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Many natural phenomena can be described by power-laws of the temporal or 
spatial correlations. The equivalent in frequency domain is the 1/f spectrum. A closer 
look at various natural data reveals more or less significant deviations from a 1/f 
characteristic. Such deviations are especially evident at low frequencies and less 
evident at high frequencies where spectra are very noisy. We exemplify such cases 
with a phenomenon offered by astrophysics. The X ray variability of the NGC 5506 
galaxy can be better approximated by AR(1) – a first order autoregressive model,  
than by a 1/f model (long-range memory). The same spectra can be more or less easily 
confused and/or approximated by power-laws. A key step to detect non-power laws in 
the spectra, already suggested by Mandelbrot, is to average out the spectra. 
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1. INTRODUCTION 

Many processes in nature exhibit temporal or spatial correlations that can be 
described by power-laws. Examples can be found in physical, biological, social and 
psychological systems [1–5]. In case of a spectral analysis, the power-law is of the 
type P = 1/f-β, where f is frequency and β is the long-range correlation exponent. Its 
value is 0 < β < 2 for most of natural processes. A 1/f spectrum is diagnosed by 
looking at the double log plot which should be linear over the whole range of 
frequency scale. The slope of the linear fit is the correlation exponent β. However, a 
general problem encountered in the spectral analysis of various fluctuating systems is 
that the spectrum is quite noisy. Mandelbrot’s recommendation that apparent 1/f 
spectra should be averaged before further interpretation [4], has often been overlooked 
including some of our previous work [6–9]. Mandelbrot considers that non-averaged 
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spectra leads to” unreliable and even meaningless results” [4]. An immediate 
consequence of the averaging procedure is that deviation from a power-law 
description of the spectra may be better disclosed. Some-times, such a deviation 
can be obvious even if the spectrum is not averaged.  

On the other hand, the non-averaged spectrum can be often reasonably fitted 
by a straight line, i.e. described by an apparent power-law. Such an example is 
illustrated in figure 1a for a heat shock protein (Protein Data Bank code: 1gme). 
The linear fit of the power spectrum appears to be reasonable good, yet it can be 
easily noticed the plateau at low frequencies (Figure 1b). A simple averaging 
procedure can result in a clear non-1/f spectrum (Figure 1b).  
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Fig. 1 – a) Non-averaged power spectrum for the atomic mobility in the backbone of a heat shock 
protein (PDB code: 1gme). The spectrum can be well approximated by a straight line which might 
suggest a long-range correlation interpretation. b) The averaged power spectrum with M = 21 terms. 
It clearly indicates the short-range correlation (deviation from linearity). PDB stands for Protein Data  
                                                   Bank, available at http://www.rcsb.org. 

Consequently, two confusions may occur when dealing with non-averaged 
spectra: either a hidden non-power-law remains undisclosed, and/or non-power-laws 
are easily misinterpreted as power-laws. This work discusses the deviation from 
power-law behavior, which is characterized by two features: leveling of the spectrum at 
low frequencies, and a tendency for leveling at high frequencies, where the shape of the 
spectrum is blurred by the high level of noise (“the Spanish moss” as coined by [4]).  

The idea of this work is twofold: first, to disclose cases of non-power-laws by 
a simple averaging of spectra (other examples from widely different areas of 
science are described in a preprint [12], and second, to offer an interpretation of 
such spectra by using an autoregressive model AR(1). This is basically different 
from a power-law description. While the meaning of a power-law is associated 
with long-range correlation or memory, the autoregressive model describes a 
system with short-range memory. The long-range memory is described in terms of 
a long-range correlation exponent β of the power law P = 1/f-β, while the short-
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range memory is characterized by the strength interaction φ among consecutive 
terms as described by an AR(1) model (see further). The literature already reported 
cases where astrophysical and psychological phenomena are described by 
autoregressive models rather than by power-laws [10–12].  

The spectral approach in the present work was done for two reasons: first, 
many results in the literature are presented in spectral form and the present work 
was born out from the observation that 1/f-like spectra show clear deviations from 
a power-low, and second, the spectral description can be easily done in an 
analytical manner. 

