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Abstract
We consider a mathematical model which describes the quasistatic con-

tact between a viscoelastic body and a deformable obstacle, the so-called
foundation. The material’s behaviour is modelled with a viscoelastic con-
stitutive law with long memory. The contact is frictionless and is defined
using a multivalued normal compliance condition. We present a regular-
ization method in the study of a class of variational inequalities involving
history-dependent operators. Finally, we apply the abstract results to
analyse the contact problem.
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I. Introduction
In this paper we introduce two novelties that we describe in what follows.
First, we state and prove an abstract regularization result for a class of history-
dependent variational inequalities in Hilbert spaces. More exactly, we continue
the analysis provided in [1, Section 2.2.3], where regularization arguments are
used to prove the unique solvability of the following variational inequality

u ∈ X, (Au, v − u)X + j(v)− j(u) ≥ (f, v − u)X , for all v ∈ X.

Here (X, (·, ·)X , ∥ · ∥X) denotes a real Hilbert space, A : X → X is a Lipschitz
continuous and strongly monotone operator, j : X → R is a convex, lower-
semicontinuous functional and f ∈ X. With respect to [1] we study the unique
solvability of the following history-dependent variational inequality

(Au(t), v − u(t))X + (Su(t), v − u(t))X (1.1)
+ j(v)− j(u(t)) ≥ (f(t), v − u(t))X for all v ∈ X
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using a regularization method involving Gâteaux differentiable functionals.
Here, both the data and the solution u depend on the time variable t ∈ [0, T ],
where T > 0. Moreover, concerning the operator S, the current value Su(t)
at moment t depends on the history of the values of u at moments 0 ≤ s ≤ t.
Its presence implies the use of Gronwall’s inequality or Lebesgue’s convergence
theorem.

We consider a contact problem which describes the frictionless contact be-
tween a viscoelastic body and a deformable foundation. We model the material’s
behaviour with a constitutive law with long memory of the

form

σ(t) = Aε(u(t)) +

∫ t

0

B(t− s)ε(u(s))ds (1.2)

where u denotes the displacement field, σ represents the stress tensor, ε(u)
is the linearized strain tensor, A is the elasticity operator and B represents the
relaxation tensor. Moreover, we assume that the contact process is quasistatic
and we study it in the interval of time [0, T ]. Finally, we use a multivalued
normal compliance condition to describe the contact process in normal direction.

This mathematical model was considered in [2]. There, the variational for-
mulation was derived and unique weak solvability was proved. Moreover, the
weak solution was approximated using a penalty method. Also, in [3] the depen-
dence of the solution with respect to the data was studied and a fully discrete
scheme was introduced. In addition, an optimal order error estimate was derived
and numerical simulations were provided for a two-dimensional test problem.

The second novelty of the paper arises from the fact that we analyse the weak
solvability of contact problem using regularization arguments. With respect to
[2,3] we introduce a regularized contact problem where a single-valued normal
compliance condition, including a regularization parameter, is considered. We
prove that the weak solution of the regularized problem converges to the weak
solution of the original contact problem, as the regularization parameter goes
to zero. To this end, we apply the abstract regularization results obtained in
the study of (1.1).

Next, we recall that general results on analysis of various classes of varia-
tional inequalities, including existence, uniqueness and regularity, can be found
in [4-9]. The numerical analysis of variational inequalities, including solution
algorithms and error estimates, was treated in [10, 11] and also in [12, 13].
Additional results on optimal control of variational inequalities can be found
in [14]. An early attempt to study contact problems within the framework of
variational inequalities was made in [15]. The variational analysis of contact
models is given in [1, 9, 13, 16, 17]. There, the mathematical analysis of contact
problems is provided, including existence and uniqueness results of the weak
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solution. Numerical analysis of contact models, including the study of fully dis-
crete scheme, error estimates and numerical simulations, can be found in [12, 13,
17, 18]. An excellent reference in the study of frictional contact associated with
heat generation, material damage, wear and adhesion of contacting surfaces is
[19].

The rest of the paper is structured as follows. In Section 2 we describe the
classical formulation of the model and list the assumptions on the data. In Sec-
tion 3 we introduce the regularized problem and derive the weak formulations.
Then, we state our main existence, uniqueness and convergence result, Theorem
3.1. In Section 4 we provide the abstract problem and recall its unique solvabil-
ity obtained in [20]. Then we consider the associated regularized problem and
state our main abstract result, Theorem 4.3. The proof of this theorem is given
in Section 5. Finally, in Section 6 we illustrate the use of abstract arguments in
the proof of Theorem 3.1.

