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Abstract We consider a mathematical model which describes the sliding frictional con-

tact between a viscoplastic body and an obstacle, the so-called foundation. The process is

quasistatic, the material’s behavior is described with a viscoplastic constitutive law with

internal state variable and the contact is modelled with normal compliance and unilateral

constraint. The wear of the contact surfaces is taken into account, and is modelled with a

version of Archard’s law. We derive a mixed variational formulation of the problem which

involve implicit history-dependent operators. Then, we prove the unique weak solvability

of the contact model. The proof is based on a fixed point argument proved in Sofonea et

al. (Commun. Pure Appl. Anal. 7:645–658, 2008), combined with a recent abstract exis-

tence and uniqueness result for mixed variational problems, obtained in Sofonea and Matei

(J. Glob. Optim. 61:591–614, 2014).
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1 Introduction

The mathematical modelling of contact phenomena is rather complex and, usually, leads

to strongly nonlinear boundary value problems. The reason arise in the fact that, as shown

in [6, 7, 13, 23, 24, 29, 31], accurate mathematical models need to take into consideration

the additional phenomena involved in contact processes. These phenomena are the friction,

the heat generation, the wear and the adhesion of contacting surfaces, among others. Wear
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is defined as the material loss or change in surface texture occurring when two surfaces of

mechanical components contact each other. As the contact process evolves, the contacting

surfaces evolve too, via their wear. Wear in sliding systems is often very slow but it is

persisting, continuous and cumulative. Its characterization represents one of the basic tasks

in the study of machine elements. Indeed, in the process of design of machine elements

and tools operating in contact conditions, engineers need to know areas of contact, contact

stresses, and they need to predict wear of rubbing elements.

Wear of contact surfaces represents a complex phenomenon. Following [10, 25], it is cus-

tomary to distinguish among the following wear types: adhesive, abrasive, contact fatigue,

freeting, oxidation, corrosion and erosion. In terms of the severity of wear on the wearing

surfaces, two broad types of wear phenomena have been mentionned in [1]: severe wear and

mild wear. Severe wear is characterized by high wear rates, extensive plastic deformation,

transfer of material to the harder counter face, and flake-like metallic wear debris. Mild wear,

by contrast, is characterized by low wear rates, minimal plastic deformation, formation of a

surface film protecting against metal-to-metal contact, and oxide wear debris.

Due to its crucial role in various technological and biomechanical processes, the wear

phenomenon subjects of numerous experimental and theoretical studies. For instance, the

evolution of wear gaps in fretting problems was studied numerically in [35], by using the

finite element method. Numerical simulations of wear shapes due to pitting phenomena for

various operating conditions have been investigated in [9], by using arguments of fracture

mechanics. A thermoelastic wheel-rail contact problem with wear has been studied in [4].

Numerical methods for wear problems with application to implanted knee joints has been

developed in [28]. An original analytical approach to wear was performed in [10]. General

models for frictional contact with wear could be find in [36, 37] as well as in the survey

[38]. The mathematical analysis of various models of frictional contact with wear, including

existence and uniqueness results of the weak solution, was carried out in [11, 12, 26–29].

A new mathematical model which describes the equilibrium of an elastic body in fric-

tional contact with a moving foundation was recently considered in [34]. There, the contact

was modeled with a normal compliance condition with unilateral constraint associated to

a sliding version of Coulomb’s law of dry friction, and the wear of the foundation was

described with a version of Archard’s law. A variational formulation of the problem was de-

rived, in a form of the system which couples a time-dependent equation for the stress field, a

time-dependent variational inequality for the displacement field and an integral equation for

the wear function. The unique weak solvability of the model was proved, by using arguments

on time-dependent variational inequalities and fixed point. This result was completed with

a convergence result which shows that the solution of a penalized frictional contact prob-

lem with wear converges to the solution of the contact model, as the penalization parameter

converges to zero.

The current paper represents a continuation of [34] and contains two main novelties. The

first one concerns the mathematical model since, in contrast with [34], we consider here that

the deformable body is viscoplastic and we model its behavior with a viscoplastic consti-

tutive law with internal state variable. The analysis of this model could be carried out by

using arguments similar to those used in [34], with a different choice of spaces and opera-

tors. Nevertheless, we choose to present here a different approach, which consists the second

novelty of this paper. Thus, in contrast with [34], we derive a mixed variational formulation

of the problem in which the unknowns are the stress field, the displacement field, the inter-

nal state variable, the wear function and the Lagrange multiplier, then we prove its unique

solvability by using a recent abstract existence result in the study of mixed variational prob-

lems, proved in [32]. Mixed variational problems involving Lagrange multipliers have been
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used both in analysis and mechanics, in the study of minimization problems. They provide

a useful framework in which a large number of problems involving unilateral constraints

can be cast and can be solved numerically. Their study is based on arguments on duality,

saddle points theory and fixed point. The literature in the field is extensive, see for instance

[3, 8, 14, 18] and the references therein. The analysis of various mixed variational problems

associated to contact models can be found in [15, 16, 19–21], for instance.

The rest of the manuscript is structured as follows. In Sect. 2 we present the notation

and some preliminary material, including a new abstract result, Thereom 2.2. In Sect. 3 we

introduce the model of sliding frictional contact with wear and list the assumption on the

data. Then, in Sect. 4 we derive its mixed variational formulation. In Sect. 5 we state and

prove our main existence and uniqueness result, Theorem 5.1, which provides the unique

solvability of the viscoplastic contact problem with wear. Finally, in Sect. 6 we present rele-

vant particular cases of our contact model and we comment on the corresponding existence

and uniqueness results. We also provide a comparison between the fixed point method used

in [34] and the Lagrange multiplier method used in the current paper. At the best of our

knowledge, these two methods represent the main functional methods used in the study of

contact problems with unilateral constraints.

2 Notations and Preliminaries

Everywhere in this paper we use the notation R+ for the set of positive real numbers and

N for the set of positive integers. Given two sets X and Y we use the notation X × Y for

their cartesian product and, (x, y) will represent a typical point of the set X × Y . All the

vector spaces considered below are real vector spaces and, for a vector space X, we use the

notation 0X for the zero element of X. In addition, if (X,‖ · ‖X) and (Y,‖ · ‖Y ) are normed

spaces, then ‖ · ‖X×Y represents the norm of the space X × Y given by

‖z‖X×Y = ‖x‖X + ‖y‖Y ∀ z = (x, y) ∈ X × Y.

We use similar notation for the product of more than two sets or spaces. For a normed

space X we use the notation C(R+;X) for the space of continuous functions defined on R+
with values in X and, for a subset K ⊂ X, we still use the symbol C(R+;K) for the set of

continuous functions defined on R+ with values in K .

Now, assume that (X,‖ · ‖X) and (Y,‖ · ‖Y ) are normed spaces and S : C(R+;X) →
C(R+;Y ). Then, we recall that the operator S is called a history-dependent operator if the

following property holds:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

For each n ∈N there exists sn ≥ 0 such that

∥

∥Su1(t) − Su2(t)
∥

∥

Y
≤ sn

∫ t

0

∥

∥u1(s) − u2(s)
∥

∥

X
ds

∀u1, u2 ∈ C(R+;X), ∀ t ∈ [0, n].

