
In: Statistical Mechanics and Random Walks

Editors: A. Skogseid and V. Fasano, pp. 1-44

ISBN: 978-1-61470-966-4

© 2011 Nova Science Publishers, Inc.

Chapter 12

GLOBAL RANDOM WALK ALGORITHM

FOR DIFFUSION PROCESSES

Nicolae Suciu1,* and Călin Vamoş2,†
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Abstract

The Global Random Walk algorithm (GRW) performs the simultaneous tracking on

a fixed grid of large collections of particles, while the computational costs remain

comparable to those of a single-trajectory simulation by the traditional Particle Track-

ing (PT) approach. Unlike the sequential PT procedure, GRW simulates diffusion

processes by globally distributing all the particles lying at a lattice site. The global

scattering is achieved by allowing the particles to execute unbiased spatial jumps with

diffusive scaling, proportional to the square root of the simulation time step. When dif-

fusion takes place in a velocity field, the diffusion step is preceded by a drift step which

moves all the particles according to the velocity field at the lattice site. If the GRW

procedure is applied to a single particle, it is equivalent to a PT procedure projected

on a regular lattice. Thus, GRW can be thought as a superposition of PT procedures.

Moreover, it has been shown that the GRW algorithm can also be implemented as a

weak Euler scheme for the Ito equation governing the continuous diffusion process,

which accurately reproduces the true probability distribution. The essential difference

is that while the concentration field is estimated by post-processing the trajectories

simulated sequentially in the PT approach, a single GRW simulation is required for

concentration estimates. In fact, the output of the GRW simulation is not an ensem-

ble of trajectories solving the Ito equation, rather it is a solution to the associated

Fokker-Planck equation. The GRW algorithm saves memory and computing time and

no restrictions are imposed to the total number of particles which ensures reliable con-

centration estimates.

For vanishing or constant drift coefficients, GRW is also equivalent with the stable

finite-difference (FD) scheme and has the same convergence order for large enough
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numbers of particles. However, for space-variable drift this equivalence fails and

GRW suffers from overshooting errors caused by particles jumping over lattice points

with different velocities. Overshooting errors can be completely removed by allowing

jumps only to first-neighbor lattice sites. This can be achieved with a biased-GRW,

where the drift displacement is modeled as a bias in the jump probability. The new

algorithm is no longer a weak Euler scheme for the Ito equation, instead it is equiva-

lent to a stable FD scheme without numerical diffusion. Removing the overshooting

with biased-GRW has the drawback of high computational costs, due to the fine grids

required by the first-neighbor jumps constraint. Therefore, the biased algorithm is

mainly useful as reference to assess the accuracy of the coarser, but faster, unbiased

GRW algorithms which are more efficient in solving large scale diffusion problems.

This chapter includes a presentation of the GRW algorithm, with details on its

derivation, implementation, equivalence with other schemes, sensitivity to parameters,

and convergence properties. Since the GRW approach is highly recommended for

large scale simulations of advection-dominated transport processes, where PT has lim-

ited accuracy and finite element/difference schemes suffer from numerical diffusion,

some relevant applications to contaminant transport in groundwater are also presented

for the purpose of illustration.

Keywords: random walk, probabilistic particle methods, diffusion processes
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1. Introduction

It is well known that diffusion processes can be numerically simulated with random

walk (RW) algorithms. For simple diffusion processes the RW algorithm is identical with

the finite difference (FD) scheme [1] but, as we shall discuss in the following, this equiva-

lence is not valid for complex diffusion processes [43]. The RW algorithm can be used to

model the transport of arbitrary physical quantities if parts of the transported quantity are

associated with fictitious particles obeying the RW law. To reduce the computational effort

and to improve the smoothness of the numerical solution, the gradient of the transported

quantity can also be associated with the particles. Integrating the gradient transported by

each particle over the computation domain the simulated field is obtained with a higher ac-

curacy [15]. The “gradient random walk” algorithm was first developed by Chorin [4] for

the simulation of turbulence, the transported quantity being the vorticity. In other applica-

tions, mainly for transport in porous media, to save memory and to avoid boundary effects,

a grid free algorithm called “particle tracking” (PT) is used [21, 40, 39]. The PT algorithm

consists of generating trajectories in continuous space for each particle, by performing at

discrete time steps an advection displacement and a random Gaussian one.

The application of sequential RW algorithms to solve practical transport problems is

relatively limited. A good estimation of the concentration field requires a large number of

particles at each grid point. Sequential algorithms generate a random number, implying

a certain number of numerical operations, for every jump of each particle. Therefore, if

one requires that the numerical solution should be identical to the analytic solution to three

significant figures, the number of tracer particles simulated must be enormous ([38], p. 95).

In this chapter we propose an improvement of the RW algorithm aiming to eliminate this
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limitation. Towards this aim, all the particles from a given grid node are moved simultane-

ously, not individually. This is possible because the number of the particles jumping from a

given node to a neighbor node obeys a Bernoulli distribution. In this way a great number of

particles can be distributed generating only a single random number and the necessary ran-

dom number generations are significantly reduced. We call this algorithm “global random

walk” (GRW). A more general form of the GRW algorithm is obtained when a part of the

particles remain at the initial node and only the rest of them are scattered to the neighboring

nodes according to the Bernoulli distribution.