2. A viscoelastic contact problem
In this section we introduce the classical formulation of the contact problem and
list the assumptions on the data. First of all, we present the notation we shall
use and preliminaries related to the contact model. More exactly, we denote by
Sd(d = 1, 2, 3) the space of second-order symmetric tensors on Rd and we define
the following inner products and norms

u · v = uivi, ∥v∥ = (v · v) 1
2 for all u,v ∈ Rd

σ · τ = σijτij , ∥τ∥ = (τ · τ ) 1
2 for all σ, τ ∈ Sd

Let Ω ⊂ Rd be a bounded domain with Lipschitz continuous boundary Γ and
let Γ1,Γ2 and Γ3 be three measurable parts of Γ such that meas (Γ1) > 0. We
use the notation x = (xi) for a typical point in Ω∪Γ and we denote by v = (vi)
the outward unit normal at Γ. The indices i, j, k, l run between 1 and d and
the summation convention over repeated indices is used. An index that follows
a comma represents the partial derivative with respect to the corresponding
component of the spatial variable, e.g. ui,j = ∂ui/∂xj . Moreover, we consider
the Hilbert spaces

V =
{
v = (vi) ∈ H1(Ω)d : v = 0 on Γ1

}
Q =

{
τ = (τij) ∈ L2(Ω)d×d : τij = τji

}
endowed with the inner products

(u,v)V =

∫
Ω

ε(u) · ε(v)dx, (σ, τ )Q =

∫
Ω

σ · τdx

and the associated norms ∥ · ∥V and ∥ · ∥Q, respectively. Here ε represents
the deformation operator given by
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ε(v) = (εij(v)) , εij(v) =
1

2
(vi,j + vj,i) for all v ∈ H1(Ω)d.

For an element v ∈ V we still write v for the trace of v on the boundary and
we denote by vν and vτ the normal and tangential components of v on Γ, given
by vν = v · v,vτ = v − vνv. We recall that there exists a positive constant c0
such that

∥v∥L2(Γ3)
d ≤ c0∥v∥V for all v ∈ V. (2.1)

For a function σ ∈ Q we use the notation σν and στ for the normal and
tangential traces, i.e. σν = (σv) · v and στ = σv − σνv.

We denote by Q∞ the space of fourth-order tensor fields given by

Q∞ = {E = (Eijkl) : Eijkl = Ejikl = Eklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d}

and it is a real Banach space with the norm

∥E∥Q∞ = max
1≤i,j,k,l≤d

∥Eijkl∥L∞(Ω)

Moreover,

∥Eτ∥Q ≤ d∥E∥Q∞∥τ∥Q, for all E ∈ Q∞, τ ∈ Q. (2.2)

We present the physical setting of the problem. A viscoelastic body occupies
the bounded domain Ω described above. The body is subjected to the action
of body forces of density f0. We also assume that it is fixed on Γ1 and surface
tractions of density f2 act on Γ2. On Γ3 the body is in frictionless contact with
a deformable foundation. The contact process is quasistatic and we study it in
the interval of time [0, T ].

The classical formulation of the contact problem is the following.
Problem Q. Find a displacement field u : Ω × [0, T ] → Rd and a stress field
σ : Ω× [0, T ] → Sd such that

σ(t) = Aε(u(t)) +

∫ t

0

B(t− s)ε(u(s))ds in Ω (2.3)

Divσ(t) + f0(t) = 0 in Ω (2.4)
u(t) = 0 on Γ1 (2.5)

σ(t)v = f2(t) on Γ2 (2.6)
στ (t) = 0 on Γ3 (2.7)

and there exists ξ : Ω× [0, T ] → R which satisfies
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σν(t) + p (uν(t)) + ξ(t) = 0
0 ≤ ξ(t) ≤ F
ξ(t) = 0 if uν(t) < 0
ξ(t) = F if uν(t) > 0

 on Γ3 (2.8)

for all t ∈ [0, T ].
Next, we give a short description of Problem Q and list the assumptions on the
data. Here and below we do not indicate explicitly the dependence of various
functions on the spatial variable x. Equation (2.3) represents
the viscoelastic constitutive law with long memory introduced in Section 1. The
operators A and B verify the following conditions

(a) $\mathcal{A}: \Omega \times \mathbb{S}^{d} \rightarrow \mathbb{S}^{d}$.
(b) There exists $L_{\mathcal{A}}>0$ such that

$\left\|\mathcal{A}\left(\boldsymbol{x}, \boldsymbol{\varepsilon}_{1}\right)-\mathcal{A}\left(\boldsymbol{x}, \boldsymbol{\varepsilon}_{2}\right)\right\| \leq L_{\mathcal{A}}\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|$
for all $\boldsymbol{\varepsilon}_{1}, \boldsymbol{\varepsilon}_{2} \in \mathbb{S}^{d}$, almost every $\boldsymbol{x} \in \Omega$.