(2.1)

Note that in (2.1) and everywhere below the notation Sη(t) represents the value of the func-

tion Sη at the point t , i.e. Sη(t) = (Sη)(t). The notion of history-dependent operator was

introduced in [30] and used in a number of papers, see for instance [31] and the references

therein. Such kind of operators arise both in Functional Analysis, Theory of Partial Differ-

ential Equations and Solid Mechanics, as well. One of their main properties is given by the

following fixed point result.
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Theorem 2.1 Let (X,‖ · ‖X) be a Banach space and let S : C(R+;X) → C(R+;X) be a

history-dependent operator. Then the operator S has a unique fixed point η∗ ∈ C(R+;X).

Note that Theorem 2.1 represents a particular case of a more general result proved in

[33]. Its proof is based on the fact that, if X is a Banach space, then C(R+;X) can be

organized in a canonical way as a Fréchet space, i.e. as a complete metric space in which

the corresponding topology is induced by a countable family of seminorms.

We turn now to an abstract result which represents a consequence of Theorem 2.1 and

which will be used twice in Sect. 5 of this manuscript. Thus, we assume in what follows that

(X,‖ · ‖X) is a normed space, (Y,‖ · ‖Y ) is a Banach space and A : X → Y and G : R+ ×
X × Y → Y are given operators, which satisfy the following conditions:

{

There exists LA > 0 such that

‖Ax1 − Ax2‖Y ≤ LA‖x1 − x2‖X ∀x1, x2 ∈ X.
(2.2)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(a) There exists LG > 0 such that
∥

∥G(t, x1, y1) − G(t, x2, y2)
∥

∥

Y
≤ LG

(

‖x1 − x2‖X + ‖y1 − y2‖Y

)

∀x1, x2 ∈ X, y1, y2 ∈ Y, t ∈R+

(b) The mapping t 
→ G(t, x, y) is measurable on R+,

for any x ∈ X, y ∈ Y.

(c) The mapping t 
→ G(t,0X,0Y ) belongs to L∞(R+).

(2.3)

Theorem 2.2 Let (X,‖ · ‖X) be a normed space, (Y,‖ · ‖Y ) a Banach space and assume

that (2.2)–(2.3) hold. Then, there exists an operator S : C(R+;X) → C(R+;Y ) such that

for all functions x ∈ C(R+;X) and y ∈ C(R+;Y ), equality

y(t) = Ax(t) +
∫ t

0

G
(

s, x(s), y(s)
)

ds ∀ t ∈R+ (2.4)

holds if and only if

y(t) = Ax(t) + Sx(t) ∀ t ∈R+. (2.5)

Moreover, the operator S : C(R+;X) → C(R+;Y ) is a history-dependent operator.

Proof Let x ∈ C(R+;X) and consider the operator Λ : C(R+;Y ) → C(R+;Y ) defined by

Λτ(t) =
∫ t

0

G
(

s, x(s),Ax(s) + τ(s)
)

ds, (2.6)

for all τ ∈ C(R+;Y ) and t ∈ R+. Note that, using the assumptions (2.2)–(2.3), it follows

that the operator Λ is well defined. Moreover, it depends on x but, for simplicity, we do not

indicate explicitly this dependence.

Let τ1, τ2 ∈ C(R+;Y ) and let t ∈ R+. Then, using definition (2.6) and assumption (2.3),

we deduce that

∥

∥Λτ1(t) − Λτ2(t)
∥

∥

Y
≤

∫ t

0

∥

∥G
(

s, x(s), τ1(s) + Ax(s)
)

− G
(

s, x(s), τ2(s) + Ax(s)
)∥

∥

Y
ds

≤ LG

∫ t

0

∥

∥τ1(s) − τ2(s)
∥

∥

Y
ds. (2.7)
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This inequality combined with Theorem 2.1 shows that the operator Λ has a unique fixed

point in C(R+;Y ), denoted Sx. Moreover, combining (2.6) with equality Λ(Sx) = Sx we

deduce that Sx is the unique element of the space C(R+;Y ), which satisfies

Sx(t) =
∫ t

0

G
(

s, x(s),Ax(s) + Sx(s)
)

ds ∀ t ∈R+. (2.8)

This implies the equivalence between equalities (2.4) and (2.5), for all functions x ∈
C(R+;X) and y ∈ C(R+;Y ).

To proceed, let x1, x2 ∈ C(R+;X), n ∈ N and t ∈ [0, n]. Then, using (2.8) and taking

into account (2.2) and (2.3), we obtain that

∥

∥Sx1(t) − Sx2(t)
∥

∥

Y

≤
∫ t

0

∥

∥G
(

s, x1(s),Ax1(s) + Sx1(s)
)

− G
(

s, x2(s),Ax2(s) + Sx2(s)
)∥

∥

Y
ds

≤ LG(LA + 1)

∫ t

0

∥

∥x1(s) − x2(s)
∥

∥

X
ds + LG

∫ t

0

∥

∥Sx1(s) − Sx2(s)
∥

∥

Y
ds.

Using now the Gronwall argument we deduce that

∥

∥Sx1(t) − Sx2(t)
∥

∥

Y
≤ LG(LA + 1)enLG

∫ t

0

∥

∥x1(s) − x2(s)
∥

∥

X
ds. (2.9)

This inequality shows that (2.1) holds with sn = LG(LA + 1)enLG , which concludes the

proof. �

Note that Theorem 2.2 is important since it underlies the history-dependence feature of

the solution of the implicit integral equation (2.4). It will be usefull in the study of viscoplas-

tic constitutive laws, as explained in Sect. 5.

Next, we recall an existence and uniqueness result for mixed variational problems. To this

end, let (X, (·, ·)X,‖ · ‖X) and (Y, (·, ·)Y ,‖ · ‖Y ) be two real Hilbert spaces and we consider

two operators A : X → X, S̃ : C(R+;X) → C(R+;X), a bilinear form b : X × Y →R, two

functions f, h :R+ → X and a set Λ ⊂ Y . We assume that the following conditions hold:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(a) There exists mA > 0 such that

(Au1 − Au2, u1 − u2)X ≥ mA ‖u1 − u2‖2
X ∀u1, u2 ∈ X.

(b) There exists LA > 0 such that

‖Au1 − Au2‖X ≤ LA‖u1 − u2‖X ∀u1, u2 ∈ X.

(2.10)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

For each n ∈N there exists d̃n ≥ 0 and s̃n ≥ 0 such that

∥

∥S̃u1(t) − S̃u2(t)
∥

∥

X
≤ d̃n

∥

∥u1(t) − u2(t)
∥

∥

X
+ s̃n

∫ t

0

‖u1(s) − u2(s)‖X ds

∀u1, u2 ∈ C(R+;X), ∀ t ∈ [0, n].

(2.11)
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

b : X × Y → R is a bilinear form such that

(a) There exists Mb > 0 such that

|b(v;µ)| ≤ Mb‖v‖X‖µ‖Y ∀v ∈ X,µ ∈ Y.

(b) There exists α > 0 such that

inf
µ∈Y,µ �=0Y

sup
v∈X,v �=0X

b(v,µ)

‖v‖X‖µ‖Y

≥ α.