This paper is organized as follows: first, the main spectral features of an 
autoregressive model AR(1) are described for various interaction strengths among 
the terms of the series. Then, is analyzed an astrophysical phenomenon (X-ray 
emission of a galaxy) where a more complex calculation based on an AR(1) model 
has already been published [10]. It will be shown that an identical result is obtained 
with our more simple procedure. 

2. THE  SPECTRAL  CHARACTERISTICS  OF  THE  AUTOREGRESSIVE  MODEL 

A discrete stochastic process {Xn, n = 0, ±1, ±2, …} is called autoregressive 
process of order p, denoted AR(p), if {Xn} is stationary and for any n: 

                                           1 1 ...n n p n p nX X X Zϕ ϕ− −− − − = ,                                   (1) 

where {Zn} is a Gaussian white noise with zero mean and variance σ2. The real 
parameters φi, i = 1, .., p, can be interpreted as a measure of the influence of a 
stochastic process term on the next term after i time steps. The properties of AR(p) 
processes have been studied in detail and they are the basis of the linear stochastic 
theory of time series [13] and [14]. Equation 1 has a unique solution if the 
polynomial Φ(z) = 1−φ1z−...−φpzp has no roots z with |z| = 1. If in addition Φ(z) ≠ 1 
for all |z| > 1, then the process is causal, i.e. the random variable Xn can be expressed 
only in terms of noise values at previous moments and at the same moment.  
The spectral density of an AR(p) process is:  
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where ν is the frequency. For an AR(1) process, the spectral density in equation 2 
becomes:  
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where φ is the only parameter φi in this case. The above mentioned formulas are 
valid for ideal stochastic processes of finite length.  
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The time series found in practice have a finite length and usually they are 
considered realizations of a finite sample of an AR(1) process of infinite length. 
Therefore, the changes of the equations 2 and 3 have to be analyzed for a sample 
with finite length {Xn, n=1, 2, ..., N} extracted from an infinite process {Xn, n = 0, 
±1, ±2, ...}. A detailed analysis of the power spectrum of the AR(1) process and the 
influence of the finite length is contained in [15]. In this paper some of the main 
conclusions are discussed.  

The sample estimator of the spectral density is the periodogram:  

                                                    2( ) ( )N NI Aν ν= ,                                                  (4) 

where AN (ν) is the discrete Fourier transform of the sample:  

                                            2
1

1( )
N in

N nn
A X e

N
π νν

−
= ∑ .                                        (5) 

Since the sample contains a finite number of components, there are only N 
independent values of AN(ν) and IN(ν). Usually, these values are computed for the 
Fourier frequencies νj = j/N, where j is a integer satisfying the condition −0.5 <νj ≤ 0.5. 
The periodogram of an AR(p) process is an unbiased estimator of the spectral density:  

                                                lim ( ) 2 ( )N jN
I fν π ν

→∞
= ,                                          (6) 

where νj −0.5/N < ν ≤ νj+0.5/N [13]. Hence, increasing the sample length N, while 
the time step is kept constant, the average periodogram becomes a better 
approximation of the spectral density (equation 6). However, a single periodogram 
is not a consistent estimator, because it does not converge in probability to the 
spectral density, i.e. the standard deviation of IN (νj) does not converge to zero, and 
two distinct values of the periodogram are uncorrelated, no matter how close the 
frequencies are when they are computed.  

Usually, the spectral density and the periodogram are plotted on a log-log 
scale. The logarithmic coordinates strongly distort the shape of the graphic because 
by applying the logarithm, any neighborhood of the origin is transformed into an 
infinite length interval and the value of f(0) cannot be plotted. For a sample with N 
terms, the first value of the spectral density is obtained for the minimum frequency 
νmin = 1/N. Figure 2a shows the spectral density in equation 3 for N = 1024, σ = 1 
and different values of the parameter φ. For φ = 0.90 and especially for φ = 0.99, a 
significant part of the power spectrum is almost linear with a slope equal to −2, 
which corresponds to β = 2. A significant part of the spectrum could be regarded as 
linear for smaller value of φ (for example φ = 0.5 in figure 2a). 

In order to verify this behavior of the AR(1) spectrum, figure 2b includes the 
derivative of the spectral density from equation 3 in log-log coordinates:  

                                             ( ) (ln ( ))df f
d

ν ν ν
ν

′ = −                                            (7) 
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Fig. 2 – The spectral density (a) and the absolute value of its derivative (b) of an AR(1) process for  
N = 1024, σ = 1 and different values of the interaction factor among successive terms φ. It can be 
noticed that spectra with with larger values of φ can be easily approximated by a straight line (power  
                                       law) and therefore misinterpreted as a fractal like case. 