(c) There exists $m_{\mathcal{A}}>0$ such that
$\left(\mathcal{A}\left(\boldsymbol{x}, \boldsymbol{\varepsilon}_{1}\right)-\mathcal{A}\left(\boldsymbol{x}, \boldsymbol{\varepsilon}_{2}\right)\right) \cdot\left(\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right) \geq m_{\mathcal{A}}\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|^{2}$

for all $\boldsymbol{\varepsilon}_{1}, \boldsymbol{\varepsilon}_{2} \in \mathbb{S}^{d}$, almost every $\boldsymbol{x} \in \Omega$.
(d) The mapping $\boldsymbol{x} \mapsto \mathcal{A}(\boldsymbol{x}, \boldsymbol{\varepsilon})$ is measurable on $\Omega \quad$ for all $\boldsymbol{\varepsilon} \in \mathbb{S}^{d}$.
(e) The mapping $\boldsymbol{x} \mapsto \mathcal{A}(\boldsymbol{x}, \mathbf{0})$ belongs to $Q$.

$\mathcal{B} \in C\left([0, T] ; \mathbf{Q}_{\infty}\right)$.

Various examples and mechanical interpretation concerning constitutive laws
in solid mechanics can be found in [1, 16, 19]. Equation (2.4) represents the
equation of equilibrium in which Div denotes the divergence operator for tensor-
valued functions

Divσ = σij,j for all σ ∈ Q.

Conditions (2.5) and (2.6) are the displacement boundary condition and
traction boundary condition, respectively. We assume that the densities of body
forces and surface tractions have regularity

f0 ∈ C
(
[0, T ];L2(Ω)d

)
, f2 ∈ C

(
[0, T ];L2 (Γ2)

d
)
. (2.11)

Equation (2.7) represents the frictionless condition. Frictionless contact
problems were considered, for example, in [1, 19, 21].

Next, (2.8) is the contact condition in which σν denotes the normal stress
and uν is the normal displacement. Moreover, the functions p and F satisfy
(a) p : R → R+.
(b) There exists Lp > 0 such that

|p (r1)− p (r2)| ≤ Lp |r1 − r2| for all r1, r2 ∈ R (2.12)

(c) (p (r1)− p (r2)) (r1 − r2) ≥ 0 for all r1, r2 ∈ R.
(d) p(r) = 0 iff r ≤ 0.
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F ∈ L∞ (Γ3) , F (x) ≥ 0 almost every x ∈ Γ3. (2.13)

This condition can be derived in the following way. Let t ∈ [0, T ]. We
consider that the normal stress has an additive decomposition of the form

σv(t) = σD
v (t) + σM

v (t) on Γ3, (2.14)

in which σD
ν (t) describes the deformability of foundation and σM

ν (t) describes
the rigidity. We assume that σD

ν (t) satisfies a normal compliance contact con-
dition

−σD
v (t) = p (uv(t)) on Γ3. (2.15)

We recall that the normal compliance contact condition was first used in [22]
and the term normal compliance was first introduced in [23,24].

Finally, σM
v (t) satisfies{ ∣∣σM

v (t)
∣∣ ≤ F, σM

v (t) = 0 if uv(t) < 0,
−σM

v (t) = F if uv(t) > 0
on Γ3. (2.16)

We combine (2.14)-(2.16) and write −σM
v (t) = ξ(t) to obtain (2.8). A version

of this condition including unilateral constraints was used in [2,3].

Figure I. Representation of the contact condition (2.8)

We present additional details of the contact condition (2.8) which is depicted
in Figure 1. We assume that at a given moment t there is a separation between
the body and the foundation, i.e. uv(t) < 0. Then, (2.12) part (d) and (2.8)
show that σν(t) = 0, i.e. the reaction of foundation vanishes. Assume now that
at the moment t there is penetration, i.e. uν(t) > 0. Then, (2.8) yields

−σv(t) = p (uv(t)) + F. (2.17)

This equality implies that, at the moment t, the reaction of the foundation
depends on the penetration and represents a normal compliance-type condi-
tion. Moreover, (2.8) shows that if at the moment t we have penetration, then
−σν(t) ≥ F . Indeed, if uν(t) > 0, then (2.17) holds and this implies that
−σν(t) ≥ F . We conclude that if −σν(t) < F , then there is no penetration and
F represents a yield limit of the normal pressure, under which the penetration
is not possible. This kind of behaviour characterizes a rigid-elastic foundation.