(2.12)

f ∈ C(R+;X), h ∈ C(R+;X). (2.13)

Λ is a closed convex unbounded subset of Y that contains 0Y . (2.14)

With these data we introduce the following evolutionary problem.

Problem 2.3 Find the functions u :R+ → X and λ :R+ → Λ such that

(

Au(t), v
)

X
+

(

S̃u(t), v
)

X
+ b

(

v,λ(t)
)

=
(

f (t), v
)

X
∀v ∈ X, (2.15)

b
(

u(t),µ − λ(t)
)

≤ b
(

h(t),µ − λ(t)
)

∀µ ∈ Λ, (2.16)

for all t ∈R+

The unique solvability of Problem 2.3 is provided in the next theorem.

Theorem 2.4 Assume (2.10)–(2.14). There exists d0 > 0 which depends only on A and b

such that, if d̃n < d0 for all positive integers n, then Problem 2.3 has a unique solution

(u, λ). Moreover, the solution satisfies u ∈ C(R+;X) and λ ∈ C(R+;Λ).

Theorem 2.4 was obtained in [32]. Its proof is based on results on generalized saddle

point problems and various estimates, combined with a fixed point argument. The smalness

assumption d̃n < d0 in the statement of Theorem 2.4 is needed when using the fixed point

argument which follows from the Banach contractions principle.

We end this section with further notation and preliminaries related to the contact model

we are interested in. We denote by S
d (d = 1,2,3) the space of second order symmetric

tensors on R
d or, equivalently, the space of symmetric matrices of order d . The inner product

and norm on R
d and S

d are defined by

u · v = uivi, ‖v‖ = (v · v)
1
2 ∀u,v ∈R

d ,

σ · τ = σijτij , ‖τ‖ = (τ · τ )
1
2 ∀σ ,τ ∈ S

d .

Also, we use the notation ‖κ‖ for the Euclidean norm of the element κ ∈R
m, where m ∈N,

and 0 for the zero element of the spaces Rd , Sd and R
m.

Let Ω ⊂ R
d (d = 1,2,3) be a bounded domain with Lipschitz continuous boundary Γ

and let Γ1, Γ2 and Γ3 be three measurable parts of Γ such that meas(Γ1) > 0. We use the

notation x = (xi) for a typical point in Ω ∪ Γ and we denote by ν = (νi) the outward unit

normal at Γ . Also, we use standard notation for the Lebesgue and Sobolev spaces associated

to Ω and Γ and, moreover, we consider the spaces

V =
{

v = (vi) ∈ H 1(Ω)d : v = 0 on Γ1

}

,

Q =
{

τ = (τij ) ∈ L2(Ω)d×d : τij = τj i

}

.
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These are real Hilbert spaces endowed with the inner products

(u,v)V =
∫

Ω

ε(u) · ε(v) dx, (σ ,τ )Q =
∫

Ω

σ · τ dx,

and the associated norms ‖ · ‖V and ‖ · ‖Q, respectively. Here ε represents the deformation

operator given by

ε(v) = (εij (v)), εij (v) = 1

2
(vi,j + vj,i) ∀v ∈ H 1(Ω)d .

Completeness of the space (V ,‖ · ‖V ) follows from the assumption meas(Γ1) > 0, which

allows the use of Korn’s inequality.

For an element v ∈ V we still write v for the trace of v on the boundary and we denote by

vν and vτ the normal and tangential components of v on Γ , given by vν = v ·ν, vτ = v−vνν.

Let Γ3 be a measurable part of Γ . Then, by the Sobolev trace theorem, there exists a positive

constant c0 which depends on Ω , Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ c0‖v‖V ∀v ∈ V. (2.17)

As in [32] we consider the space

W = {z = v|Γ3
: v ∈ V },

where v|Γ3
denotes the restriction of the trace of the element v ∈ V to Γ3. We recall that

W ⊂ H 1/2(Γ3;Rd), where H 1/2(Γ3;Rd) is the space of the restriction on Γ3 of traces on

Γ of functions of H 1(Ω)d . We denote by D the dual of the space W , and by 〈·, ·〉Γ3
the

duality pairing between D and W . Nevertheless, for simplicity, we write 〈µ,v〉Γ3
instead of

〈µ,v|Γ3
〉Γ3

, when µ ∈ D and v ∈ V .

For a regular function σ ∈ Q we use the notation σν and σ τ for the normal and the tan-

gential traces, i.e. σν = (σν) · ν and σ τ = σν −σνν. Moreover, we recall that the divergence

operator is defined by the equality Divσ = (σij,j ) and, finally, the following Green’s formula

holds:
∫

Ω

σ · ε(v) dx +
∫

Ω

Div σ · v dx =
∫

Γ

σν · v da ∀v ∈ V. (2.18)

Finally, we denote by Q∞ the space of fourth order tensor fields given by

Q∞ =
{

E = (Eijkl) : Eijkl = Ej ikl = Eklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d
}

,

and we recall that Q∞ is a real Banach space with the norm

‖E‖Q∞ = max
1≤i,j,k,l≤d

‖Eijkl‖L∞(Ω).

Moreover, a simple calculation shows that

‖Eτ‖Q ≤ d‖E‖Q∞‖τ‖Q ∀E ∈ Q∞, τ ∈ Q. (2.19)

This inequality will be used in several places, in Sect. 5.
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3 Problem Statement

The physical setting is similar to that considered in [34] and can be resumed as follows.

A viscoplastic body occupies a bounded domain Ω ⊂ R
d with a Lipschitz continuous

boundary Γ , divided into three measurable parts Γ1, Γ2 and Γ3 such that meas(Γ1) > 0

and, in addition, Γ3 is plane. The body is subject to the action of body forces of density

f 0. It is fixed on Γ1 and time-dependent surfaces tractions of density f 2 act on Γ2. On Γ3,

the body is in sliding frictional contact with a moving obstacle, the so-called foundation,

which is made of a hard material covered by a layer of soft material of thickness g. The

friction implies the wear of the foundation that we model it with a surface variable, the wear

function. Then, the classical formulation of the contact problem is the following.

Problem P Find a stress field σ : Ω ×R+ → S
d , a displacement field u : Ω ×R+ → R

d ,

an internal state variable κ : Ω × R+ → Rm and a wear function w : Γ3 × R+ → R such

that

σ̇ (t) = Eε
(

u̇(t)
)

+ G
(

σ (t),ε
(

u(t)
)

,κ(t)
)

in Ω, (3.1)

κ̇(t) = G
(

σ (t),ε
(

u(t)
)

,κ(t)
)

in Ω, (3.2)

Divσ (t) + f 0(t) = 0 in Ω, (3.3)

u(t) = 0 on Γ1, (3.4)

σ (t)ν = f 2(t) on Γ2, (3.5)

uν(t) ≤ g, σν(t) + p
(

uν(t) − w(t)
)

≤ 0,
(

uν(t) − g
)(

σν(t) + p
(

uν(t) − w(t)
))

= 0

}

on Γ3, (3.6)

−σ τ (t) = ηp
(

uν(t) − w(t)
)

n∗(t) on Γ3, (3.7)

ẇ(t) = α(t)p
(

uν(t) − w(t)
)

on Γ3, (3.8)

w(0) = 0 in Γ3, (3.9)

σ (0) = σ 0, u(0) = u0, κ(0) = κ0 in Ω. (3.10)

We now provide a brief description of the equations and conditions in Problem P . Here

and below, in order to simplify the notation, we do not indicate explicitly the dependence of

various functions on the spatial variable x.

