +1). The shortcoming of this approach is
that V (xi) has only discrete values and if V (x) has large variations, then δx/δt must be small
imposing a small space step. Therefore, in this case very large grids are needed. Also, the
velocity V (xi) must be replaced by its average over a time step. For smooth variations, it was
shown that

Vi = (V (xi) + V (xi + δtV (xi)))/2 (3.9)

approximates the average up to second order in δt [Roth and Hammel, 1996].
At a given time tk = kδt, the N particles are distributed on the grid so that n(i, k) is the

number of particles at the node xi = iδx. Moving each particle according to the RW law, the
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distribution of the particles at the next time step n(i, k+1) is obtained. Repeating S times the
simulation under the same initial condition, we obtain for each node i and time k a sequence
of values ns(i, k), 1 � s � S. When S is large enough, we can approximate the solution c(x, t)
of the advection-diffusion equation (3.6) using the average over the S realizations of ns(i, k),
denoted n(i, k). Assuming that the particles in the node xi are assigned to an interval consisting
of l space steps, the numerical solution of (3.6) is given by

c(xi, tk) =
1

l δx
n(i, k). (3.10)

This is a simple case of a Monte Carlo method [Ames, 1977].
The GRW algorithm moves the particles in large groups, not individually. We denote

by δn(i, j, k) the number of particles which at time tk are moved from xj to xi. Then the
distribution of the particles at the next time is obtained from the relation

n(i, k + 1) =
∑

j

δn(i, j, k). (3.11)

The particles laying at j at time k are scattered according to the relation,

n(j, k) = δn(j, j + vj, k) + δn(j + vj − d, j, k) + δn(j + vj + d, j, k), (3.12)

where the positive integer d describes the jumps of particles due to diffusion, δn(j +vj ±d, j, k)
are the numbers of particles undergoing advective displacements vj and diffusive jumps d and
δn(j, j + vj, k) is the number of particles which do not undergo diffusive jumps and remain
at the grid point j + vj after an advective displacement. The GRW algorithm is defined if a
procedure to calculate the values of the quantities in the right hand part of (3.12) is given.

We want that at a given time step only a fraction r of the number of particles jump in
neighboring nodes, the rest of them remaining at the same node. To avoid the division of
particles, r must be a positive rational number r � 1, such that (1 − r)N be an integer and
equal to the total number of particles which do not undergo diffusive jumps at a time step. For
increasing index j, we determine the number of particles remaining at the node xj+vj

by means
of the formula

δn(j, j + vj, k) =

[
(1 − r)

∑
j′�j

n(j′, k)

]
−

[
(1 − r)

∑
j′<j

n(j′, k)

]
, (3.13)

where [·] is the integer part of the expression in the brackets. Taking the average over a great
number of Monte Carlo realizations we obtain

δn(j, j + vj, k) = (1 − r)n(j, k) (3.14)

Since δn(j, j + vj, k) is known, (3.12) relates the random variables δn(j + vj − d, j, k) and
δn(j + vj + d, j, k) and only one of them has independent values.

As a consistency requirement, for a given diffusion process, the GRW algorithm must give
the same mean square displacement as the RW algorithm. If δxRW is the space step for the
RW algorithm, then, because all the particles jump at the first neighbors, for a time step δt
the mean square displacement of the particles in the node j is n(j, k)δx2

RW . For an equal time
step, in GRW algorithm only the fraction r of the particles in the node j jump at the nodes
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j ± d and, from (3.12) and (3.14), the mean square displacement is r n(j, k)(dδx)2. Imposing
the condition n(j, k)δx2

RW = r n(j, k)(dδx)2 and using (3.7) for δxRW , the parameter r is given
by

r =
2Dδt

(dδx)2
. (3.15)

For given δx and δt and properly combining the values of both d and r, using (3.15) one can
numerically describe all the possible values of the diffusion coefficient.

The GRW algorithm performs the evaluation of the random variables δn(j + vj ± d, j, k)
directly, not as a sum of the individual jumps of the n ≡ n(j, k) − δn(j, j, k) particles. Since
each of the n particles can reach the node j + vj − d with a probability equal to 1/2, it follows
that the probability for δn(j + vj − d, j, k) to take the value m, 0 � m � n, is given by the
Bernoulli distribution bn(m) = 2−nCm

n . To assign to δn(j+vj−d, j, k) a random value satisfying
the Bernoulli distribution, at each time step, a random number η with a uniform distribution
in the interval [0, 1] is generated. If we denote by Fn(m) =

∑m
l=0bn(l), 0 < Fn(m) � 1,

the Bernoulli repartition, then δn(j + vj − d, j, k) takes the value m satisfying the condition
Fn(m − 1) � η < Fn(m), where we use the convention Fn(−1) = 0.