In conclusion, condition (2.8) shows that when there is a separation be-
tween the body’s surface and the foundation then the normal stress vanishes;
the penetration occurs only if the normal stress reaches the critical value F ;
when there is penetration, the contact follows a multivalued normal compliance
contact condition. It can be interpreted physically as follows. The foundation
is assumed to be made of a rigid-elastic material which allows penetration, but
only if the normal stress arrives to the yield limit F .
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3. Variational formulation and regularization of
Problem Q
In this section we derive the variational formulation of Problem Q. Moreover,
we consider a regularized problem and state an existence, uniqueness and con-
vergence result. To this end, let t ∈ [0, T ], ρ > 0 and v ∈ V be given. We
assume in what follows that ( u,σ ) are sufficiently regular functions that sat-
isfy (2.3)-(2.8). We recall the following Green’s formula

∫
Ω

σ(t) · ε(v)dx+

∫
Ω

Divσ(t) · vdx =

∫
Γ

σ(t)v · vda for all v ∈ V (3.1)

Next, we take v := v − u(t) in (3.1) and use (2.4) to see that

∫
Ω

σ(t) · (ε(v)− ε(u(t)))dx =

∫
Ω

f0(t) · (v − u(t))dx+

∫
Γ

σ(t)v · (v − u(t))da.

We split the surface integral over Γ1,Γ2 and Γ3 and taking into account (2.7)
we obtain

∫
Ω

σ(t) · (ε(v)− ε(u(t)))dx =

∫
Ω

f0(t) · (v − u(t))dx (3.2)

+

∫
Γ2

f2(t) · (v − u(t))da+

∫
Γ3

σv(t) (vv − uv(t)) da

We use (2.8) and assumption (2.13) to deduce that

F
(
v+v − u+

v (t)
)
≥ ξ(t) (vv − uv(t)) on Γ3, (3.3)

where r+ = max{r, 0} for all r ∈ R. We again use (2.8) and (3.3) to find
that

∫
Γ3

σν(t) (vν − uν(t)) da (3.4)

≥ −
∫
Γ3

p (uν(t)) (vν − uν(t)) da−
∫
Γ3

F
(
v+ν − u+

ν (t)
)
da

We apply Riesz representation theorem to define the function f : [0, T ] → V
by

(f(t),v)V = (f0(t),v)L2(Ω)d + (f2(t),v)L2(Γ2)
d for all v ∈ V. (3.5)

It follows from (2.11) that this function has regularity
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f ∈ C([0, T ];V ). (3.6)

Finally, we combine equality (3.2), inequality (3.4), constitutive law (2.3)
and (3.5) to obtain the following variational formulation of Problem Q.

Problem QV . Find a displacement field u : [0, T ] → V such that, for all
t ∈ [0, T ], the following inequality holds:

(Aε(u(t)), ε(v)− ε(u(t)))Q +

(∫ t

0

B(t− s)ε(u(s))ds, ε(v)− ε(u(t))

)
Q

(3.7)

+

∫
Γ3

p (uv(t)) (vv − uv(t)) da+

∫
Γ3

F
(
v+v − u+

v (t)
)
da ≥ (f(t),v − u(t))V for all v ∈ V

The previous variational formulation leads to a history-dependent variational
inequality involving a nondifferentiable term. To avoid this difficulty, we use a
regularity procedure. Moreover, condition (2.8) can be written in the following
equivalent form

σν(t) + p (uν(t)) + ξ(t) = 0
0 ≤ ξ(t) ≤ F

ξ(t) = F
u+
ν (t)

|uν(t)| =
F
2

(
1 + uν(t)

|uν(t)|

)
if uν(t) ̸= 0

 on Γ3. (3.8)

Replacing the non-differentiable absolute value |uv(t)| we obtain the follow-
ing regularized contact problem.

Problem Qρ. Find a displacement field uρ : Ω × [0, T ] → Rd and a stress
field σρ : Ω× [0, T ] → Sd such that

σρ(t) = Aε (uρ(t)) +

∫ t

0

B(t− s)ε (uρ(s)) ds in Ω (3.9)

Divσρ(t) + f0(t) = 0 in Ω (3.10)
uρ(t) = 0 on Γ1 (3.11)

σρ(t)v = f2(t) on Γ2 (3.12)
σρτ (t) = 0 on Γ3 (3.13)

σρv(t) + p (uρv(t)) +
F

2

(
1 +

uρv(t)√
uρv(t)2 + ρ2

)
= 0 on Γ3 (3.14)

for all t ∈ [0, T ].
Note that here and below uρν is the normal component of the displacement
field uρ and σρν ,σρτ represent the normal and tangential components of the
stress tensor σρ, respectively. The equations and boundary conditions in prob-
lem (3.9)-(3.14) have a similar interpretation as those in problem (2.3)-(2.8).
The difference arises in the fact that here we replace the multivalued normal
compliance contact condition (2.8) with the single-valued normal compliance
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condition (3.14). In this condition ρ represents a regularization parameter. We
recall that regularizations of Coulomb friction law were considered in [16,25].