First, (3.1) and (3.2) represent the rate-type viscoplastic constitutive law with internal

state variable in which we assume that elasticity tensor E and the constitutive functions G

and G satisfy the following conditions:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(a) E = (Eijkl) : Ω × Sd → Sd .

(b) Eijkl = Eklij = Ej ikl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.

(c) There exists mE > 0 such that

Eτ · τ ≥ mE‖τ‖2 ∀τ ∈ S
d , a.e. in Ω.

(3.11)
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(a) G : Ω × S
d × S

d ×R
m → S

d .

(b) There exists LG > 0 such that

‖G(x,σ 1,ε1,κ1) − G(x,σ 2,ε2,κ2)‖
≤ LG(‖σ 1 − σ 2‖ + ‖ε1 − ε2‖ + ‖κ1 − κ2‖)

∀σ 1,σ 2,ε1,ε2 ∈ S
d , κ1,κ2 ∈R

m, a.e. x ∈ Ω.

(c) The mapping x 
→ G(x,σ ,ε,κ) is measurable on Ω,

for any σ ,ε ∈ S
d and κ ∈R

m.

(d) The mapping x 
→ G(x,0,0,0) belongs to Q.

(3.12)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(a) G : Ω × Sd × S
d ×R

m →R
m.

(b) There exists LG > 0 such that

‖G(x,σ 1,ε1,κ1) − G(x,σ 2,ε2,κ2)‖
≤ LG(‖σ 1 − σ 2‖ + ‖ε1 − ε2‖ + ‖κ1 − κ2‖)

∀σ 1,σ 2,ε1,ε2 ∈ S
d , κ1,κ2 ∈R

m, a.e. x ∈ Ω.

(c) The mapping x 
→ G(x,σ ,ε,κ) is measurable on Ω,

for any σ ,ε ∈ S
d and κ ∈R

m.

(d) The mapping x 
→ G(x,0,0,0) belongs to L2(Ω)m.

(3.13)

Constitutive equations of the form (3.1)–(3.2) could describe both elasticity, plasticity,

creep, relaxation, hardening and softening phenomena. For this reason they have been con-

sidered in the literature in order to model the behavior of real materials like rubbers, metals,

pastes, rocks and so on. Various results and mechanical interpretation concerning constitu-

tive laws of this form may be found in [5] and [17], for instance. Here we restrict ourselves to

provide three clasical examples of such equations, with our without internal state variables.

The first example is one-dimensional and does not involve internal state variable. It is of

the form

σ̇ = Eε̇ + G(σ, ε) (3.14)

with

G(σ, ε) =

⎧

⎪

⎨

⎪

⎩

−k1F1

(

σ − f (ε)
)

if σ > f (ε),

0 if g(ε) ≤ σ ≤ f (ε),

k2F2

(

g(ε) − σ
)

if σ < g(ε).

(3.15)

Here where E > 0 is the Young modulus, k1, k2 > 0 are viscosity constants, f and g are Lip-

schitz continuous functions with g(ε) < f (ε), and F1, F2 :R+ → R are increasing functions

with F1(0) = F2(0) = 0. Note that the domain of elastic behavior of the material is charac-

terized by the inequalities g(ε) ≤ σ ≤ f (ε). Plastic deformations occur only for σ > f (ε)

in extension or for σ < g(ε) in compression. Therefore, since the yield limit (in extension

and in compression) depends on the deformation, we conclude that the model (3.14), (3.15)

represents a model with hardening.

A second example of an elastic-viscoplastic constitutive law without internal state vari-

able is Perzyna’s law given by

ε̇ = E
−1σ̇ +

1

δ
(σ −PKσ ). (3.16)

9



Here E is a fourth order tensor satisfying (3.11), E−1 denotes its inverse, δ > 0 is a viscosity

constant, K is a nonempty, closed, convex set in the space Sd of symmetric tensors and PK

represents the projection operator. Notice that in this case the function G does not depend

on ε and is given by

G(σ ,ε) = −1

δ
E(σ −PKσ ).

Since σ = PKσ iff σ ∈ K, from (3.16) we see that viscoplastic deformations occur only

for the stress tensors σ outside the set K. Thus, the set K represents the domain of elastic

behavior of the material. It is usually defined by

K =
{

σ ∈ S
d : F(σ ) ≤ 0

}

(3.17)

where F : Sd → R is a convex function such that F(0) < 0. The function F is called the

yield function and the equation F(σ ) = 0 represents the yield condition.

A concrete example of an elastic-viscoplastic constitutive law of the form (3.1), (3.2) is

given by the Perzyna’s law with internal state variable,

ε̇ = E
−1σ̇ +

1

δ
(σ −PK(κ)σ ), (3.18)

κ̇(t) =
2

3δ
‖σ − PK(κ)σ‖. (3.19)

Here PK(κ) represents the projection mapping on the von Mises convex set K(κ) defined by

equality

K(κ) =
{

σ ∈ S
d :

∥

∥σD
∥

∥ ≤ ω(κ)
√

2
}

,

σD being the deviator of σ , and ω : R → R is a given positive function. Note that, as ex-

plained in [13], the variable κ given by (3.19) represents the irreversible equivalent strain.

Equation (3.3) is the equilibrium equation and we use it here since we assume that the

process is quasistatic. Conditions (3.4) and (3.5) are the displacement boundary condition

and traction boundary condition, respectively. We assume that the densities of body forces

and surface tractions are such that

f 0 ∈ C(R+;L2(Ω)d), f 2 ∈ C(R+;L2(Γ2)
d). (3.20)

Conditions (3.6)–(3.8) were introduced and justified in [34] and, for this reason, we do

not present here in detail. We restrict ourselves to mention that (3.6) represents the contact

condition in which the normal compliance function p satisfies

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(a) p : Γ3 ×R→R+.

(b) There exists Lp > 0 such that
∣

∣p(x, r1) − p(x, r2)
∣

∣ ≤ Lp |r1 − r2|
∀ r1, r2 ∈R, a.e. x ∈ Γ3.

(c)
(

p(x, r1) − p(x, r2)
)

(r1 − r2) ≥ 0

∀ r1, r2 ∈R, a.e. x ∈ Γ3.

(d) The mapping x 
→ p(x, r) is measurable on Γ3,

for any r ∈R.

(e) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

(3.21)
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This condition was derived by assuming an additive decomposition of the normal stress into

two components which satisfy the Signorini condition in the form with a gap function and

the normal compliance contact condition with wear, respectively.

Condition (3.7) represents a sliding version of the classical Coulomb law of dry friction.