One can notice that for φ ≥ 0.9 there is a region where f /≅ −2. There is only a 
maximum value of f/ for φ < 0.9 which corresponds to the center of the “linear” (or 
“fractal”) region of the power spectrum.  

For small frequencies, the AR(1) spectral density is strongly stretched in log-
log coordinates such that a plateau appears (figure 2a) with a value given by:  
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From equation 3 it follows that the plateau corresponds to the small values of 
ν, when the variable term at the denominator can be neglected in comparison with 
the constant term. Using the quadratic approximation of the cosine function,  
the condition that the graph of the AR(1) power spectrum has obtained a plateau  
ν < (1−φ)/2π ϕ . If φ tends to 1, the plateau appears at smaller values of the 
frequency. Therefore, if N is large enough, the periodogram of an AR(1) sample 
has a plateau at small frequencies (if N is large, then νmin → 0).  

A time series {xn, n = 1, 2, ..., N} as a realization of a sample {Xn, n = 1, 2, ..., 
N} from an AR(1) process is considered. Applying the discrete Fourier transform 
(equation 4) to the time series {xn}, and then computing the periodogram (equation 
5), values randomly distributed around the spectral density (equation 3) of the AR(1) 
are obtained. Since the periodogram is not a consistent estimator, by increasing the 
length N of the sample, the periodogram fluctuations around the theoretical spectral 
density are not reduced. Consistent estimation of the spectral density may be 
obtained using averaging of the periodogram on intervals with length of magnitude 
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order of N  [13]. Choosing the optimum weight function is a difficult task, because, 
if the periodogram is smoothed too much, then the bias with respect to the theoretical 
spectrum can become large. From various weight functions [16] the simplest one is 
used, i.e. the averaging with equal weights on symmetric intervals containing  
M Fourier frequencies, with M = 1, 3, 5, ..., 21. Then, the averaged periodogram 
contains N − M + 1 values, because for the first and last (M − 1)/2 values of the 
periodogram the symmetric averaging can not be performed.  

Let us consider that an AR(1) model for an averaged periodogram is to be found, 
i.e. to find the values of the parameters φ and σ. The minimum of the quadratic norm of 
the difference between the averaged periodogram and the theoretical spectral density of 
the AR(1) model has to be determined. The sample standard deviation of the time 
series and φ = 0 are used as initial values for the optimization algorithm.  

3. DATA  AND  METHODS 

Different type of astrophysical objects display variability phenomena featured by 
power-law power spectra, e.g. the light curve of the 3C273 quasar. Also, the amplitude 
spectrum (in log-log plots) of the intermediate polar AE Aquarii shows a 1 slope [18], 
while the power spectrum of its radio emission time variability revealed the presence of 
a red noise described by a power-law. The X-ray variability of Cygbus X-1 system [19] 
and of Be star γ Cassiopeiae [20] is also featured by power spectra displaying 1/f 
segments. The X-ray variability of active galactic nuclei is also known to show red 
noise spectra which could be quite well fitted by power-laws [21]. Deviations from the 
simple power-law behavior are emphasized by several authors. Thus, there are 
mentioned cases [20, 22, 23, 24] in which different frequencies domains are featured 
by different slopes, or the power spectra gradually flatten toward low frequencies. 
Autoregressive analysis has been reported on the variability of X-ray light curves of the 
active Galaxy NGC5506 [10]. This analysis is compared with the present more simple 
approach, by using the same data extracted form Hearc Exosat ME archive for the 
Seyfert galaxy NGC5506.  

Many series of data have non-stationary characteristics, so the application of 
Fourier transforms to the data results in misleading spectra. A common procedure 
to avoid this complication is to use detrended fluctuation analysis (DFA) [25]. This 
results in a correlation exponent free of the correlation introduced by the trend. 
However, in our case it is essential to obtain the corresponding spectrum, as the 
shape of the spectrum gives the relevant information (either a power-law or a non-
power law is operative). Consequently, an important preliminary step is to remove 
non-stationary characteristics in the series. We performed detrending by 
subtracting a polynomial fit from the original series. The problem is to determine 
the right polynomial fit. We performed 1 to 20 degree polynomial fits and 
generally found that a polynomial degree around 10 gives the most reliable result 
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for φ and σ. The values of φ and σ also depended on the averaging procedure of the 
spectra so that optimizing the values of φ and σ involved optimizing both the 
detrending and the averaging procedures. 