To analyze the relation between the GRW and the FD algorithms, we consider the centered
differences and time explicit scheme for diffusion equation obtained from (3.6) when V (x) ≡ 0.
Considering the approximation in the order O(δx2) of ∂2

xc in (3.6), using finite difference between
dδx space steps and the parameter r defined by (3.15), the explicit FD scheme can be written
as

c(i, k + 1) =
r

2
c(i + d, k) + (1 − r)c(i, k) +

r

2
c(i − d, k). (3.16)

The solution of (3.16) is stable if the von Neumann stability criterion, r � 1, is fulfilled. Since
from (3.15) we also have δt = O(δx2), the FD scheme (3.16) is a consistent approximation of the
exact partial differential equation within the approximation order O(δx2). The stability and
consistency imply the convergence of the order O(δx2) for the initial value problem attached to
(3.6) with V (x) ≡ 0 [Godunov and Ryabenkii, 1987]. For vi ≡ 0, the GRW algorithm relation
(3.11) becomes

n(i, k + 1) = δn(i, i, k) + δn(i, i + d, k) + δn(i, i − d, k).

Taking into account (3.10) and (3.14), the average of this relation is identical with (3.16) if

δn(j ± d, j, k) =
1

2
r n(j, k). (3.17)

But this is the RW law statement that the average number of particles jumping in a direction
is equal to half the total number of particles. This proves that the FD solution is identical
with the ensemble average of the GRW solutions. The parameter (3.15) defining the particles
fraction jumping to the neighboring nodes in (3.17) is the same as the stability parameter of
the FD scheme (2.9).

One can define a modified GRW algorithm which is identical with the FD algorithm for
V (x) ≡ 0, if the particles can be divided and n(j, k) is a real number, not an integer. Instead
of (3.13) we introduce

δn(j, j, k) = (1 − r)n(j, k) (3.18)

and in analogy with (3.17) we consider

δn(j + vj ± d, j, k) =
1

2
r n(j, k). (3.19)
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Then (3.12) is identical satisfied and all the quantities in (3.11) are defined. In this case,
δn(j + vj − d, j, k) is not anymore a random variable but its value is uniquely determined
by (3.19) and coincides with the mean value of the corresponding random variable in GRW.
Therefore we call this modified algorithm as a “deterministic” GRW (GRWD).

Another form of the GRW algorithm can be obtained by both preforming a deterministic
scattering and preserving the particles indivisibility. We use (3.13) and instead of (3.19) we
introduce

δn(j + vj − d, j, k) =

{
n/2 if n is even

[n/2] + θ if n is odd
, (3.20)

where n = n(j, k)−δn(j, j, k), [n/2] is the integer part of n/2 and θ is a random variable taking
the values 0 and 1 with probability 1/2. The quantity δn(j + vj + d, j, k) is determined by
(3.12). In comparison with GRW, this algorithm reduces the particles number fluctuations at
only one particle and we call it GRWR. Since the fluctuations do not vanish, only the average
of the GRWR solution is identical with the FD solution. The algorithms without fluctuations
(GRWD) and with reduced fluctuations (GRWR) can be used to obtain numerical solutions
for the advection-diffusion equation (3.6), as well as the stochastic algorithm GRW. The GRW
algorithm is expected to be more accurate when the fluctuations significantly influence the
simulated process [Horsthemke, 1984].

The GRW algorithm and its modified forms GRWD and GRWR use the relation (3.11)
where δn(i, j, k) is nonvanishing for every j satisfying j + vj ± d = i. Therefore, if V (x)
varies in space, the evolution of the concentration in a node is obtained, unlike in (3.16), by
contributions from more than the first neighboring nodes. The terms in (3.11) are not apriori
known, because they depend on the value of V in xj. In this case, the GRW algorithm is no
more equivalent with a FD scheme.

The implementation of the GRW algorithm as a computer code, encounters some problems
related to the computation of the Bernoulli distribution bn(m) = 2−nCm

n and of the corre-
sponding repartition Fn(m) =

∑m
i=0bn(i). When the number of particles is of order 106, the

computation of bn(m) or Fn(m) takes too much time to be performed at each computation step.
Therefore the values of Fn(m) are computed only once and stored in files for values n = 2k

with 1 � k � 20. Due to the symmetry of Fn(m) with respect to m = n/2, only the values
Fn(m) ≤ 0.5 are stored. If n < 221, a binary representation n =

∑20
l=0a(l)2l is used. The 2l

particles of a group with a(l) 	= 0 are scattered in δnl(j +vj −d, j, k) and δnl(j +vj +d, j, k), as
previously described, using a random number η uniformly generated in the interval [0, 1]. The
final result is obtained from

δn(j + vj − d, j, k) =
∑20

l=0a(l)δnl(j + vj − d, j, k).

If n � 221, then there are several groups consisting of 220 particles and for each group the
procedure from above can be used. This method, referred to as GRW0 (first used in [Vamoş
et al., 2001]), becomes time expensive for very large n. In this article a different method is
used. The reduced variable ξ = (m − n/2)/

√
n/4 and the repartitions Fn(ξ) are introduced.