Here η represents the friction coefficient, n∗ is the unitary vector defined by

n∗(t) = −
v∗(t)

‖v∗(t)‖

where v∗ is the velocity of the foundation, supposed to be a non vanishing time-dependent

function in the plane of Γ3. This condition was derived under the assumption that the velocity

of the foundation v∗(t) is large in comparison with the tangential velocity u̇τ (t). Here, we

assume that the coefficient of friction and velocity of the foundation verify two following

conditions:

η ∈ L∞(Γ3), η(x) ≥ 0 a.e. x ∈ Γ3, (3.22)

{

v∗ ∈ C
(

R+;R3
)

and there exist v1, v2 > 0 such that

v1 ≤
∥

∥v∗(t)
∥

∥ ≤ v2 ∀ t ∈R+.
(3.23)

The differential equation (3.8) represents a version of Archard’s law which governs the

evolution of the wear function and, again, it was derived under the assumption that the

velocity of the foundation v∗(t) is large in comparison with the tangential velocity u̇τ (t).

Here

α(t) = k
∥

∥v∗(t)
∥

∥,

k being the wear coefficient, assumed to be such that

k ∈ L∞(Γ3), k(x) ≥ 0 a.e. x ∈ Γ3. (3.24)

Condition (3.9) represents the initial condition for the wear function and shows that at the

initial moment the materials involved in the process are new. Next, (3.10) represent the initial

conditions for the rest of the unknowns in which u0, σ 0, κ0 denote the initial displacement,

the initial stress field and the initial state variable, respectively. We assume in what follows

that these initial data have the regularity

u0 ∈ V, σ 0 ∈ Q, κ0 ∈ L2(Ω)m. (3.25)

Finally, we assume that

there exists θ̃ ∈ V such that θ̃ν = 1 a.e. on Γ3 (3.26)

where, we recall, θ̃ν = θ̃ · ν. This assumption concerns only the geometry of the problem

and was already used in [2], for instance. It is needed in order to derive a mixed variational

formulation to Problem P .

4 A Mixed Variational Formulation

We now derive a mixed variational formulation of Problem P . To this end, we define the

sets K ⊂ V and Λ ⊂ D, the bilinear form b : V × D → R and the function f : R+ → V by

11



equalities

K = {v ∈ V : vν ≤ 0 a.e. on Γ3}, (4.1)

Λ =
{

µ ∈ D : 〈µ,v〉Γ3
≤ 0 ∀v ∈ K

}

, (4.2)

b(v,µ) = 〈µ,v〉Γ3
, ∀v ∈ V, µ ∈ D, (4.3)

(

f (t),v
)

V
=

∫

Ω

f 0(t) · v dx +
∫

Γ2

f 2(t) · v da ∀v ∈ V, t ∈R+. (4.4)

Next, we assume that σ , u, κ and w are regular functions which verify (3.1)–(3.10). Let

t ∈ R+, v ∈ V and µ ∈ Λ. We integrate (3.1), (3.2) with initial conditions (3.10) to find that

σ (t) = Eε
(

u(t)
)

+
∫ t

0

G
(

σ (s),ε
(

u(s)
)

,κ(s)
)

ds + σ 0 − Eε(u0), (4.5)

κ(t) =
∫ t

0

G
(

σ (s),ε
(

u(s)
)

,κ(s)
)

ds + κ0. (4.6)

Moreover, we integrate (3.8) with the initial condition (3.9) to obtain

w(t) =
∫ t

0

α(s)p
(

uν(s) − w(s)
)

ds. (4.7)

Next, we use Green formula (2.18) and the equilibrium equation (3.3) to see that

(

σ (t),ε(v)
)

Q
=

(

f 0(t),v
)

L2(Ω)d
+

∫

Γ

σ (t)ν · v da ∀v ∈ V. (4.8)

We split the surface integral over Γ1, Γ2 and Γ3. Then we use the equalities v = 0 on Γ1,

σ (t)ν = f 2(t) on Γ2, σ (t)ν · v = σν(t)vν + σ τ (t) · vτ on Γ3, and definition (4.4) to obtain

that

(

σ (t),ε(v)
)

Q
=

(

f (t),v
)

V
+

∫

Γ3

(

σν(t)vν + σ τ (t) · vτ

)

da ∀v ∈ V. (4.9)

Let λ(t) ∈ D be the Lagrange multiplier defined by

〈

λ(t),z
〉

Γ3
= −

∫

Γ3

(

σν(t) + p
(

uν(t) − w(t)
))

zν da ∀z ∈ W. (4.10)

Then, taking into account (4.3) we can write

∫

Γ3

σν(t)vν da = −b
(

v,λ(t)
)

−
∫

Γ3

p
(

uν(t) − w(t)
)

vν da ∀v ∈ V (4.11)

and, combining this equality with (4.9) and (3.7) we obtain that

(

σ (t),ε(v)
)

Q
+ b

(

v,λ(t)
)

+
∫

Γ3

p
(

uν(t) − w(t)
)

vν da

+
∫

Γ3

ηp
(

uν(t) − w(t)
)

n∗(t) · vτ da =
(

f (t),v
)

V
∀v ∈ V. (4.12)
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On the other hand, (4.10), (3.6), (4.1) and (4.2) imply that λ(t) ∈ Λ. Moreover, using

(3.26) and definition (4.3) we deduce that

b
(

u(t),µ − λ(t)
)

= b
(

u(t) − gθ̃ ,µ − λ(t)
)

+ b
(

gθ̃ ,µ − λ(t)
)

=
〈

µ,u(t) − gθ̃
〉

Γ3
−

〈

λ(t),u(t) − gθ̃
〉

Γ3
+ b

(

gθ̃ ,µ − λ(t)
)

∀µ ∈ Λ.

(4.13)

In addition, the contact condition (3.6), assumption (3.26) and definitions (4.1), (4.2), (4.10)

imply that

u(t) − gθ̃ ∈ K,
〈

µ,u(t) − gθ̃
〉

Γ3
≤ 0,

〈

λ(t),u(t) − gθ̃
〉

Γ3
= 0 ∀µ ∈ Λ. (4.14)

We combine now (4.13) and (4.14) to deduce that

b
(

u(t),µ − λ(t)
)

≤ b
(

gθ̃ ,µ − λ(t)
)

∀µ ∈ Λ. (4.15)

Finally, we gather equalities (4.5)–(4.7), (4.12), and inequality (4.15) to obtain the fol-

lowing mixed variational formulation of Problem P .

Problem PV Find a stress field σ : R+ → Q, a displacement field u : R+ → V , an inter-

nal state variable κ : R+ → L2(Ω)m, a wear function w : R+ → L2(Γ3) and a Lagrange

multiplier λ :R+ → Λ such that

σ (t) = Eε
(

u(t)
)

+
∫ t

0

G
(

σ (s),ε
(

u(s)
)

,κ(s)
)

ds + σ 0 − Eε(u0), (4.16)

κ(t) =
∫ t

0

G
(

σ (s),ε
(

u(s)
)

,κ(s)
)

ds + κ0, (4.17)

w(t) =
∫ t

0

α(s)p
(

uν(s) − w(s)
)

ds, (4.18)

(

σ (t),ε(v)
)

Q
+

∫

Γ3

p
(

uν(t) − w(t)
)

vν da + b
(

v,λ(t)
)

+
∫

Γ3

ηp
(

uν(t) − w(t)
)

n∗(t) · vτ da =
(

f (t),v
)

V
∀v ∈ V, (4.19)

b
(

u(t),µ − λ(t)
)

≤ b
(

gθ̃ ,µ − λ(t)
)

∀µ ∈ Λ, (4.20)

for all t ∈R+.