The number of particles jumping from a given node to a single neighboring node ac-

cording to GRW rules fluctuates about the mean value. These fluctuations can be eliminated

if we allow the particles to be divided in parts and exactly, half of them jumping to the left

and the other half to the right. We show that for simple diffusion processes this determinis-

tic GRW algorithm, without fluctuations, is identical with a FD algorithm. Thus, GRW can

be thought as a generalization of FD algorithm. If we do not intend to give up the particle

indivisibility, then the fluctuations cannot be completely canceled. The minimum magni-

tude of the fluctuations is that corresponding to a single particle. In this case a form of GRW

with reduced fluctuations is obtained: if at a node there is an odd number of particles, then

one of the particles is randomly distributed to the left or to the right and the rest of them

is divided to half. Such GRW algorithms have proved to be valuable tools for large scale

simulations of environmental [30, 31, 34, 35] and life-science problems [33], as well as for

theoretical investigations on passive sclar transport in random media [36, 37].

Models of passive scalar transport in highly heterogeneous media, such as groundwater

systems, turbulent atmosphere, or plasmas, are often based on a stochastic partial differen-

tial equation for the concentration field c(x, t),

∂tc+V∇c = D∇2c, (1)

with space variable drift V(x) which is a sample of a random velocity field, and a local

diffusion coefficient D which is assumed constant [30, 31, 36, 37, 25]. The normalized

concentration solving (1) for the initial condition c(x, 0) = δ(x − x0) is the probability

density function of the diffusion process described by the Itô stochastic ordinary differential

equation

Xi(t) = x0i +

∫ t

0

Vi[X(t′)]dt′ +Wi(t), (2)

where i = 1, 2, 3, x0i = Xi(0) are deterministic initial positions and Wi are the components

of a Wiener process of mean zero and variance 2Dt [19].

In this chapter we shall present several applications to contaminant transport in saturated

groundwater systems. The time-stationary random velocity field V(x) is in this case the

solution of the continuity and Darcy equations

∇V = 0, V = −K∇h, (3)

where K(x) is the hydraulic conductivity of the medium and h is the piezometric head

[25]. Dirichlet boundary conditions, consisting of constant heads at the inlet and outlet

boundaries of the domain, ensure the stationarity in time of the velocity field V. The

hydraulic conductivity K is supplied by various interpretations of field-scale measurements

in the form of a spatially distributed random parameter (random field) [6].
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If the random velocity field, obtained by solving (3) for an ensemble of realizations of

the K field, has a finite correlation range then it can be shown that, under certain conditions,

the ensemble mean concentration is described asymptotically by an upscaled model of form

(1), with drift coefficient given by the mean velocity and enhanced diffusion coefficients

proportional with the velocity correlation lengths [20, 12]. Under less restrictive condi-

tions, with the only assumption that the first two spatial moments of the concentration are

finite at finite times, the mean concentration can still be described by an equivalent Gaussian

distribution with time variable diffusion coefficients [37], referred to as the “macrodisper-

sion” model in the hydrological literature [6]. Root-mean-square deviations of the solutions

to (1), for fixed realizations of the velocity field, from the predictions of the upscaled model

are often used to quantify the uncertainty in stochastic modeling of transport in random

environments [30, 34, 35, 36]. When the estimated mean-square uncertainty is acceptably

small, one considers that “ergodic conditions” are met and the macrodispersion model can

be successfully used to describe the transport in a single realization of the groundwater

formation [30]. Nevertheless, for contamination risk assessments mean-square uncertainty

assessments are not enough and extreme values of the stochastic predictions are also re-

quired. Such a task can be carried out by assessing the correlations and the full probability

distributions of the input/output parameters [3].

When solving advection-dominated transport problems associated to (1), like the one

considered here, with Péclet number Pe= Uλ/D = 100, where U is the amplitude of

the mean velocity and λ a correlation length, the challenge is to ensure the stability of the

solutions and to avoid the numerical diffusion [25]. Therefore, numerical solutions to the

Itô equation (2), implemented in PT algorithms, are often used to simulate trajectories of

computational particles and to estimate concentrations by particles densities. PT methods

are stable, free of numerical diffusion, thus suitable for advection-dominated transport prob-

lems. However, since the computational costs increase linearly with the number of particles,

the estimated concentrations are too inaccurate for large-scale simulations of transport in

groundwater. Overcoming the limitations of the sequential PT procedure, the GRW algo-

rithm has no limitations as concerning the number of particles [30, 43]. As shown below in

Sect. 2.2, GRW provides accurate simulations of the concentration field at costs compara-

ble to those of a single-trajectory PT simulation.