For n → ∞, the repartition Fn(ξ) tends to the normal Gaussian repartition, according to De
Moivre-Laplace theorem [Papoulis, 1991]. A good approximation is obtained when for every
n � 221 one uses the repartition corresponding to n = 220 as function of the reduced variable
ξ. For instance, the relative error of the values δn obtained using F220 instead of F230 is of the
order 10−9. In this way, GRW can handle a number of particles equal to the maximum number
of particles that can be represented in the internal memory of the computer.

35



For 2 and 3-dimensional problems, the GRW algorithms are implemented by performing
the 1-dimensional global scattering procedures described in this section on x1, x2 and x3 space
axes, according to the values of velocity components and diffusion coefficients. A numerical
proof of convergence, discussions about boundary conditions and performances of the algorithm
are presented in [Vamoş et al., 2001b].

4 Numerical simulation of diffusion in random fields

If the advection velocity has large spatial variations then V (x) can be modeled as a random
velocity field. This approach is often used in studies of transport processes in heterogeneous
porous media. Many authors agree that numerical simulations of diffusion in random fields are
better achieved by RW algorithms than by usual FD or finite element algorithms [Moltyamer
et al., Tompson and Gelhar, 1990, Tompson and Knapp, 1989, Tompson et al., 1998, Roth
Hammel, 1996]. In this Section, we shall show that GRW allows the simulation of the 2-
dimensional diffusion in single realizations of random velocity fields using moderate computing
resources.

The transport in a random velocity field is a complex process consisting in diffusive move-
ments of particles and their transport along the stream lines of the velocity field. A mathe-
matical description of this process is given by the advection-diffusion equation (3.6) where D
is a local diffusion coefficient and V (x) a random field. Such models are used to describe the
transport of pollutants in natural porous media. In the following, we consider the numerical
simulation of the transport of a contaminant substance in a saturated aquifer, for a punctual
injection case. The heterogeneity of the advection velocities is described by realizations of a
random field. In this conditions, traditional methods (finite difference/element) are restricted
at simplified aquifer models [Tompson and Knapp, 1989]. Better results in simulation of field
experiments were obtained by means of the stochastic models based on PT method [Tompson
and Gelhar,1990, Tompson et al., 1998]. For instance, when the simulations of the ground-
water transport at field scale are performed with PT, the numerical diffusion and dispersion
problems occurring in finite element/difference methods are completely eliminated [Moltyamer
et al., 1993].

In PT algorithm, the diffusion process is described by the movement of an ensemble of
fictitious particles in continuous space. For each particle the change of the position x in the
time interval (tk+1 − tk), due to the realization V (x) of the random velocity field and the local
diffusion with coefficient D is described by the discrete form of the Itô equation (2.81),

x(tk+1) − x(tk) = V (x(tk), tk)δt + G
√

2Dδt, (4.1)

where G is a Gaussian random variable with mean zero and unit variance. For large number of
particles one expects that their number density give an approximation of the concentration field
c(x, tk) satisfying an advection-diffusion equation [Tompson and Gelhar, 1990]. This assertion
is based on the relation between the Itô equation and the Fokker-Planck equation for the
probability density of particle position [Gardiner, 1983]. According to (2.57) the probability
density is proportional to the concentration, so that (3.6) is in fact the Fokker-Planck equation.
The accuracy of the solution strongly depends on the number of tracked particles. Further,
to obtain simulations of the stochastic model of diffusion in random velocity fields, presented
in Section 2.4.3, one performs repeated computations and averages over large ensemble of
realizations. As it is mentioned in literature [Sun, 1996], “a trade off should be made to
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reduce the computation time without affecting the accuracy”. Although improvements of the
algorithm have been made, the high computational costs of PT simulations is still an open
problem [Ghoniem and Sherman, 1985]. That is why sometimes a “semianalytical” evaluation
of diffusive movement is used [Salandin and Fiorotto, 1998]. In [Zhang et al., 1993] for instance,
on the basis of some numerical tests, the last term in (4.1) was taken as 4

√
Dδt .

The computational effort in the PT method is due to the fact that every particle is separately
displaced and all the trajectories must be stored. That is why the GRW method, where groups
of particles are simultaneously displaced, saves time and memory. GRW produces simulations
of the diffusion in random fields without prohibitive computational costs [Vamoş et al., 2001b].