Note that Problem PV represents a system which couples three nonlinear implicit integral

equations for the stress field, the internal state variable and the wear function, respectively,

with a history-dependent variational equation for displacement field, and a first-order time-

dependent variational inequality for the Lagrange multiplier.

5 Existence and Uniqueness

In this section we state and prove the following existence and uniqueness result concerning

problem PV .
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Theorem 5.1 Assume (3.11)–(3.13), (3.20)–(3.26). Then, there exists e0 > 0 which depends

only on E , Ω , Γ1 and Γ3 such that Problem PV has a unique solution (σ ,u,κ,w,λ), if

Lp(1 + ‖η‖L∞(Γ3)) < e0. Moreover, the solution satisfies

(σ ,u,κ,w,λ) ∈ C
(

R+;Q × V × L2(Ω)m × L2(Γ3) × Λ
)

. (5.1)

The proof of Theorem 5.1 will be carried out in several steps, based on the abstract

results presented in Sect. 2. To present it, we assume in what follows that (3.11)–(3.13),

(3.20)–(3.26) hold. The first step of the proof is the following.

Lemma 5.2 There exists an operator S = (S1,S2) : C(R+;V ) → C(R+;Q × L2(Ω)m)

such that for all functions u ∈ C(R+;V ) and (σ ,κ) ∈ C(R+;Q × L2(Ω)m), equalities

(4.16), (4.17) hold for all t ∈R+ if and only if

σ (t) = Eε
(

u(t)
)

+ S1u(t), (5.2)

κ(t) = S2u(t) (5.3)

for all t ∈ R+. Moreover, the operator S : C(R+;V ) → C(R+;Q × L2(Ω)m) is a history-

dependent operator.

Proof Lemma 5.2 is a direct consequence of Theorem 2.2 applied with X = V , Y = Q ×
L2(Ω)m,

Au =
(

Eε(u) + σ 0 − Eε(u0),κ0

)

,

G
(

t,u, (σ ,κ)
)

=
(

G
(

σ ,ε(u),κ
)

,G
(

σ ,ε(u),κ
))

for all u ∈ V , (σ ,κ) ∈ Q × L2(Ω)m and t ∈ R+. Indeed, it is easy to see that assumptions

(3.11)–(3.13) and (3.25) imply that the operators above are well defined and, moreover, they

satisfy conditions (2.2) and (2.3), respectively. �

The next step consists in the following result concerning the wear function.

Lemma 5.3 There exists an operator R : C(R+;V ) → C(R+;L2(Γ3)) such that for all

functions u ∈ C(R+;V ) and w ∈ C(R+;L2(Γ3)), equality (4.18) holds for all t ∈R+ if and

only if

w(t) = Ru(t) (5.4)

for all t ∈ R+. Moreover, the operator R : C(R+;V ) → C(R+;L2(Γ3)) is a history-

dependent operator.

Proof Lemma 5.3 is a direct consequence of Theorem 2.2 applied with X = V , Y = L2(Γ3),

Au = 0L2(Γ3), G(t,u,w) = α(t)p(uν − w)

for all u ∈ V , w ∈ L2(Γ3) and t ∈ R+. Indeed, it is easy to see that assumptions (3.21)–

(3.24) imply that the operators above are well defined and, moreover, they satisfy conditions

(2.2) and (2.3), respectively. �
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We now complete the statement of Lemmas 5.2 and 5.3 with some estimates concern-

ing the constants involved on the inequalities which provide the history-dependence of the

operators S and R. Let K and Mn be given by

K = (LG + LG)
(

d‖E‖Q∞ + 1
)

, (5.5)

Mn = Lp max{1, c0} max
s∈[0,n]

∥

∥α(s)
∥

∥

L∞(Γ3)
∀n ∈N. (5.6)

Then, a simple computation shows that for each n ∈N the inequalities below holds:

∥

∥Su(t) − Sv(t)
∥

∥

Q×L2(Ω)m
≤ KenK

∫ t

0

∥

∥u(s) − v(s)
∥

∥

V
ds

∀u,v ∈ C(R+;V ) ∀ t ∈ [0, n], (5.7)

∥

∥Ru(t) −Rv(t)
∥

∥

L2(Γ3)
≤ Mne

nMn

∫ t

0

∥

∥u(s) − v(s)
∥

∥

V
ds

∀u,v ∈ C(R+;V ) ∀ t ∈ [0, n]. (5.8)

We now state the following equivalence result whose proof represents a direct conse-

quence of Lemmas 5.2 and 5.3.

Lemma 5.4 Let (σ ,u,κ,w,λ) be functions with regularity (5.1). Then (σ ,u,κ,w,λ) is a

solution of Problem PV if and only if

σ (t) = Eε
(

u(t)
)

+ S1u(t), (5.9)

κ(t) = S2u(t), (5.10)

w(t) = Ru(t), (5.11)

(

Eε
(

u(t)
)

,ε(v)
)

Q
+

(

S1u(t),ε(v)
)

Q
+

∫

Γ3

p
(

uν(t) −Ru(t)
)

vν da (5.12)

+
∫

Γ3

ηp
(

uν(t) −Ru(t)
)

n∗(t) · vτ da + b
(

v,λ(t)
)

=
(

f (t),v
)

V
∀v ∈ V,

b
(

u(t),µ − λ(t)
)

≤ b
(

gθ̃ ,µ − λ(t)
)

∀µ ∈ Λ (5.13)

for all t ∈R+.

Note that the interest of Lemma 5.4 arises in the fact that it decouples the unknowns of

the Problem PV . Indeed, a careful examination of the system (5.9)–(5.13) shows that the

unknowns σ , κ and w do not appear in the system (5.12)–(5.13), which contains only the

unknowns u and λ. For this reason, the next step in the proof of Theorem 5.1 consists to

obtain the unique solvability of the system (5.12)–(5.13).

Lemma 5.5 There exists e0 > 0 which depends only on E , Ω , Γ1 and Γ3 such that if Lp(1+
‖η‖L∞(Γ3)) < e0 then there exists a unique couple of functions (u,λ) which satisfies (5.12)–

(5.13) for all t ∈ R+. Moreover,

(u,λ) ∈ C(R+;V × Λ). (5.14)
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Proof We use the Riesz representation theorem to define the operators A : V → V and

S̃ : C(R+;V ) → C(R+;V ) by equalities

(Au,v)V =
(

Eε(u),ε(v)
)

Q
∀u,v ∈ V, (5.15)

(

S̃u(t),v
)

V
=

(

S1u(t),ε(v)
)

Q
+

∫

Γ3

p
(

uν(t) −Ru(t)
)

vν da

+
∫

Γ3

ηp
(

uν(t) −Ru(t)
)

n∗(t) · vτ da ∀u ∈ C(R+;V )∀v ∈ V, t ∈R+.

(5.16)

Note that, by assumptions (3.21)–(3.23), the surface integrals in (5.16) are well defined.