The chapter is organized as follows. After recalling basic notions about Euler schemes

and PT methods in Section 2.1, we introduce in Section 2.2 the GRW algorithm as a weak

numerical scheme for the Itô equation and discuss its convergence and numerical efficiency

in Section 2.3. Section 2.4 contains a digression on numerical diffusion, where it is shown

that, for properly constrained space and time steps, RW methods are strictly free of nu-

merical diffusion. The exact unbiased one-dimensional GRW algorithm and different im-

plementation options are presented in Section 3.1, followed by numerical assessment of its

convergence (Section 3.2) and numerical boundary conditions (Section 3.3). In Sections 3.4

and 3.5 we present two-dimensional unbiased GRW algorithms and some relevant applica-

tions. Section 4.1 introduces the two-dimensional biased-GRW algorithm and its usefulness

in evaluating the unbiased GRW algorithms is presented in Section 4.2. Further, in Section

5 we demonstrate the ability of the GRW approach to produce a detailed sensitivity and

uncertainty analysis of the macrodispersion model. Conclusions are presented in Section 6.
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2. Random Walk Simulations of Diffusion Processes

2.1. Itô Equation and Particle Tracking

Let us consider the one-dimensional Itô equation (2) and an equidistant time discretiza-

tion 0 < δt < · · · < kδt < · · · < Kδt = T . In most of its implementations, the PT

simulation of the particle’s trajectory consists of an Euler approximation Yt of the solution

X(t), which is a continuous time process satisfying the iterative scheme

Yk+1 = Yk + Vkδt+ δWk, (4)

where Yk = Ykδt, Vk = V (Yk), and δWk = Wk+1−Wk is the increment of the Wiener pro-

cess. The Euler scheme (4) provides a grid-free PT algorithm which generates the trajectory

of a computational particle in continuous space.

While the strong convergence of order β > 0 of the Euler scheme requires

lim
δt−→0

E (|Xt − Yt|) ≤ Cδtβ,

where E denotes the expectation, for the weak convergence of order β > 0, it suffices that

lim
δt−→0

|E (g(Xt))− E (g(Yt))| ≤ Cδtβ,

for some functionals g(Xt) (e.g. moments E(Xm
t ), m ≥ 1).

For strong pathwise convergence, the Euler scheme (4) has to consider the Wiener pro-

cess specified in the Itô equation (2). For weak convergence, when only the probability

distribution is approximated, the increments δWk of the Wiener process can be replaced by

random variables ξ with similar moments. For weak Euler scheme of order β = 1 the first

three moments of ξ have to satisfy, for some constant M , the condition [19, Sect. 5.12]

|E(ξ)| +
∣

∣

∣E(ξ3)
∣

∣

∣ +
∣

∣

∣E(ξ2)− δt
∣

∣

∣ ≤ Mδt2.

Easily generated noise increments satisfying the above condition are the two-states ran-

dom variables

ξ : Ω −→ {−
√
2Dδt,+

√
2Dδt}, P{ξ = ±

√
2Dδt} =

1

2
. (5)

2.2. Weak Euler Scheme and Global Random Walk

The weak Euler scheme for equation (2) without drift term is given by (4) with Vk = 0
and Wiener process increment δWk replaced by (5),

Yk+1 = Yk + ξ, (6)

where the increment of Yk has a constant amplitude,

|Yk+1 − Yk| =
√
2Dδt = δx. (7)

A computational particle described by the PT algorithm (6) moves on a regular one-

dimensional lattice with lattice constant δx. If one considers a superposition of N PT
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procedures (6), then at a given time step k the n(i, k) particles lying at the lattice site i are

spread according to

n(i, k) = δn(i− 1, i, k) + δn(i+ 1, i, k), (8)

where δn(i− 1, i, k) and δn(i+1, i, k) are, respectively, the numbers of particles jumping

to the left and to the right first-neighbor sites. Since (6) does not allow particles trapping at

lattice sites, the evolution of the number of particles at a grid site j is governed by

n(j, k + 1) = δn(j, j − 1, k) + δn(j, j + 1, k), (9)

When the N particles are released at t = 0 from a single lattice site, then the equations (8-9)

describe their evolution as a succession of independent “even and odd modes”: if at given

k even lattice sites are occupied by particles the odd sites are necessary empty; at k + 1 all

particles from even sites jump to odd sites that were previously empty, and the previously

occupied even sites become empty (see Fig. 1).

For large N it is reasonable to assume that the probability of the surrogate increments

of the Wiener process (5) can be approximated by the relative frequency of lef/right jumps,

P{ξ = ±
√
2Dδt} = lim

N−→∞

δn(i− 1, i, k)

N
= lim

N−→∞

δn(i+ 1, i, k)

N
=

1

2
. (10)

In the limit of large N , by inserting (10) into (8) one obtains

δn(i± 1, i, k) =
1

2
n(i, k), (11)

and (9) becomes

n(j, k + 1) =
1

2
[n(j − 1, k) + n(j + 1, k)] (12)

Since n(j, k)/N estimates, for large N , the probability distribution of the particles at site i
and time k, (12) divided by N becomes a master equation for discrete time RW, the solution

of which is the Bernoulli distribution [13]. Further, one defines the particles concentration

c(j, k) = n(j, k)/(lδx), (13)

where l = 1 for nonsingular initial conditions (i.e., particles distributed over more than one

lattice site) and, for singular initial conditions which, as shown above, generate independent

even and odd modes, we can chose l = 2 to avoid discontinuities in the concentration field.

With (13), the relation (12) leads to

c(j, k + 1)− c(j, k) =
Dδt

δx2
[c(j − 1, k) + c(j + 1, k)− 2c(j, k)] , (14)

where, according to (7),

D =
δx2

2δt
. (15)

Equation (14) is the forward-time centered in space finite difference scheme, with stabil-

ity parameter [1, 5] Dδt/δx2 = 1/2, for the one-dimensional partial differential diffu-

sion equation ∂tc = D∂2
xc, which is the Fokker-Planck equation (1) associated to the Itô
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equation (2), particularized to one-dimensional diffusion without drift term, i.e., the one-

dimensional Wiener process.