4.1 Simulation of asymptotic state in single realization

For the simulation of 2-dimensional diffusion in random fields we consider the same procedure
to generate the field as in [Schwarze et al., 2001] (Kraichnan generator of hydraulic conductivity
field and first order approximation). The velocity field is spatial stationary and divergence free
and has the form V(x1, x2) = U+u(x1, x2), where U =(U, 0) is the mean velocity and u(x1, x2)
the fluctuation. The “filtration velocity” is given by Darcy law

V = −K

φ
∇H,

where K is the hydraulic conductivity, φ the porosity and ∇H is the hydraulic gradient. The
correlation coefficients

Rll(a) = 〈ul(x1, x2)ul(x1 + a, x2)〉 / 〈ul(x1, x2)ul(x1, x2)〉 ,

where l = 1, 2 and 〈·〉 denotes the average over the realizations of the random field, decay with
a, corresponding to an exponential correlated logarithm of the hydraulic conductivity, with
variance σ2

ln K = 1 and correlation length λ = 1 m. We also consider U = 1 m/day, and local
diffusion coefficient D = 0.01 m2/day (as in simulations represented in Fig. 11 and 14 from
[Schwarze et al., 2001]).

The simulations consist in determining at each time step the positions of N particles on a
grid using the relations (3.11) and (3.12), defining the GRW algorithm, and the computation
of the corresponding spatial moments. Because the movement due to velocity fluctuations is
much larger than diffusive motion, only the spreading of the plume over regions with different
velocities is important and not the fluctuations of the number of particles. That is why the
simulations were performed with the reduced fluctuations algorithm GRWR with r = 1. The use
of GRWR algorithm requires reduced computing resources than GRW and GRWD algorithms.
Unlike in GRW algorithm, only one random number will be generated (at every time step
and when at a given node there is an odd number of particles). Because the indivisibility of
particles is preserved, the plume has a smaller extension than in the case of GRWD algorithm
and, consequently, smaller grids are necessary.

The computation domain is a rectangular grid with 107 nodes, 0 � i � 10000 and 0 �
j � 1000, the space step is δx = δy = 0.1 m and the time step δt = 0.5 day. In two different
realizations of the velocity field, N = 1010 particles were released at the point (i0, j0) = (50, 500).
We checked that for greater values of N the simulation results remain unchanged. A period
of 800 days was simulated, so that in this interval the particles travel a mean distance of 800
correlation lengths. The computations were performed with a PC (Pentium III, 600 MHz, 64
Mb RAM) and lasted about 3 hours for each simulation.
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The asymptotic diffusive behavior is described by finite coefficients (2.48),

lim
t→∞

σ2
ll(t)

t
= 2Deff

ll . (4.2)

In (4.2) we use the notation Deff
ll for the components of the tensor of effective diffusion coef-

ficients D̃∗(ω
V

) from (2.88). Usually, one reserves the name “effective diffusion coefficients” for
asymptotic coefficients in single realization, to avoid confusion with the asymptotic coefficients
defined as averages over realizations (D̃∗ in (2.88)). The last quantities are called “ensemble
diffusion coefficients” [Attinger et al., 1999, Vanderborght and Vereecken, 2001].

In Fig. 1 and 2, the evolution of Deff
11 (t) and Deff

22 (t), for the 2-dimensional GRWR simu-
lations, are represented for the two realizations of the random field. The coefficients D∗

11 and
D∗

22 are closed to the constant values predicted by theory presented in [Schwarze et al., 2001].

FIG. 1 Longitudinal effective diffusion coefficient in two different realizations.

FIG. 2 Transversal effective diffusion coefficient in two different realizations.

The coefficients from Fig. 1 and 2 approach the asymptotic value, after cca. 200 days
(correlation lengths), but heir value oscillates around the theoretical value. This behavior
persists over travel times of hundreds of days. At small travel times, the oscillations can be
explained by the fact that the space average weighted with the number of particles, which
defines σ2

ll(t), varies with the extent of the plume and do not provides a good estimation of the
statistical average. At large travel times, the oscillations can be caused either by numerical
errors or by bad statistical properties of the realizations of the random field.
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4.2 The analysis of overshoot errors

In simulations from Fig. 1 and 2, we used the discrete values of velocity given by (3.8), i.e.
without corrections. Because in a time step δt the particles moving with velocity V (xi) can
jump over several grid points, where the velocity has different values, the “overshoot errors”
occur [Sun, 1996]. To analyze the influence of overshooting in our computations we used the
approximation (3.9) for the average velocity in a time step. The discrete values of velocity, vi,
were replaced, according to (3.8) and (3.9), by

v̄i = (vi + vi+viδx)/2. (4.3)

The effective coefficient given by Green-Kubo formula (2.55) is related with the velocity variance
M [v2]e and correlation time τc by formula D∗ = M [v2]eτc. For diffusion in random fields it is
not easy to obtain the correlation time for the Lagrangian correlation R̃L. The exact formula
(2.84) requires a complete knowledge of functions describing the velocity realizations and the
particles’ trajectories. Even when Corsin conjecture is used to obtain (2.86), the knowledge of
the analytic Eulerian correlation function RE and of the 2-dimensional density of the positions’
process are necessary. However, some approximative relations can be derived in particular
cases. For example, the asymptotic value of the effective coefficient (2.87), for exponential
correlated logarithm of hydraulic conductivity, was estimated in [Gelhar and Axness, 1983] as