Using similar arguments as those used in the case of Problem Q, we obtain
the following variational formulation of Problem Qρ.
Problem QV

ρ . Find a displacement field uρ : [0, T ] → V such that, for all
t ∈ [0, T ], the following equality holds:

(Aε (uρ(t)) , ε(v))Q +

(∫ t

0

B(t− s)ε (uρ(s)) ds, ε(v)

)
Q

(3.15)

+

∫
Γ3

p (uρv(t)) vvda+

∫
Γ3

F

2

1 +
uρv(t)√

u2
ρv(t) + ρ2

 vvda = (f(t),v)V for all v ∈ V

We have the following existence, uniqueness and convergence result.
Theorem 3.1 Assume that (2.9)-(2.13) hold. Then:
(1) Problem QV has a unique solution u ∈ C([0, T ];V );
(2) for each ρ > 0 Problem QV

ρ has a unique solution uρ ∈ C([0, T ];V );
(3) the solution of Problem QV

ρ converges to the solution of Problem QV , that
is

∥uρ(t)− u(t)∥V → 0 as ρ → 0 (3.16)

for all t ∈ [0, T ].
The convergence result (3.16) is important from a mechanical point of view.
More exactly, it shows that the weak solution of viscoelastic contact problem
with multivalued normal compliance contact condition may be approached as
closely as one wishes by the solution of a viscoelastic contact problem with
single-valued normal compliance condition, with a sufficiently small regular-
ization parameter. Note that convergence (3.16) above is understood in the
following sense: for each t ∈ [0, T ] and for every sequence {ρn} ⊂ R+converging
to zero as n → ∞ we have uρn

(t) → u(t) as n → ∞. The proof of Theorem
3.1 is given in Section 6. To this end, we use the abstract result introduced in
Section 4 and proved in Section 5.

4. Abstract problem
In this section we state our main abstract result, Theorem 4.3. It represents
an extension of Theorem 2.12 of [1] to a class of history-dependent variational
inequalities. We consider a real Hilbert space X with inner product (·, ·)X
and associated norm ∥ · ∥X and we use notation C([0, T ];X) for the space of
continuous functions defined on [0, T ] with values in X. Moreover, let A : X →
X,S : C([0, T ];X) → C([0, T ];X) be two operators, let the functional j : X → R
and the function f : [0, T ] → X. We assume in what follows that A is a strongly
monotone and Lipschitz continuous operator.
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
(a) There exists mA > 0 such that
(Au1 −Au2, u1 − u2)X ≥ mA ∥u1 − u2∥2X
for all u1, u2 ∈ X.

(b) There exists MA > 0 such that
∥Au1 −Au2∥X ≤ MA ∥u1 − u2∥X for all u1, u2 ∈ X.

(4.1)

Moreover, we assume that operator S satisfies the following condition.

There exists LS > 0 such that (4.2)

∥Su1(t)− Su2(t)∥X ≤ LS

∫ t

0
∥u1(s)− u2(s)∥X ds

for all u1, u2 ∈ C([0, T ];X), for all t ∈ [0, T ].

Finally, we suppose that

j : X → R is a convex lower semicontinuous function (4.3)

and

f ∈ C([0, T ];X). (4.4)

We consider the following problem.
Problem P. Find a function u : [0, T ] → X such that, for all t ∈ [0, T ], the
following inequality holds:

(Au(t), v − u(t))X + (Su(t), v − u(t))X (4.5)
+ j(v)− j(u(t)) ≥ (f(t), v − u(t))X for all v ∈ X

Following the terminology introduced in [1, 20] we refer to operator S, which
satisfies (4.2), as a historydependent operator. In addition, we refer to (4.5) as
a history-dependent variational-inequality.

The unique solvability of Problem P is provided by the following existence
and uniqueness result.
Theorem 4.1 Let X be a Hilbert space and assume that (4.1)-(4.4) hold. Then,
Problem P has a unique solution u ∈ C([0, T ];X).

Theorem 4.1 was proved in [20] by using fixed-point arguments. It represents
a crucial tool in studying the weak solvability of a large number of contact
problems. We send the reader to [1] for more details.

In the particular case j ≡ 0 we have the following consequence of Theorem
4.1.
Corollary 4.2 Let X be a Hilbert space and assume that (4.1)-(4.2) and (4.4)
hold. Then, there exists a unique function u ∈ C([0, T ];X) which satisfies the
following equality

(Au(t), v)X + (Su(t), v)X = (f(t), v)X for all v ∈ X.
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Let ρ > 0 be a parameter. In order to formulate the regularized problem
associated to Problem P we consider the following family of functionals (jρ)
which satisfies

{
(a) jρ : X → R is convex Gâteaux differentiable, for each ρ > 0.
(b) ∇jρ : X → X is a Lipschitz continuous operator, for each ρ > 0.

(4.6)

 There exists G : R+ → R+such that
(a) |jρ(v)− j(v)| ≤ G(ρ) for all v ∈ X, for each ρ > 0.
(b) limρ→0 G(ρ) = 0.