The above mentioned polynomial fitting was chosen as its accuracy is 
comparable to the moving average method and to an automatic method for the estimation 
of a monotone trend. The same work also showed that polynomial fitting for a 1/f 
noise proved to have the best performance [26].  

The succession of operations can be summarized as following: i) Detrend the 
series of data by subtracting various degrees of polynomial fits; ii) Discrete Fourier 
transform of the series; iii) Periodogram averaging using 1–21 terms; iv) Fit the 
spectrum to an AR(1) model. The resulting parameters are the interaction factor φ 
and the dispersion σ. Their values depend on the degree of the polynomial fit used for 
the detrending procedure. Finally choose the values of φ and σ, by analyzing the plot 
of φ and σ against the polynomial degree and the number of averaging terms. 

4. AR(1)  FITTING  PROCEDURE  FOR  X  RAY  EMISSION  OF   
THE  NGC5506  GALAXY  

The variability of X-ray flux from galaxies has been previously described as 
flickering or 1/f fluctuation [10]. A specific problem in astronomical observations is 
the observational noise, as well as other misleading systematic effects occurring in 
power spectra. As a result, a specific model was considered in order to generalize AR 
processes and to estimate the hidden autoregressive process [10]. The model is 
known as the Linear State Space Model (LSSM) in which the observational noise is 
explicitly modeled. The results reported by König and Timmer for the first order 
process AR(1) are the parameter φ = 0.994 and the standard deviation σ = 0.722.  

König and Timmer analysis was compared with the present more simple 
approach and proved to be in a very good agreement. The data series are represented  
in Figure 3a. 

The first problem is to remove the deterministic trend that can be found by 
examining the shape of the signal. Timmer and König did not extract any 
deterministic trend in their analysis. Three different trends can be obtained by 
different polynomial fitting degrees (Figure 3b). The degree of these polynomials 
equals the minimum degree of a class of polynomial trends q, which has very 
similar shapes. When the degree of the polynomial trend increases, the shape of the 
trend does not change monotonically. At certain polynomial degrees, the trend has 
more significant changes, while for the following polynomial degrees the shape 
remains practically unchanged. The trend reduces to a constant, which equals the 
average of the temporal series when q = 0. There is no significant improvement for 
a linear trend (q = 1), while for q = 2 the polynomial trend describes the global 
shape of the signal. Only for q = 5 the polynomial trend describes the different 
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behavior of the first and last half of the signal. The polynomial trend can follow 
better the details of the signal when q = 9, however, numerical oscillations arise at 
the end, which cannot be associated with real variations. These numerical 
oscillations increase with the degree of the polynomial, therefore they were not 
considered. The choice of these four representative values for the degree of the 
polynomial trend will be quantitatively confirmed by the variation of parameters 
characterizing the autoregressive model. 

 

Fig. 3 – a) The X-ray time series of galaxy NGC5506; b) Trends of the time series obtained for three 
different polynomial fittings (0, 2, 5 and 9). The trend reduces to a constant when q = 0. For q = 2, the 
polynomial trend describes the global shape of the signal. For q = 5, the polynomial trend describes 
the different behavior of the first and last half of the signal. The polynomial trend can follow the  
                                                              details of the signal when q = 9. 

The calculation of the periodogram can not be done using equation 5, since 
there are missing data in twenty regions. The other values of the series are separated 
by time interval dt = 30s. Therefore, the series can be considered as equidistant and 
they have T = 7532 values, with 584 missing values. A zero value is assigned to 
these data, so they do not contribute in equation 5 to the value of the periodogram.  

The periodogram is presented in Figure 4a for the signal where only the mean 
value was subtracted, and in Figure 4b for averaged periodogram with M = 21 
values. It can be seen that the averaging procedure results in loosing data for the 
lower frequencies which describe the plateau of an autoregressive model.  