Deff
11

∼= D + Uλσ2
ln K . (4.4)

The computations of the longitudinal coefficient Deff
11 with velocity discretization (3.8),

i.e. without corrections, and with correction (4.3), for 800 days and a coarse discretization
(δx = δy = 1 and δt = 5), are compared in Fig. 3. We remark that the method (3.8)
overestimates the coefficient, which, according to (4.4) should be Deff

11
∼= 1.1, with cca. 20%

and the corrections (4.3) give asymptotic values closed to the theoretical estimation. The
overshooting is important mainly in longitudinal direction, as shown by the curve (×), where
only the longitudinal advective velocities were corrected.

FIG. 3 Comparison between effective diffusion coefficients computed without
corrections (full line), corrections with mean velocity over a time step (+) and
correction for longitudinal direction only (×), for D = 0.1, δx = 1 and δt = 5.
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In Fig. 4, we compared the methods (3.8) and (4.3) for smaller discretization steps (δx =
δy = 0.4 and δt = 2) and for 1000 days. One remarks that there are no significant differences
between the methods. The result may be explained by the randomness of velocity field which,
for small discretization steps, could compensate the effect of overshooting.

FIG. 4 Effective diffusion coefficient computed without corrections (full line),
and with corrections using the mean velocity over a time step (+), for D = 0.04,
δx = 0.4 and δt = 2.

The conclusion is that for fine discretization the simulations are not affected by overshoot
errors. The oscillational behavior of asymptotic coefficients in Fig. 1 and 2, where the dis-
cretization was finer than in Fig. 4 (δx = δy = 0.1 and δt = 0.5) cannot be explained by
computation errors and the cause could be the pour stationarity or the periodic behavior of
the simulated velocity fields.
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5 Path decomposition of macrodispersion coefficient

5.1 Path decomposition method

To analyze the influence of statistical properties of the velocity fields, we develop a method
suggested by the discrete nature of computation of the diffusion coefficient.

Let us consider a 2-dimensional space grid with steps δx = δy, and let δt be the time step.
Let

P(S)
α (i, j) = {(iα(0), jα(0)) , (iα(1), jα(1)) , · · · , (iα(S), jα(S))}

be the path α, starting at (i, j) and containing S successive positions. A point which belong to
the path α and corresponds to the s-th position, 0 � s � S, is denoted by

P(S)
α (i, j; s) = (iα(s), jα(s)).

The initial point for all paths α is P(S)
α (i, j; 0) = (i, j) (fig. 5).

FIG. 5 At each time step k, the n particles spread along paths starting in (i, j).

The evolution along a path of length S of particles undergoing a diffusion with coefficient
D, D = (δx)2d2/(2δt), in a single realization of a random field, V =(V1, V2), V1 = uδx/δt,
V2 = vδx/δt is described by

iα(s + 1) = iα(s) + u(P(S)
α (i, j; s)) ± d

jα(s + 1) = jα(s) + v(P(S)
α (i, j; s)) ± d.

Hence for given S, there are 4S paths and the values of α are α = 1, 2, · · · , 4S (fig. 6).
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.

FIG. 6 Paths of length S = 2 starting from the point (i, j).

In the following we describe the computation of the longitudinal effective coefficient using
the “path decomposition” approach. The longitudinal variance of particles displacements, σ2

11,
is given, in dimensionless form, by

1

(δx)2
σ2

11(kδt) =
1

N

∑
i,j

i2n(i, j, k) −
[

1

N

∑
i,j

i n(i, j, k)

]2

, (5.1)

where n(i, j, k) is the number of particles in (i, j) at time k and N =
∑

i,j n(i, j, k) is the total
number of particles. The variation of the variance (5.1) between two successive time steps,
using the previously introduced path notations, is given by

1
(δx)2

[σ2
11((k + S + 1)δt) − σ2

11((k + S)δt)] = d2 + Ruu(k; S) + 2
∑S−1

s=0 Ruu(k; s) + M(k; S)

+ε(k, S).
(5.2)

The correlation of longitudinal velocity components u, in points corresponding to the posi-
tion s and the end S of paths starting in all points (i, j) contained in the plume area, is defined
by:

Ruu(k; s) =
1

4SN

4S∑
α=1

∑
i,j

u(P(S)
α (i, j; s))u(P(S)

α (i, j; S))n(i, j, k) − u(P(S)(k, s)) u(P(S)(k, S)),

with the average (over paths and grid points) velocity,

u(P(S)(k, s)) =
1

4SN

4S∑
α=1

∑
i,j

u(P(S)
α (i, j; s))n(i, j, k) =

1

4S

4S∑
α=1

u(P(S)
α (k, s)),
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where

u(P(S)
α (k, s)) =

1

N

∑
i,j

u(P(S)
α (i, j; s))n(i, j, k)

is a space averaged velocity.
The correlation of velocities at the path’s ends, S,