(4.7)

The assumption made in (4.7) requires the functional j to be approached by a
sequence of more regular functionals ( jρ ), since they are Gateaux differentiable.
Next, we consider the following problem.
Problem Pρ. Find uρ ∈ C([0, T ];X) such that, for all t ∈ [0, T ], equality below
holds

(Auρ(t), v)X + (Suρ(t), v)X + (∇jρ (uρ(t)) , v)X = (f(t), v)X for all v ∈ X
(4.8)

We have the following existence, uniqueness and convergence result.
Theorem 4.3 Let X be a Hilbert space and assume that (4.1)-(4.4), (4.6) and
(4.7) hold. Then:
(1) for each ρ > 0 Problem Pρ has a unique solution;
(2) the solution of Problem Pρ converges to the solution of Problem P, that is

∥uρ(t)− u(t)∥X → 0 as ρ → 0 (4.9)

for all t ∈ [0, T ].
The main feature of Theorem 4.3 consists of showing that the solution of

an ’irregular’ history-dependent inequality may be approached as limit of the
solutions of ’regular’ history-dependent variational equalities.

5. Proof of Theorem 4.3

In this section we give in several steps the proof of Theorem 4.3. First of all,
we provide the unique solvability of (4.8).

Lemma 5.1 For each ρ > 0 there exists a unique function uρ ∈ C([0, T ];X)
which satisfies (4.8) for all t ∈ [0, T ].

Proof. Let ρ > 0. Taking into account assumption (4.6) we have that ∇jρ
is a monotone operator on X. Moreover, using (4.1) and (4.6) we deduce that
the operator Aρ : X → X defined by

Aρv := Av +∇jρ(v) for all v ∈ X (5.1)
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is a strongly monotone and Lipschitz continuous operator on X. Lemma 5.1
is now a consequence of Corollary 4.2.

Next, we consider the following intermediate problem.
Problem P̃ρ. Find ũρ : [0, T ] → X such that, for all t ∈ [0, T ], the following
equality holds:

(Aũρ(t), v)X + (Su(t), v)X + (∇jρ (ũρ(t)) , v)X = (f(t), v)X for all v ∈ X.
(5.2)

Note that the difference between (4.8) and (5.2) arises in the fact that in
(5.2) the operator S is applied to a known function u, which is the solution of
(4.5). Thus, equality (5.2) is a time-dependent variational equality. In contrast,
(4.8) is a history-dependent variational equality, since the operator S is applied
to the unknown function uρ.

We have the following existence and uniqueness result.
Lemma 5.2 For each ρ > 0 there exists a unique function ũρ ∈ C([0, T ];X)
which satisfies (5.2) for all t ∈ [0, T ].

Proof. In addition to the operator Aρ, given in (5.1), we define the function
f̃ : [0, T ] → X by equality

(f̃(t), v)X := (f(t), v)X + (Su(t), v)X for all v ∈ X, t ∈ [0, T ].

We use assumptions (4.2), (4.4) and Corollary 4.2 to conclude the proof.
The next step is provided by the following weak convergence result.

Lemma 5.3 For each t ∈ [0, T ] the sequence {ũρ(t)} converges weakly to u(t),
i.e.

ũρ(t) ⇀ u(t) in X as ρ → 0. (5.3)

Proof. Let ρ > 0 and t ∈ [0, T ]. We use (5.2) with v := v − ũρ(t) to obtain

(Aũρ(t), v − ũρ(t))X + (Su(t), v − ũρ(t))X
+ (∇jρ (ũρ(t)) , v − ũρ(t))X = (f(t), v − ũρ(t))X for all v ∈ X. (5.4)

Moreover, taking into account assumption (4.6) we deduce that

(Aũρ(t), v − ũρ(t))X + (Su(t), v − ũρ(t))X (5.5)
+ jρ(v)− jρ (ũρ(t)) ≥ (f(t), v − ũρ(t))X for all v ∈ X.

We now take v := 0X in (5.5) and using assumption (4.7) we have

(Aũρ(t), ũρ(t))X ≤ − (Su(t), ũρ(t))X (5.6)
+j (0X)− j (ũρ(t)) + (f(t), ũρ(t))X + 2G(ρ).
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Assumption (4.3) implies that the functional j is bounded below by an affine
function, i.e there exists w ∈ X and α ∈ R, which do not depend on t, such that

j(v) ≥ (ω, v)X + α for all v ∈ X. (5.7)

Therefore, we deduce that

(Aũρ(t), ũρ(t))X ≤ j (0X)− (ω, ũρ(t))X − α (5.8)
− (Su(t), ũρ(t))X + (f(t), ũρ(t))X + 2G(ρ).

Using assumption (4.1) and Cauchy-Schwarz inequality it follows that

mA ∥ũρ(t)∥2X ≤ (∥A0X∥X + ∥ω∥X + ∥Su(t)∥X + ∥f(t)∥X) ∥ũρ(t)∥X (5.9)
+ |α|+ |j (0X)|+ 2G(ρ).