For finite N , the number of jumping particles δn(i ± 1, i, k) are obviously random.

For large enough N however, the random variables δn(i ± 1, i, k) can be approximated as

follows: if the number n(i, k) of particles lying at the grid site i at time k is even, then half

of them jump to the left and half to the right, according to (11); if n(i, k) is odd, then one

particle is allocated to either δn(i − 1, i, k) or to δn(i + 1, i, k) with unbiased probability

of 1/2. This simple rule achieves the implementation of the algorithm described by (8-9).

Since this approach approximates the random walk equation (12) and the random walkers

are distributed over lattice sites with the global procedure described above, it has been called

“global random walk” (GRW) [43]. The GRW algorithm corresponds to a superposition of

PT procedures described by the weak Euler schemes (6) and can be itself thought as a weak

Euler scheme which provides the particles concentration and estimations of the moments of

the process (6). In case of genuine diffusion, without drift, GRW is also equivalent with the

FD scheme (14) for the one-dimensional diffusion equation. But this equivalence fails in

presence of a space-variable drift term (see Section 3.1 below). Nevertheless, as we will see

in Sections 3.1 and 3.2 below, in all unbiased GRW algorithms the distribution of particles

jumping from a lattice site at every time step is still equivalent with a superposition of weak

Euler schemes for the Itô equation (2).

2.3. Numerical Example, Convergence and Computing Time

Figure 1 illustrates the evolution of the number n(i, k) of random walkers over the first

three simulation steps, obtained with a straightforward MATLAB implementation of the

one-dimensional GRW algorithm described above. One remarks the occurrence of indepen-

dent even and odd modes, as a consequence of the singular initial distribution of particles,

that were localized at a single lattice site.

The evaluation of the moments E(Xm
t ) within the numerical implementation of the

weak Euler scheme (6) consists of an arithmetic average, over an ensemble of trajectories

(6), of the position of the particles at a given time,

E(Xm
kδt) ≈

1

N

N
∑

i=1

Y m
k ,

which approximates the stochastic average with respect to the probability distribution,

E(Xt) =
∫

xmp(x, t)dx. But, as far as one approximates probability distributions and

their moments, the trajectories of the weak Euler scheme are in fact not necessary. The

probability density is given by the normalized concentration, p(x, t) = c(x, t)/N and its

GRW estimation by (13) yields p(x, t) = n(iδx, kδt)/(Nlδx). With these, the discretiza-

tion of the expectation integral giving the estimation of the m-th order moment of Xt reads

E(Xm
kδt) ≈

1

N

L
∑

i=1

(iδx)mn(i, kδt), (16)

where by L we denoted the length of the one-dimensional lattice. In particular, with

(16) one obtains GRW estimates of the mean M = E(Xt) and diffusion coefficient



8 Nicolae Suciu and Călin Vamoş
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Figure 1. Distribution of N = 300 random walkers starting at x = 100 after the first three

time steps of the GRW simulation.

D = [E(X2
t )− E(Xt)

2]/(2t) of the Wiener process. GRW simulation results, for δx = 1
and δt = 0.5, are presented in Figs. 2-5. Figure 2 shows that the estimated mean and

diffusion coefficient approximates quite well the nominal values M = 0 and D = 1 of the

simulated Wiener process, even for a moderate number of particles N = 300. The distribu-

tion of the number of particles over the lattice, ni, presented in Fig. 3 also shows a discrete

Gaussian shape, with discontinuities typical for independent even and odd modes [43].

It is possible to further simplify the GRW algorithm by completely removing the ran-

domness from the scheme. This can be done by setting δn(i − 1, i, k) and δn(i + 1, i, k)
to the exact value of n/2. In this case N has no longer the meaning of a number of random

walkers and can be taken as an arbitrary positive real number, for instance equal to 1. This

deterministic GRW scheme is equivalent to the finite-difference scheme (14) for the one-

dimensional diffusion equation and converges as δx2 for δx → 0 [43]. Since according to

relation (15) δx2 ∼ δt, the deterministic GRW has the same order of convergence with the

time step as the weak Euler scheme of order β = 1. The convergence of the stochastic GRW

simulation reaches the same order only if the number of random walkers N is large enough

to smooth out the random fluctuations of n(i, k) in (8-9). Figure 4 shows the dependence

on N of the absolute error eD(t) = |Dgrw(t)−D|. Figure 5 illustrates the convergence of

the error norm ‖Dgrw −D‖ defined by

‖Dgrw −D‖2 =
T/δt
∑

k=1

[Dgrw(kδt) −D]2 .
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Figure 2. GRW estimates of the diffusion coefficient D(t) and of the mean M(t).
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Figure 3. Distribution of N = 300 random walkers after 200 time steps.
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eD(t;N=100 000 000)

Figure 4. Absolute errors of the estimated diffusion coefficients for increasing numbers of

particles N .