Ruu(k; S) =
1

4SN

4S∑
α=1

∑
i,j

[
u(P(S)

α (i, j; S))
]2

n(i, j, k) −
[
u(P(S)(S))

]2

, (5.3)

is the corresponding velocity variance.
The term

M(k; S) =
2

4SN

4S∑
α=1

∑
i,j

(i − iCM(k))u(P(S)
α (i, j; S))n(i, j, k),

is an average momentum of velocity with respect to the center of mass, where

iCM(k) =
1

N

∑
i,j

i n(i, j, k)

is the i component of the center of mass.
The term

ε(k, S) =
d

4S

4S∑
α=1

(−1)aαbαu(P(S)
α (S)),

where aα and bα are constants, is a sum of terms with approximately equal absolute values but
with opposite signs.

In the case S = 1, using the path points corresponding to the first iteration in fig. 6, these
quantities become:

Ruu(k; 1) =
1

4N

∑
i,j

{[
u(P(1)

1 (i, j; 1))
]2

+
[
u(P(1)

2 (i, j; 1))
]2

+
[
u(P(1)

3 (i, j; 1))
]2

+
[
u(P(1)

4 (i, j; 1))
]2

}
n(i, j, k) −

[
u(P(1)(1))

]2

,

M(k; 1) =
2

4N

∑
i,j

(i − iCM(k))
[
u(P(1)

1 (i, j; 1)) + u(P(1)
2 (i, j; 1))

+u(P(1)
3 (i, j; 1)) + u(P(1)

4 (i, j; 1)
]
n(i, j, k),

ε(k, 1) =
d

4N

[
u(P(1)

1 (1)) + u(P(1)
2 (1)) − u(P(1)

3 (1)) − u(P(1)
4 (1))

]
.
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Writing the successive terms (5.2), for k = 0, · · · , T − 1,

1
(δx)2

[σ2
11((S + 1)δt) − σ2

11(Sδt)] =
d2 + Ruu(0; S) + 2

S−1∑
s=0

Ruu(0; s) + M(0; S)

+ε(0, S)

1
(δx)2

[σ2
11((1 + S + 1)δt) − σ2

11((1 + S)δt)] =
d2 + Ruu(1; S) + 2

S−1∑
s=0

Ruu(1; s) + M(1; S)

+ε(1, S)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1
(δx)2

[σ2
11((T + S + 1)δt) − σ2

11((T + S)δt)] =
d2 + Ruu(T ; S) + 2

S−1∑
s=0

Ruu(T ; s) + M(T ; S)

+ε(T, S),

summing over k and multiplying by (δx)2/[2(T + S)δt], we obtain

σ2
11((T + S + 1)δt)

2(T + S)δt
=

σ2
11(Sδt)

2(T + S)δt
+

(δx)2d2

2(T + S)δt
T +

(δx)2

2(T + S)δt

T−1∑
k=0

Ruu(k; S) (5.4)

+ 2
S−1∑
s=0

(δx)2

2(T + S)δt

T−1∑
k=0

Ruu(k; s) +
(δx)2

2(T + S)δt

T−1∑
k=0

M(k; S)

+
(δx)2

2(T + S)δt

T−1∑
k=0

ε(k, S).

In the large time limit, T � S, the left side of (5.4) is the discrete form of definition
(2.48) for effective diffusion coefficients. The first term in the right side of (5.4) vanishes and
the second term tends to the local diffusion coefficient D, when (3.7) is used. Thus, for large
times, (5.4) gives the discrete effective diffusion coefficient as a sum of influences of Lagrangian
correlation computed as averages over all trajectories of length S, staring in all points inside
the solute plume, of the velocity momentum M, and a residual term ε:

Deff = D + lim
T−→∞

(δx)2

2(T + S)δt

T−1∑
k=0

[
Ruu(k; S) + 2

S−1∑
s=0

Ruu(k; s) + M(k; S) + ε(k, S)

]
. (5.5)

To simplify the notations, we denoted the longitudinal effective coefficient Deff
11 by Deff . In a

condensed form, the relation (5.5) can be written as

Deff = D + Deff (S) + 2
S−1∑
s=0

Deff (s) + Meff (S) + εeff (S), (5.6)

which we call path decomposition of discrete effective diffusion coefficient. If the contribution
of the last two terms in (5.6) is negligible, then the relation (5.5) looks like a discrete form of
the effective diffusion coefficient (2.87) defined in analytical Lagrangian model of diffusion in
random fields,

Deff = D + lim
T−→∞

∫ T

0

Ruu(t)dt.