We use (5.9) and inequality [x, a, b ≥ 0 and x2 ≤ ax+ b =⇒ x2 ≤ a2 + 2b
]

to deduce that the sequence {ũρ(t)} is bounded, i.e. there exists c > 0, which
does not depend on ρ, such that

∥ũρ(t)∥X ≤ c. (5.10)

Therefore, it follows that there exists a subsequence of the sequence {ũρ(t)},
still denoted by {ũρ(t)} and an element ũ(t) ∈ X such that

ũρ(t) ⇀ ũ(t) in X as ρ → 0. (5.11)

In the second part of the proof we investigate the properties of the element
ũ(t) ∈ X. To this end, we take v := ũ(t) in (5.5) and using assumption (4.7) we
have

(Aũρ(t), ũρ(t)− ũ(t))X ≤ (Su(t), ũ(t)− ũρ(t))X (5.12)
+ j(ũ(t))− j (ũρ(t)) + 2G(ρ) + (f(t), ũρ(t)− ũ(t))X .

Next, we pass to the upper limit as ρ → 0 and taking into account (5.11),
(4.3) and (4.7) we deduce that

lim sup
ρ→0

(Aũρ(t), ũρ(t)− ũ(t))X ≤ 0 (5.13)

Assumption (4.1) and convergence (5.11) yield

lim inf
ρ→0

(Aũρ(t), ũρ(t)− v)X ≥ (Aũ(t), ũ(t)− v)X for all v ∈ X (5.14)

Next, from inequality (5.5) and assumption (4.7) we find that
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(Aũρ(t), ũρ(t)− v)X + (f(t), v − ũρ(t))X + j (ũρ(t)) (5.15)
≤ (Su(t), v − ũρ(t))X + j(v) + 2G(ρ) for all v ∈ X

We pass to the lower limit as ρ → 0 in (5.15) and use assumption (4.7),
convergence (5.11) and the lower semicontinuity of j. As a result we have

lim inf
ρ→0

(Aũρ(t), ũρ(t)− v)X ≤ (Su(t), v − ũ(t))X (5.16)

+ j(v)− j(ũ(t)) + (f(t), ũ(t)− v)X for all v ∈ X

We now combine inequalities (5.14) and (5.16) to see that

(Aũ(t), v − ũ(t))X + (Su(t), v − ũ(t))X (5.17)
+ j(v)− j(ũ(t)) ≥ (f(t), v − ũ(t))X for all v ∈ X

Next, we take v := ũ(t) in (4.5) and v := u(t) in (5.17). Then, adding the
resulting inequalities and using assumption (4.1) we obtain that

u(t) = ũ(t) (5.18)

Lemma 5.3 is now a consequence of standard weak convergence arguments.
We proceed with the following strong convergence result.
Lemma 5.4 For each t ∈ [0, T ] the sequence {ũρ(t)} converges strongly in X to
u(t), that is

ũρ(t) → u(t) in X as ρ → 0. (5.19)

Proof. The proof is obtained taking v := ũ(t) in (5.14) and using (5.13),
(5.18), (4.1) and (5.3).
The last step is provided by the following strong convergence result.
Lemma 5.5 For each t ∈ [0, T ] the sequence {uρ(t)} converges strongly in X to
u(t), that is

uρ(t) → u(t) in Xas ρ → 0 (5.20)

Proof. We use (4.8) to obtain

(Auρ(t), v − uρ(t))X + (Suρ(t), v − uρ(t))X
+ (∇jρ (uρ(t)) , v − uρ(t))X = (f(t), v − uρ(t))X for all v ∈ X (5.21)

Next, we take v := ũρ(t) in (5.21) and v := uρ(t) in (5.4). Then, adding
the resulting equalities and using (4.1), (4.6) and Cauchy-Schwarz inequality we
deduce that
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∥uρ(t)− ũρ(t)∥2X ≤ 1

mA
∥Suρ(t)− Su(t)∥X ∥ũρ(t)− uρ(t)∥X (5.22)

Next, we use (4.2), triangle inequality and a Gronwall’s argument to obtain

∥uρ(t)− u(t)∥X ≤ ∥ũρ(t)− u(t)∥X +
LS

mA
e

TLS
mA

∫ t

0

∥ũρ(s)− u(s)∥X ds (5.23)

We now use (5.10), (5.23), Lemma 5.4 and Lebesgue’s convergence theorem
to obtain (5.20), which concludes the proof.

We are now in position to present the proof of Theorem 4.3.
Proof. (1) The unique solvability of Problem Pρ is a consequence of Lemma 5.1.
(2) The convergence (4.9) is a consequence of Lemma 5.5.

Therefore, we conclude that the proof of Theorem 4.3 is complete.