Note that the GRW scheme described above is practically insensitive to the number

of random walkers N . Assuming that all L grid points contain random walkers at all the
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Figure 5. Convergence of the error norm of the estimated diffusion coefficients with the

number of particles N .

computation time steps, one needs LT calls of a uniformly-distributed random-numbers

generator for the entire simulation. Hence, the total computation time is of the order of that

for the simulation of a single trajectory of the Itô process by the weak Euler scheme. Indeed,

comparing LT with the computational costs of the order NT for a superposition of N PT

simulations, we can see that the GRW algorithm achieves a speed-up of computations, with

respect to PT, of the order N/L. For example, while the convergence investigations with

GRW presented in Figs. 4-5 were performed in about one second, similar investigations

with the Euler scheme required several minutes on the same computer. In case of realistic

simulations of diffusion processes, when very large numbers of particles should be consid-

ered, e.g. Avogadro’s number N = 1024, as well as large grids of the order of L = 106

nodes, a huge speed-up of computations by a factor of 1018 can be achieved by using the

GRW algorithm.

2.4. Digression on Numerical Diffusion

The simplest way to estimate the numerical diffusion produced by a numerical scheme

is to compare the diffusion coefficients computed from the corresponding numerical so-

lution to their nominal values [25]. Such a test is presented in Fig. 2, which shows that

the GRW algorithm accurately reproduces the diffusion coefficient of the Wiener process.

In Section 2.3 we have shown that for genuine diffusion processes the GRW algorithm is

equivalent with a FD scheme. Since FD schemes are not unconditionally free of numer-

ical diffusion, one may be tempted to say that, by virtue of this equivalence, GRW also

generates numerical diffusion (e.g. [9]). This assertion is not only wrong, but also in fla-

grant contradiction with the basic property of all RW methods, that of being strictly free of

numerical diffusion.

Before proceeding with the discussion of the generic RW method we first note that

the GRW algorithm (8-9), constrained by the relation (15), is equivalent to the FD scheme

(14) with stability parameter r = 1. Since FD schemes with r ≤ 1 are stable and free

of numerical diffusion [5] GRW cannot generate numerical diffusion. GRW is also stable

because, as shown by relation (16) for m = 0, the number of random walkers is conserved.
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In general, a one-dimensional RW algorithm for genuine diffusion is a cumulative pro-

cess consisting of a sum Xk =
∑k

l=1 δXl of independent increments δXl, with E(δXl) = 0
and E(δX2

l ) = 2Dδt. The independence of increments implies

E(X2
kδt) =

k
∑

l=1

δX2
l = 2Dkδt, (17)

hence the computed diffusion coefficient is E(X2
kδt)/(2kδt) = D, i.e., the RW scheme is

unconditionally free of numerical diffusion. In particular, this is the case of strong and weak

Euler schemes (4) and (6). Since GRW is a superposition of weak Euler schemes it is also

unconditionally free of numerical diffusion. Note that the equivalence with a superposition

of weak Euler schemes holds only if the amplitude of the increments is given by (7), i.e.,

if the time step, the space step, and the diffusion coefficient are related by (15). From (15)

and (16) one obtains, for m = 2,

E(Xm
kδt) ≈ δx2

L
∑

i=1

i2
n(i, kδt)

N
= 2Dδt

L
∑

i=1

i2
n(i, kδt)

N
. (18)

Equating (18) and (17) we find
∑L

i=1 i
2n(i, kδt)/N = k. This relation is a consequence of

the GRW rule for distributing particles over lattice sites. For instance, the GRW distribution

of N particles, initially located at the origin of a symmetric one-dimensional lattice, yields

2(12 · 1

2
+ 02 · 1

2
) = 2 at k = 1, then 2(22 · 1

4
+ 12 · 0 + 02 · 1

2
) = 2 at k = 2, etc.

Another approach for moving groups of particles, similar with GRW, was described by

Delay et al. [7, 8]. In their approach, to the center of the square cells of a regular lattice

one associates a variable that represents the number of particle which are then uniformly

distributed, proportional with the area of the intersection of a “dispersion rectangle” with

the neighboring cells. In the one-dimensional case the dispersion interval is the segment

[−
√
2Dδt,

√
2Dδt] [7], so that the particles are distributed according to a deterministic

rule which, for genuine diffusion is identical to the GRW rule (12). Yet, this approach

is different from GRW in that the space and time steps are not related with the diffusion

coefficient, being instead adjusted by trial and error. As stated by the authors, their algo-

rithm necessarily generates some numerical diffusion [7, 8, 9]. Since their approach uses

the GRW distribution rule and a δx independent of D and δt, one generates an artificial

diffusion which can be exactly quantified by (18) as δx2/(2kδt)−D. Hence, the numerical

diffusion can be completely removed in the one-dimensional algorithm of Delay et al. [7]

by imposing the restriction (15) on space and time steps, which transforms their approach

into a deterministic GRW.

Coarse-graining by the definition of the concentration field also may induce numerical

diffusion. For instance, if we chose l = 2 to define the concentration with (13) we also have

to chose dx ≈ 2δx to approximate the expectation and to obtain the correct form of (16).