For a perfectly uncorrelated velocity field, the last three terms in (5.6) should vanish. To
prove that, we write the analytic longitudinal Lagrangian correlation in single realization as
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RL11(s, s
′) = σ2

V1
δ(s − s′), where σ2

V1
is the longitudinal velocity variance. Because RL11 is

stationary and even function of τ = s− s′, the “Taylor formula” can be used for (2.69) and the
variance of displacements, of form (2.83), becomes

σ2
11(t) = 2Dt + 2σ2

V1

t∫
0

(t − τ)δ(τ)dτ.

Using the definition (2.48), we obtain the effective coefficient

Deff =
1

2
lim

t−→∞
σ2

11(t)

t
= D + σ2

V1

∞∫
0

δ(τ)dτ − σ2
V1

lim
t−→∞

1

t


 t∫

0

τδ(τ)dτ


 = D +

....
σ 2

V1
, (5.7)

where
....
σ 2

V1
is the value of σ2

V1
multiplied by time dimension, due to the integration. Thus

the macrodispersion coefficient for diffusion in uncorrelated random velocity fields is the sum
between the local diffusion coefficient and the velocity variance (multiplied by the physical
dimension of time).

5.2 A case study

To verify the path decomposition method, we first consider the case of uncorrelated fields.
A weakly correlated field was produced with the same procedure as in section 4, when a small
correlation length of lnK, λ = 0.01, was used in Kraichnan generator. The terms of path
decomposition of Deff , for S = 3 and T = 100 days are presented in Fig. 7. The asymptotic
value is reached after cca. 40 days, the sum of first three terms from the right side of (5.6) is
very closed to the asymptotic value and, the term Deff (3), accounting for the influence of the
velocity variance (5.3), has significant influence on final value of Deff . The results are thus in
agreement with theoretical prediction given by (5.7).

FIG. 7 Deff and its components, for weakly correlated velocities and S = 3:
Deff (�), [D + Deff (3) + 2

∑2
s=0 Deff (s)] (∗), Deff (3) (�), Deff (2) (+), Deff (1)

(×), Deff (0) (−), Meff (3) (full line).
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In the following, we use the path decomposition method to analyze the oscillatory behav-
ior of macrodispersion coefficient in simulations presented in Section 4.1. The terms of path
decomposition, for S = 3 and T = 100 days, of Deff were computed for the same exponential
correlated field as that used in simulations from Fig. 1.

FIG. 8 Deff and its components, for correlated velocities and S = 3: Deff (�),
[D+Deff (3)+2

∑2
s=0 Deff (s)] (∗), Deff (3) (�), Deff (2) (+), Deff (1) (×), Deff (0)

(−), Meff (3) (full line).

The result presented in Fig. 8 shows that the correlation terms, D+Deff (3)+2
∑2

s=0 Deff (s),
have smooth variations but their influence is not yet decisive for the behavior of the effective
diffusion coefficient. The momentum term Meff (3) is also significant and it has the same os-
cillatory behavior as the effective coefficient. To understand the meaning of the momentum
term we compared Deff and Meff with the mean velocity of the center of mass, Vcm. Fig. 9
shows that the numerically generated random field is not stationary and the oscillations of the
effective diffusion coefficient are generated by the oscillations of the center of mass.

FIG. 9 Deff (�) and Meff (3) (+) compared with the mean velocity of the
center of mass, Vcm (×).
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6 Conclusions

In this Report we presented an analytic Lagrangian theory and a numerical model for “macrodis-
persion” in heterogeneous aquifers. The first conclusion is that the development of a rigorous
analytic theory is a hard task, which requires a serious mathematical background, mainly in the
theory of measure and random processes, while the physical description of the macrodispersion
can be clearly formulated as a numerical model.

The Lagrangian approach can be build using the definitions and properties of random
variables, Markov processes and diffusion processes (a minimal background is presented in
Sections 2.1, 2.2 and 2.3). To obtain the Lagrangian description of diffusion in random velocity
fields we made two hypotheses, presented in Section 2.4.1. These assume the nonsingularity of
the velocity field (H1 ) and the continuity as space function of all realizations (H2 ). Although
sometimes they sound unrealistic, these hypotheses are not new, we only made them explicitly.
An analysis of the original paper of Taylor [1921] shows that the same hypotheses were implicitly
used to obtain a diffusive behavior from “continuous movements”.

When effective diffusion coefficients are computed, the correct formula is that defining the
self-averaging property and asymptotic diffusive behavior, Deff = lim

t→∞
σ2(t)/(2t), and not the

formula as the limit of half of time derivative of displacement variance (Section 2.3.4). The last
formula can be used in analytic computations (as we did in Sections 2.3.5 and 2.4.2) but it was
shown that it causes oscillations of the effective coefficient in numerical applications [Schwarze
et al. 2001].

The asymptotic diffusive behavior described by a Green-Kubo formula, for a particle with
velocity governed by a Langevin equation (Section 2.3.5) is an illustration of thermodynamic
irreversibility. In this case there were no supplementary hypotheses, as H1) and H2 ), because
the velocity was not a random field but a stochastic process with strong properties which induce
diffusive behavior. Thus, this model problem for thermodynamic irreversibility is easier than
macrodispersion problem and has a rigorous solution.