At frequencies higher than the cutting frequency ν0 = 0.02, the shape of the 
periodogram changes to a white noise spectrum, as it can be seen in Figure 5b. 
Then, only one part of the spectrum, for ν > ν0, can be modeled with an AR(1) 
process. The values φ = 0.991, σ = 0.757 and φ = 0.985, σ = 0.744 are obtained by 
fitting the lower frequencies part of the periodogram to an AR(1) process for the 
non-averaged and the averaged periodogram respectively. These values are very close 
to those reported by König and Timmer.  
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Fig. 4 – a) Periodogram of the time series for galaxy NGC5506. The mean value q = 0 was 
subtracted; b) The averaged periodogram using a rectangular window with M = 21 values. The 
averaging procedure results in loosing data for the low frequencies that describe the plateau of an 
autoregressive model. At frequencies higher than the cutting frequency ν0 = 0.02, the shape of the 
periodogram changes to a white noise spectrum. Only one part of the spectrum, for ν > ν0, can be  
                                                           modeled with an AR(1) process. 

As in the former example, the averaging interval of periodogram has a strong 
influence on the parameters of the AR(1) model. This dependence is shown in 
figure 5 as a function of M for different degrees of the polynomial trend. For small 
values of M, the values of φ and σ for different polynomial trends are quite different. 
Their variability for M > 9 is significantly reduced, therefore the averaging 
procedure can eliminate the fluctuation of the periodogram. This is why M = 11 is 
used in this investigation.  

 
Fig. 5 – a) Dependence of the parameters (a) φ and (b) σ for the AR(1) model on the polynomial trend 
degree (from 0 to 9) for different M values. Continuous lines represent the values reported by [10]. 
For small values of M, the values of φ and σ  for different polynomial trends are quite different. For 
M > 9, their variability is significantly reduced, so the averaging procedure can eliminate the  
                                                          periodogram of fluctuation. 
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Another parameter which has to be analyzed in order to fit an autoregressive 
model is the cutting frequency ν0. It can be noticed that at frequencies smaller than 
0.02 the periodogram presents oscillations, which can be caused by the white noise 
at higher frequencies. The dependence of the autoregressive parameters on the 
value of ν0 is presented in Figure 6. It shows that dispersion of the noise does not 
depend significantly on the periodogram interval used for the fitting procedure. 

However, for all the degrees of the polynomial trend eliminated from the 
initial signal, the value of φ decreases with the increase of ν0. Only the first two 
values are almost equal. Such a decrease can be explained by the influence of the 
observational white noise in the modeled part of the periodogram. Consequently, 
the cutting frequency was established at ν0 = 0.005. 

 
Fig. 6 – The dependence of the autoregressive parameters (a) φ and (b) σ on the degree of  

polynomial trend q. 

First, the stepwise variation at q = 2, 5 and 9 can be noticed, which corresponds 
to the discussion mentioned at the beginning of this section. Another discontinuity 
at q = 11 was no longer used, as the oscillations at the end of the interval become 
too large. Also, it can be noticed that the autoregressive parameters decrease as the 
degree of the polynomials increases. This is due to the fact that higher polynomial 
degrees can better describe the oscillations of the signal, while for lower degrees 
they are modeled by the autoregressive process. As Köning and Timmer did not 
remove any deterministic trend from the signal, a comparison with their results 
should consider the results for q = 0. The relative error for φ is 0.2% and 5% for σ, 
which confirms the spectral autoregressive modeling method of the time series 
proposed in this work. 

5. CONCLUSIONS 

We propose an AR (1) model for the description of the X ray emission from 
a galaxy. The two parameters needed for such a description of the spectrum is φ – 
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the strength of interaction among consecutive terms in the time series and the 
dispersion σ of the data. Our more simple calculation procedure resulted in similar 
results with those obtained by a more elaborate calculation. The parameter φ proved 
to be sensitive and therefore can be profitably exploited to investigate various effects 
on the fluctuating system. On the other hand, the spectrum of such an emission can 
easily be confused and/or approximated by power-laws. The most important step in 
disclosing the nature of fluctuations is to average out their spectra. Apparent 1/f 
spectra should be cautiously treated and averaging should be compulsory. The 
present method of calculation is being currently tested for other phenomena arising 
from molecular biology, cell biophysics and cognitive psychology.  
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