With these notation it is easy to see that the variational equation (5.12) is equivalent with

(

Au(t),v
)

V
+

(

S̃u(t),v
)

V
+ b

(

v,λ(t)
)

=
(

f (t),v
)

V
∀v ∈ V. (5.17)

Therefore, to conclude the proof it is sufficient to show that there exists a unique couple of

functions (u,λ) with regularity (5.14), which satisfies (5.17) and (5.13) for all t ∈ R+. The

main ingredient in the solution of this system is Theorem 2.4 and, to this end, we check in

what follows the assumptions of this theorem.

First, using (3.11) we deduce that the operator A, defined by (5.15), verifies (2.10). Let

u1,u2 ∈ C(R+;V ), v ∈ V , n ∈ N and t ∈ [0, n]. According to definition (5.16) of operator

S̃ we have

(

S̃u1(t) − S̃u2(t),v
)

V

=
(

S1u1(t) − S1u2(t),ε(v)
)

Q

+
∫

Γ3

[

p
(

u1ν(t) −Ru1(t)
)

− p
(

u2ν(t) −Ru2(t)
)]

vν da

+
∫

Γ3

η
[

p
(

u1ν(t) −Ru1(t)
)

− p
(

u2ν(t) −Ru2(t)
)]

n∗(t) · vτ da. (5.18)

Using assumptions (3.21)–(3.23), inequality (2.17) and estimates (5.7) and (5.8) we obtain

∣

∣

(

S̃u1(t) − S̃u2(t),v
)

V

∣

∣

≤
[

c2
0Lp

(

1 + ‖η‖L∞(Γ3)

)]∥

∥u1(t) − u2(t)
∥

∥

V
‖v‖V

+
[

KenK + c0Lp

(

1 + ‖η‖L∞(Γ3)

)

Mne
nMn

]

∫ t

0

∥

∥u1(s) − u2(s)
∥

∥

V
ds‖v‖V . (5.19)

Thus,

∥

∥S̃u1(t) − S̃u2(t)
∥

∥

V

≤
[

c2
0Lp

(

1 + ‖η‖L∞(Γ3)

)]∥

∥u1(t) − u2(t)
∥

∥

V

+
[

KenK + c0Lp

(

1 + ‖η‖L∞(Γ3)

)

Mne
nMn

]

∫ t

0

∥

∥u1(s) − u2(s)
∥

∥

V
ds. (5.20)
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The previous inequality implies that the operator S̃ satisfies condition (2.11) with

d̃n = c2
0Lp

(

1 + ‖η‖L∞(Γ3)

)

(5.21)

and

s̃n = KenK + c0Lp

(

1 + ‖η‖L∞(Γ3)

)

Mne
nMn .

Next, as it was shown in [21, 22], definition (4.3), implies that the bilinear form b(·, ·)
satisfies condition (2.12), i.e. there exist constants Mb > 0 and α > 0 such that

∣

∣b(v,µ)
∣

∣ ≤ Mb‖v‖V ‖µ‖D ∀v ∈ V, µ ∈ D (5.22)

and

inf
µ∈D,µ �=0D

sup
v∈V,v �=0V

b(v,µ)

‖v‖V ‖µ‖D

≥ α. (5.23)

Finally, definition (4.4) and assumptions (3.20), (3.26) yield

f ∈ C(R+;V ) and gθ̃ ∈ V. (5.24)

The previous results allow us to apply Theorem 2.4 with X = V , Y = D and h = gθ̃ .

According to this theorem there exists d0 > 0 which depends only on E, Ω , Γ1 and Γ3 such

that, if d̃n < d0, for all positive integers n, then there exists a unique couple of functions

(u,λ) with regularity (5.14), which satisfies (5.17) and (5.13) for all t ∈R+. Denote

e0 = d0c
−2
0 (5.25)

which, clearly, depends only on E, Ω , Γ1 and Γ3. Then, it follows from (5.21) and (5.25)

that d̃n < d0 iff Lp(1 + ‖η‖L∞(Γ3)) < e0 which concludes the proof. �

We now have all ingredients to prove our main existence and uniqueness result.

Proof of Theorem 5.1 Existence. Assume that Lp(1 + ‖η‖L∞(Γ3)) < e0, where e0 is defined

by (5.25). Then, using Lemma 5.5 we deduce that there exists a unique couple of functions

(u,λ) such that (5.12)–(5.13) hold, for all t ∈ R+. Moreover, the solution has the regularity

(5.14). Next, we introduce the functions σ , κ and w defined by (5.9)–(5.11). Taking into

account assumption (3.11) and the regularity of operators S and R we conclude that the

triple (σ ,κ,w) has the regularity (σ ,κ,w) ∈ C(R+;Q × L2(Ω)m × L2(Γ3)). It follows

from here that (5.1) holds. Lemma 5.4 implies now the existence part of the theorem.

Uniqueness. The uniqueness of the solution is now a consequence of the unique solvabil-

ity of system (5.12)–(5.13), guaranteed by Lemma 5.5, combined with Lemma 5.4. �

We conclude from above that, under the assumptions of Theorem 5.1, the contact prob-

lem P has a unique weak solution. Note that inequality Lp(1 + ‖η‖L∞(Γ3)) < e0, which

guarantees the unique weak solvability of Problem PV , is verified if either the Lipschitz

constant Lp or 1+‖η‖L∞(Γ3) is small enough. Therefore, this condition represents a small-

ness condition on the normal compliance function and/or the coefficient of friction.
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6 Particular Cases

The aim of this section is twofold. The first one is to provide examples of contact problems

which represent particular cases of Problem P and whose unique weak solvability could

be obtained by using Theorem 5.1. The second one is to compare the mixed variational

formulation used in this paper with a different aproach, used in [34].

Elastic contact with wear We start by considering Problem P in the particular case when

the material is elastic, i.e. when G ≡ 0, G ≡ 0 and σ 0 = Eε(u0). The classical formulation

of this problem is the following.

Problem Pe Find a stress field σ : Ω ×R+ → S
d , a displacement field u : Ω ×R+ → R

d

and a wear function w : Γ3 ×R+ → R such that

σ (t) = Eε
(

u(t)
)

in Ω, (6.1)

Divσ (t) + f 0(t) = 0 in Ω, (6.2)

u(t) = 0 on Γ1, (6.3)

σ (t)ν = f 2(t) on Γ2, (6.4)

uν(t) ≤ g, σν(t) + p
(

uν(t) − w(t)
)

≤ 0,
(

uν(t) − g
)(

σν(t) + p
(

uν(t) − w(t)
))

= 0

}

on Γ3, (6.5)

−σ τ (t) = ηp
(

uν(t) − w(t)
)

n∗(t) on Γ3, (6.6)

ẇ(t) = α(t)p
(

uν(t) − w(t)
)

on Γ3, (6.7)

w(0) = 0 in Γ3, (6.8)

The mixed variational formulation of Problem Pe follows from Sect. 4 and can be for-

mulated as follows.