We did not use the Fourier transform in derivation of the basic formula, giving the effective
diffusion coefficient as function of Lagrangian correlation. Fourier transform requires supple-
mentary mathematical restrictions and makes unclear the relation between the Lagrangian and
Eulerian correlations. Also, no stationarity of the random field or “Lagrangian stationarity”
were assumed.

The Lagrangian approach becomes more useful when the Lagrangian correlation can be
related to the Eulerian correlation. This relation can be obtained using the Corsin conjecture
or approximations enabling the factorization of averages over the realizations of the velocity
field (Section 2.4.2). The stratified aquifer model of Matheron and de Marsily (Section 2.4.4)
do not need approximations or Corsin conjecture and give exact results for both diffusive
and superdiffusive behavior, as function of Eulerian correlation. Another example where the
Eulerian statistics can be introduced without approximations is the computation of mean and
variance of travel time in unsaturated soils, presented in Section 2.4.5.

The existence of asymptotic diffusive behavior do not proves the correctness of the use of
an effective diffusion equation (Section 2.4.2). When one asserts the existence of the effective
diffusion equation, its predictive power for single realization is conditioned by the equality
of the effective coefficient computed for the diffusion process in the given realization of the
random field with the coefficient computed as average over realizations. This is possible when
the Lagrangian velocity correlation, average over realizations, is closed to the corresponding
correlation in a given realization, computed as space average over the solute plume weighted
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with the time-dependent distribution of concentration (Section 2.4.3).
The numerical model, presented in this Report, is a direct description of the conceptual

model of macrodispersion and not a numerical simulation of the stochastic process of diffusion
in random fields from the Lagrangian theory. In fact, the simulation of the movement of N
random walkers in realizations of a numerically generated random field is a discrete stochastic
process represented on the computer, not necessarily based on a mathematical model. This
approach has the advantage that it is not concerned with mathematical difficulties related to
the formulation of the Lagrangian theory. Some authors also try to avoid these difficulties when
they present the “the Lagrangian framework as the limit of the particle tracking procedure”
[Vanderborght, 2001, Dagan and Fiori, 1997].

The asymptotic behavior was obtained in single realizations of the random field, when the
movement of 1010 particles was simulated with the GRW algorithm (Section 4.1). Unlike the
methods which simulate individual trajectories, GRW spreads all the particles lying in a grid
node, on the directions of diffusive and advective movements, by the use of a single numerical
procedure at each time step. This saves computing time and memory and allows the simulation
of very large number of particles (Section 3.2).

It was shown that the overshoot errors do not influence the result when ten grid steps per
correlation length of logarithm of hydraulic conductivity were used. For coarser grids, the GRW
algorithm provides correction technics, presented in Section 4.2.

The effective diffusion coefficients computed in single realizations are close to the theoretical
values but present numerical oscillations. Because the use of overshoot corrections shows that
the oscillations are not caused by numerical errors in simulations of transport, it was necessary
to analyze the accuracy of numerical generated random field.

The path decomposition introduced for the first time in this Report (Section 5.1) is an
expression of the numeric effective diffusion coefficient as function of correlations along the
trajectories staring in all points inside the solute plume, developed for several time iterations,
and of quantities M and ε, which describe the statistical properties of a given realization. In the
large time limit, the path decomposition can be interpreted as a discrete form of the effective
diffusion coefficient from the Lagrangian theory but it can not be derived from the analytic
formula because it depends on particular features of simulation with GRW.

The analysis of its statistical structure with the path decomposition method, shows that the
random field obtained with the Kraichnan generator, in first approximation, has an oscillating
mean velocity which causes the oscillations of the effective diffusion coefficient (Section 5.2).
The result illustrates the utility of this method in case analyses and in evaluation of random
field generators.

Further work should continue the present one in several directions:
- the study of numerical errors caused by overshooting, with the methods used this Report

and using a new approach, where the velocity will be represented in computer by real numbers,
and not by integer discrete values as it is in present;

- the path decomposition analysis of fields produced by different methods (Kraichnan gener-
ated hydraulic conductivities and discrete velocity field calculated by FD integration of Darcy
law, turning band method, spectral decomposition method, a.s.o.);

- simulation of diffusion in a large collection of realizations, with the most convenient meth-
ods for overshooting corrections and random field generator, will be used to study the mean and
variance of concentration field, the mean and the variance of the effective diffusion coefficient
and the validity of a large scale description of the solute transport by an effective diffusion
equation.
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Schwarze, H., Transport gelöster Stoffe in porösen Medien: Störungstheoretische Anzätze und
numerische Simulationen, PhD thesis, Berichte des Forschungszuentrum Jülich, Jül-3772,
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