6. Proof of Theorem 3.1
In this section we give the proof of Theorem 3.1. To this end, we use Theorem
4.3 with X = V . First of all we define operators A : V → V,S : C([0, T ];V ) →
C([0, T ];V ), and the functional j : V → R by

(Au,v)V = (Aε(u), ε(v))Q +

∫
Γ3

p (uv) vvda for all u,v ∈ V (6.1)

(Su(t),v)V =

(∫ t

0

B(t− s)ε(u(s))ds, ε(v)

)
Q

(6.2)

for all u ∈ C([0, T ];V ),v ∈ V

j(v)− =

∫
Γ3

Fv+v da for all v ∈ V (6.3)

Then, it is easy to see that Problem QV is equivalent to the problem of
finding a function u : [0, T ] → V such that, for all t ∈ [0, T ], the following
inequality holds

(Au(t),v − u(t))V + (Su(t),v − u(t))V (6.4)
+ j(v)− j(u(t)) ≥ (f(t),v − u(t))V for all v ∈ V.

Moreover, for each ρ > 0, we define operator Pρ : V → V by

(Pρu,v)V =

∫
Γ3

F

2

(
1 +

uv√
u2
v + ρ2

)
vvda for all u,v ∈ V (6.5)
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Therefore, Problem QV
ρ is equivalent to the problem of finding a function

uρ : [0, T ] → V such that, for all t ∈ [0, T ], the following equality holds

(Auρ(t),v)V +(Suρ(t),v)V +(Pρuρ(t),v)V = (f(t),v)V for all v ∈ V. (6.6)

Using assumptions (2.9), (2.12) and inequality (2.1) we deduce that the
operator A, defined in (6.1), verifies (4.1) with MA = LA+c20Lp and mA = mA.

Next, a simple calculation based on inequality (2.2) and assumption (2.10)
shows that

∥Su1(t)− Su2(t)∥V ≤ d max
r∈[0,T ]

∥B(r)∥Q∞

∫ t

0

∥u1(s)− u2(s)∥V ds (6.7)

for all u1,u2 ∈ C([0, T ];V ), t ∈ [0, T ]

The previous inequality implies that S satisfies (4.2) with LS = dmaxr∈[0,T ] ∥B(r)∥Q∞ .
As in [2] we use assumption (2.13) and inequality (2.1) to see that the func-

tional j defined by (6.3), is a seminorm on V and verifies

j(v) ≤ c0 (meas (Γ3))
1/2 ∥F∥L∞(Γ3)∥v∥V for all v ∈ V. (6.8)

We deduce that j satisfies (4.3). Taking into account the previous results and
(3.6) we conclude that the hypotheses of Theorem 4.1 are fulfilled. Therefore,
the variational inequality (6.4) has a unique solution u ∈ C([0, T ];V ).

Next, we show the unique solvability of variational equality (6.6). To this
end, let ρ > 0 and u,v ∈ V . Using (2.1) we deduce that the operator Pρ,
defined in (6.5), verifies

(Pρu− Pρv,u− v)V ≥ 0 for all u,v ∈ V (6.9)

and

∥Pρu− Pρv∥V ≤ c20
ρ
∥F∥L∞(Γ3)∥u− v∥V for all u,v ∈ V. (6.10)

Therefore, the operator

v → Av + Pρv for all v ∈ V

is strongly monotone and Lipschitz continuous. We apply Corollary 4.2
to conclude that the variational equality (6.6) has a unique solution uρ ∈
C([0, T ];V ).

We are now in position to present the proof of Theorem 3.1.
(1) The unique solvability of Problem QV follows from the unique solvability of
(6.4).
(2) The unique solvability of Problem QV

ρ follows from the unique solvability of
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(6.6).
(3) Let ρ > 0. We define the functional jρ : V → R by

jρ(v) =

∫
Γ3

F

2

(√
v2v + ρ2 − ρ+ vv

)
da for all v ∈ V (6.11)

We deduce that jρ is Gâteaux differentiable and

(∇jρ(u),v)V =

∫
Γ3

F

2

(
1 +

uv√
u2
v + ρ2

)
vvda for all u,v ∈ V (6.12)

Taking into account (6.5) and (6.12) we see that (6.6) is equivalent with

(Auρ(t),v)V + (Suρ(t),v)V + (∇jρ (uρ(t)) ,v)V = (f(t),v)V for all v ∈ V.
(6.13)

Moreover, (6.5), (6.12) and (6.9) imply the convexity of jρ. Therefore, jρ
and ∇jρ satisfy (4.6). Finally, using (6.3), (6.11) and assumption (2.13) we
deduce that the functionals j and jρ verify (4.7) with

G(ρ) =
ρ

2

∫
Γ3

Fda

Convergence (3.16) is now a direct consequence of Theorem 4.3.
A numerical analysis and simulations of convergence result (3.16) will be pro-
vided in our next paper. Moreover, the extension of (4.9) to convergence results
on the space C([0, T ];X) remains an open problem which will be investigated
in the future.
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