Problem PV
e . Find a stress field σ : R+ → Q, a displacement field u : R+ → V , a wear

function w :R+ → L2(Γ3) and a Lagrange multiplier λ :R+ → Λ such that

σ (t) = Eε
(

u(t)
)

, (6.9)

w(t) =
∫ t

0

α(s)p
(

uν(s) − w(s)
)

ds, (6.10)

(

σ (t),ε(v)
)

Q
+

∫

Γ3

p
(

uν(t) − w(t)
)

vν da + b
(

v,λ(t)
)

+
∫

Γ3

ηp
(

uν(t) − w(t)
)

n∗(t) · vτ da =
(

f (t),v
)

V
∀v ∈ V, (6.11)

b
(

u(t),µ − λ(t)
)

≤ b
(

gθ̃ ,µ − λ(t)
)

∀µ ∈ Λ, (6.12)

for all t ∈R+.

The unique solvability of this problem follows from Theorem 5.1, under the assumptions

(3.11), (3.20)–( 3.24), (3.26), combined with a smallness assumption of the form Lp(1 +
‖η‖L∞(Γ3)) < e0 for the coefficient of friction.
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Note that the elastic contact problem Pe was studied in [34], under the same assumptions.

There, using the set of admissible displacement fields given by

U = {v ∈ V : vν ≤ g a.e. on Γ3},

the following three-fields variational formulation of the problem was derived.

Problem P̃V
e Find a stress field σ :R+ → Q, a displacement field u :R+ → U and a wear

function w :R+ → L2(Γ3) such that

σ (t) = Eε
(

u(t)
)

, (6.13)

(

σ (t),ε(v) − ε
(

u(t)
))

Q
+

∫

Γ3

p
(

uν(t) − w(t)
)(

vν − uν(t)
)

da

+
∫

Γ3

ηp
(

uν(t) − w(t)
)

n∗(t) ·
(

vτ − uτ (t)
)

da ≥
(

f (t),v − u(t)
)

V
∀v ∈ U, (6.14)

w(t) =
∫ t

0

α(s)p
(

uν(s) − w(s)
)

ds, (6.15)

for all t ∈R+.

Then, the existence of a unique solution of the problem P̃V
e was derived in several steps,

which could be resumed as follows.

(i) In the first step it is proved that, for a given wear function w ∈ C(R+;L2(Γ3)), there

exists a unique displacement filed uw ∈ C(R+;U) such that

(

Eε
(

uw(t)
)

,ε(v) − ε
(

uw(t)
))

Q
+

∫

Γ3

p
(

uwν(t) − w(t)
)(

vν − uwν(t)
)

da

+
∫

Γ3

ηp
(

uwν(t) − w(t)
)

n∗(t) ·
(

vτ − uwτ (t)
)

da ≥
(

f (t),v − uw(t)
)

V
∀v ∈ U,

(6.16)

for all t ∈ R+.

(ii) Then, it was shown that the operator Λ : C(R+;L2(Γ3)) → C(R+;L2(Γ3)) defined by

Λw(t) =
∫ t

0

α(s)p
(

uwν(s) − w(s)
)

ds (6.17)

has a unique fixed point w∗ ∈ C(R+;L2(Γ3)).

(iii) Finally, defining u∗ and σ ∗ by equalities u∗ = uw∗ , σ ∗ = Eε(u∗), it was proved that

the triple (σ ∗,u∗,w∗) is the uniqe weak solution to Problem P̃V
e .

A brief comparasion between problems Problem PV
e and Problem P̃V

e leads to the fol-

lowing comments.

(a) Problem PV
e represents a four-fields variational formulations of the mechanical contact

problem Pe while, in contrast, Problem P̃V
e represent a three-fields variational formula-

tions of the same problem.
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(b) Problem P̃V
e involves a variational inequality with contraints, (6.14). In contrast, Prob-

lem PV
e involves a variational equation without contraints, (6.11). Removing the con-

straints in (6.14) was possible by introducing a new variable, the Lagrange multiplier λ.

Considering mixed formulations based on the Lagrange multiplier has important advan-

tages in the numerical solution of the contact problems, as explained in [14, 16, 18].

(c) Under the same assumption on the data, both Problem PV
e and Problem P̃V

e have a

unique weak solution, with the same regularity. Moreover, their solvability is guaranteed

by a smallness assumption on the coefficient of friction. Nevertheless, the question if

this assumption represents an intrinsic feature of the contact Problem Pe or it describes

a limitation of the mathematical methods used in solving the problems PV
e and P̃V

e is

left open.

(d) The solution of Problem P̃V
e is based on arguments of time-dependent variational in-

equalities of the first kind, combined with the fixed point argument provided by Theo-

rem 2.1. In contrast, the solution of Problem PV
e is based on the more elaborate result

provided by Theorem 2.4, which already integrates a fixed point argument.

(e) The equivalence between Problems PV
e and Problem P̃V

e represents an open question.

As far as this equivalence is not proved, we conclude that a contact problem could have

different variational formulations and, therefore, the concept of weak solution for such

a problem is not an intrinsic one.

Viscoplastic contact with normal compliance and unilateral constraint We now con-

sider Problem P in the particular case when the material is viscoplastic, without internal

state variable, the contact is frictionless and the wear of the contact surfaces in neglecting.

Therefore, we take G ≡ 0, η ≡ 0 and α ≡ 0 to obtain the following contact model.

Problem Pvp Find a stress field σ : Ω ×R+ → S
d and a displacement field u : Ω ×R+ →

R
d such that

σ̇ (t) = Eε
(

u̇(t)
)

+ G
(

σ (t),ε
(

u(t)
))

in Ω, (6.18)

Divσ (t) + f 0(t) = 0 in Ω, (6.19)

u(t) = 0 on Γ1, (6.20)

σ (t)ν = f 2(t) on Γ2, (6.21)

uν(t) ≤ g, σν(t) + p
(

uν(t)
)

≤ 0,
(

uν(t) − g
)(

σν(t) + p
(

uν(t)
))

= 0

}

on Γ3, (6.22)

σ τ (t) = 0 on Γ3, (6.23)

σ (0) = σ 0, u(0) = u0 in Ω. (6.24)

Problem Pvp was considered in [2]. There, besides the unique solvability of the problem,

the continuous dependence of the weak solution with respect to both the normal compliance

function and the penetration bound was proved. Numerical simulations which provide a

numerical evidence of this continuous dependence result were also perfomed.

Signorini frictionless problem with gap We finally consider Problem Pvp in the particu-

lar case when the material is elastic and the normal compliance vanishes. Therefore, taking

G ≡ 0, p ≡ 0 and σ = E(εu0) in (6.18)–(6.24) we obtain the following contact model.
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Problem PS Find a stress field σ : Ω ×R+ → S
d and a displacement field u : Ω ×R+ →

R
d such that

σ = Eε
(

u(t)
)

in Ω, (6.25)

Divσ (t) + f 0(t) = 0 in Ω, (6.26)

u(t) = 0 on Γ1, (6.27)

σ (t)ν = f 2(t) on Γ2, (6.28)

uν(t) ≤ g, σν(t) ≤ 0,
(

uν(t) − g
)

σν(t) = 0

}

on Γ3, (6.29)

σ τ (t) = 0 on Γ3, (6.30)

Note that Problem PS represents the time-dependent version of the famous Signorini

frictionless contact problem, see for instance [29] and the references therein. The mixed

variational method presented in this paper could be applied to in the study of Problems Pvp

and PS in order to provide the unique solvability of these problems. It also provides the

background for their numerical simulations.
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