If dx = δx were chosen, then all the moments of Xt would be divided by 2. Similarly,

wrong results may be obtained if the concentration is defined as space average over more

lattice sites. This issue, specific to continuous modeling of discrete systems, can be resolved

by defining continuous fields as averages over symmetrical space-time “measurement” do-

mains of the physical properties of the “microscopic” constituents of the system. The only
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requirement is that the particles move along piecewise analytical trajectories [46, 44]. This

is for instance the case of a system of random walkers with piecewise constant velocities

δx/δt and −δx/δt. Using this approach to continuous modeling, we proved that there is a

space-time continuum scale where the gradient of the concentration and the flux of random

walkers are related by the Fick’s law [45]. We have thus an independent proof that RW

algorithms are free of numerical diffusion. Consequently, when numerical diffusion occurs

in RW methods it can only be produced by inappropriate implementation options.

3. Unbiased GRW Algorithms

3.1. Exact One-dimensional GRW Algorithm

The one-dimensional GRW algorithm, which generalizes the algorithm (8-9) presented

in Section 2.2 to account for advective displacements, describes the scattering of the n(i, k)
particles from (xi, tk) by

n(j, k) = δn(j + vj, j, k) + δn(j + vj − d, j, k) + δn(j + vj + d, j, k), (19)

where vj = Vjδt/δx are discrete displacements produced by the velocity field and d de-

scribes the diffusive jumps. The quantities δn(j+vj±d, j, k) in (19) are Bernoulli random

variables describing the number of particles jumping to the left and to the right of the ad-

vected position j+vj and δn(j+vj, j, k) gives the number of particles which remain at the

lattice site reached after an advective displacement. Unlike in the simple algorithm from

Section 2.2, now only the group of particles δn(j+vj−d, j, k)+δn(j+vj+d, j, k) evolves

like a superposition of weak Euler schemes, and only over a time step. If δn(j+vj , j, k) > 0
at all times, then the even and odd modes are mixed and the particles distribution shown in

Fig. 3 will be smoothed out. The distribution of the particles at the next time (k + 1)δt is

given by

n(i, k + 1) = δn(i, i, k) +
∑

j 6=i

δn(i, j, k). (20)

As follows from (19), the contributions δn(i, j, k), j 6= i come from all lattice sites and

δn(i, i, k) from those satisfying j + vj = i.
The average number of particles undergoing diffusive jumps and the average number of

particles remaining at the same node after the displacement vj are given by the relations

δn(j + vj ± d, j, k) =
1

2
r n(j, k), (21)

δn(j, j + vj, k) = (1− r) n(j, k), (22)

where 0 ≤ r ≤ 1 is a rational number. A consistency requirement is that, for the same

time step δt, the algorithm described by (19-22) reproduces the mean square displacement

given by the algorithm (8-9), which is strictly equivalent with a superposition of weak

Euler schemes. If δx′ is the space step used in (8-9), then the mean square displacement

of the particles jumping from j to first-neighbor sites is n(j, k)δx′2. In the new algorithm,

where in the mean only a fraction r of the particles reaching j + vj undergo jumps of

amplitude dδx, using (21) one obtains rn(j, k)(dδx)2. Equating the two expressions of the
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mean square displacement and using (15) one obtains the following relation between the

parameters of the GRW algorithm

D = r
(dδx)2

2δt
, (23)

which generalizes (15) and ensures that the scheme does not produce numerical diffusion.

For given δx and δt, using (23) one obtains combinations of parameters d and r for any

possible value of the diffusion coefficient D.

Particularizing the above one-dimensional GRW algorithm for genuine diffusion, i.e.,

letting vj = 0 in (19), one can easily see that the evolution of the mean number of particles

is described by

n(i, k + 1) =
r

2
n(i+ d, k) + (1− r)n(i, k) +

r

2
n(i− d, k). (24)

According to (13), n(i, k) is proportional with the concentration c(i, k). Hence, the relation

(24) has the form of the explicit FD scheme for the one-dimensional diffusion equation

∂c = D∂2
xc. Since from (23) we have δt = O(δx2), the FD scheme (24) is a consistent

approximation of the partial differential diffusion equation by condition r ≤ 1 (equivalent

with von Neumann’s criterion), it is also stable. The stability and consistency imply the

convergence of the order O(δx2) to the exact solution of the initial value problem for the

diffusion equation [14]. Equation (14), corresponding to the algorithm presented in Section

2.2, is the particular case of (24) for r = 1.

The exact GRW algorithm is implemented by specifying the procedure to calculate the

fluctuating quantities in the right hand side of (19). The fraction r of the number of particles

undergoing jumps to neighboring nodes must be chosen as a positive rational number r ≤ 1,

such that (1− r)N is an integer equal to the total number of particles remaining at the same

site after an advective step. The latter are calculated recursively, at each site j as follow.

We proceed by increasing the index j and if j1 is the first site with n(j1, k) > 0, then

δn(j1 + vj1 , j1, k) = [(1− r)n(j1, k)], where [·] is the integer part of the expression in the

brackets. Further, we compute and store the rest Rj1 = (1−r)n(j1, k)−δn(j1+vj1 , j1, k).
At the next site containing particles, j2 > j1, we compute δn(j2 + vj2 , j2, k) = [(1 −
r)n(j2, k) +Rj1 ]. Repeating these operations for increasing index j, we obtain

δn(j + vj, j, k) =



(1− r)
∑

j′≤j

n(j′, k)



−


(1− r)
∑

j′<j

n(j′, k)



 . (25)

Averaging (25) over a large number of GRW simulations one obtains the relation (22) for

the mean number of particles. Since δn(j, j, k) is known, (19) relates the random variables

δn(j + vj − d, j, k) and δn(j + vj + d, j, k) and only one of them has independent values.

The GRW algorithm performs the evaluation of the random variables δn(j+vj±d, j, k)
directly, not as a sum of the individual jumps of the n ≡ n(j, k)−δn(j, j, k) particles. Since

each of the n particles can reach the node j+vj−d with a probability equal to 1/2, it follows

that the probability for δn(j + vj − d, j, k) to take the value m, 0 ≤ m ≤ n, is given by the

Bernoulli distribution bn(m) = 2−nCm
n . To assign to δn(j + vj − d, j, k) a random value

satisfying the Bernoulli distribution, at each time step, a random number η with a uniform
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distribution in the interval [0, 1] is generated. If we denote by Fn(m) =
∑m

l=0bn(l), 0 <
Fn(m) ≤ 1, the Bernoulli repartition, then δn(j+ vj − d, j, k) takes the value m satisfying

the condition Fn(m− 1) ≤ η < Fn(m), where we use the convention Fn(−1) = 0.

The implementation of the GRW algorithm as a computer code encounters some dif-

ficulties related to the computation of the Bernoulli distribution bn(m) = 2−nCm
n and of

the corresponding repartition Fn(m) =
∑m

i=0bn(i). When the number of particles is of

order 106, the computation of bn(m) or Fn(m) takes too much time to be performed at

each computation step. Therefore the values of Fn(m) are computed only once and stored

in files for values n = 2k with 1 ≤ k ≤ 20. Due to the symmetry of Fn(m) with respect

to m = n/2, only the values Fn(m) ≤ 0.5 are stored. If n < 221, a binary representa-

tion n =
∑

20
l=0a(l)2

l is used. The 2l particles of a group with a(l) 6= 0 are scattered in

δnl(j + vj − d, j, k) and δnl(j + vj + d, j, k), as previously described, using a random

number η uniformly generated in the interval [0, 1]. The final result is obtained from

δn(j + vj − d, j, k) =
∑20

l=0
a(l)δnl(j + vj − d, j, k).

If n ≥ 221, then there are several groups consisting of 220 particles and for each group the

procedure from above can be used. This method, referred to as GRW0 (first used in [42]),

becomes time expensive for very large n (see the “GRW0” curve in Fig. 6). Therefore,

to increase the efficiency of the GRW algorithm, we introduce an approximation based on

reduced variables ξ = (m − n/2)/
√

n/4 and the corresponding repartitions Fn(ξ). If

n ≥ 221 we approximate Fn(ξ) by the repartition corresponding to n = 220 as function of

the reduced variable ξ. We found that the results obtained in this way are fully satisfactory.

For instance, the relative error of the values δn obtained using F220 instead of F230 is of

the order 10−9. In this way, GRW can handle a number of particles equal to the maximum

number of particles that can be represented in the internal memory of the computer. We

also note that an even simpler approximation uses the fact that for n → ∞, the repartition

Fn(ξ) tends to the normal Gaussian repartition, according to De Moivre-Laplace theorem

[23]. Then, the number of particles jumping to the left, δnl(j + vj − d, j, k), can be readily

determined by using the error-function the instead repartition (see GRW-erf curve in Fig.

7). This procedure is a bit faster if n < 1012 but attenuates the fluctuations of the number

of particles.

In case of constant diffusion coefficients, two- and three-dimensional GRW algorithms

can still be implemented by performing the 1-dimensional global scattering procedures de-

scribed in this section on x1, x2 and x3 space axes, according to the values of velocity

components and diffusion coefficients. But for variable coefficients this extension of the

one-dimensional procedure doesn’t work and the two-dimensional algorithm described be-

low in Section 3.2 should be used.

One can also define a modified GRW algorithm which is identical with the FD algorithm

for V (x) ≡ 0, if the particles can be divided and n(j, k) is a real number, not an integer.

Instead of (21) we introduce

δn(j + vj ± d, j, k) =
1

2
r n(j, k), (26)

and in analogy with (22) we consider

δn(j, j, k) = (1− r)n(j, k) (27)



Global Random Walk Algorithm for Diffusion Processes 15

Then (19) is identical satisfied and all the quantities in (20) are defined. In this case, δn(j+
vj − d, j, k) is not anymore a random variable but its value is uniquely determined by (26)

and coincides with the mean value of the corresponding random variable in GRW. Therefore

we refer to this modified algorithm, which generalizes the deterministic algorithm without

advection and without parameters d and r, as a “deterministic” GRW (GRWD).

Another form of the GRW algorithm can be obtained by both preforming a deterministic

scattering and preserving the particles indivisibility. For this purpose, we use (20) and

instead of (26) we introduce

δn(j + vj − d, j, k) =

{

n/2 if n is even

[n/2] + θ if n is odd,
(28)

where n = n(j, k) − δn(j + vj , j, k), [n/2] is the integer part of n/2 and θ is a random

variable taking the values 0 and 1 with probability 1/2. Further, the number of particles

jumping in the opposite direction, δn(j + vj + d, j, k), is determined by (19). In compar-

ison with GRW, this algorithm reduces the fluctuations of the number of particles to those

of a sigle random walker and we call it “reduced fluctuations” GRW (GRWR). Since the

fluctuations do not vanish, only the average of the GRWR solution is identical with the

FD solution. Solutions for the advection-diffusion equation (1) can be obtained with either

GRWD, GRWR, or with the stochastic algorithm GRW. The latter is expected to be more

accurate when the fluctuations significantly influence the simulated process [16, 10, 17]. In-

stead, in large scale, advection-dominated transport problems where the fluctuations of the

velocity field are more important than the fluctuations of the number of particles, GRWD

and GRWR are more efficient. In this case, the use of GRWR requires reduced computing

resources with respect to either GRW and GRWD algorithms. Unlike in the exact GRW

algorithm, in GRWR only one random number has to be generated, at every time step and

only when at a given site there is an odd number of particles. Because the indivisibility

of particles is preserved, the diffusion front has a smaller extension than in the case of

GRWD algorithm and, consequently, smaller grids are necessary. An efficient implemen-

tation of GRWR can be obtained if instead of using (28) and generating random numbers

one redistributes the rests Rj , appearing in the computation of δn(j+ vj , j, k) and the rests

Rj+vj = n/2− [n/2] of the division by 2 of the number of jumping particles, and, similarly

to (25), one calculates δn(j + vj − d, j, k) = [n/2 + Rj + Rj+vj ]. To ensure the strict

conservation of the number of particles, besides the condition requiring that (1 − r)N be

an integer, related to the use of parameter r, N should also be a power of 2. Nevertheless,

if N ≥ 108 the possible truncation errors are negligible and these precautions are no longer

necessary.

The GRW algorithms are much more faster and accurate than the sequential PT pro-

cedure. The computational effort in the PT method is due to the fact that every particle is

separately displaced and all the trajectories must be stored and post-processed to obtain con-

centrations. Moreover, the large numbers of particles necessary to have good concentration

estimations may be prohibitive for PT simulations. The GRW method, where groups of par-

ticles are simultaneously displaced, saves time and memory. In the following we show that

GRW allows a faster and more complete simulation of the diffusion processes. To illustrate

the advantage of our method when large numbers of particles are necessary, the computing

time for GRW was compared with the computing time for a PT method (“ParTrace” code
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described in [22]). The same problem was solved on a Cray T3E parallel computer [43]. In

Fig. 6 we present the simulation of an isotropic diffusion, with D = 0.5, into a cube the

side of which consisted of 21 nodes, for 10 time steps and for different number of particles

injected at the initial moment into the center of the cube. GRW needs less than one sec-

ond and only one Cray computing node while the computing time for “ParTrace” linearly

increase with the number of particles and more Cray nodes are required (we stopped the

computation at 109 particles and 256 Cray nodes). The middle curve in Fig. 6 corresponds

to GRW0 algorithm described above, where no approximations of binary repartitions are

used. In this case the computing time still remains orders of magnitude smaller than that

of PT but, for N > 109 the time increases with N . The comparison from In Fig. 7, done

for the same problem, shows that for more than 1012 particles the GRW algorithm and its

approximation using the error function (GRW-erf) need almost the same cpu-time, which

is twice the cpu-time for the deterministic algorithm GRWD. The reduced fluctuations al-

gorithm GRWR (not shown in the picture) needs practically the same cpu-time as GRWD

but, for larger total simulation times GRWR is faster because, as noted above, it preserves

the indivisibility of particles and the diffusion fronts have smaller spatial extension.
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Figure 6. CPU times for PT, the exact GRW algorithm, denoted by GRW0, and the reduced fluctu-

ations GRW. The comparison was done for simulations over ten time-steps of the three-dimensional

Gaussian diffusion with constant coefficient.

The GRW algorithm and its modified forms GRWD and GRWR use the relation (20)

where δn(i, j, k) is non-vanishing for every j satisfying j + vj ± d = i. Therefore, if V (x)
varies in space, the evolution of the concentration in a node is obtained, unlike in (24), by

contributions from more than the first neighboring nodes. The terms in (19) are not apriori

known, because they depend on the value of V in xj . In this case, the GRW algorithm is no

more equivalent with a FD scheme. All these GRW versions remain equivalent with a weak

Euler scheme, but only over single time steps, because of the new parameter r. Therefore

for space-variable drift V (x) the convergence properties cannot be inferred theoretically,

as for the simple GRW from Section 2.2. However, evaluations of the unbiased GRW

algorithm can be done by comparisons with the biased algorithm that will be presented in

Section 4.1.
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Figure 7. CPU times for the GRW algorithm that uses the Bernoulli repartition for n = 1020 par-

ticles to approximate repartitions for larger numbers of particles, the error-function approximation

GRW-erf and for the deterministic algorithm GRWD.

3.2. Simulation of the One-dimensional Gaussian Diffusion

We verify the GRW algorithm described in the previous section for the solution of

the equation (1), in one dimension, with V (x) ≡ 0, D(x) ≡ 0.5 and initial condition

limt−→0+ c(x, t) = N0δ(x), where δ(x) is the Dirac function. In this case the solution has

a Gaussian analytic form and is given by

c
Gauss

(x, t) = N0(2πt)
−1/2 exp

{

−x2

2t

}

. (29)

Different numerical solutions obtained by GRW are quantitatively compared with the an-

alytical solution (29) in the space interval x ∈ [−1, 1]. The comparison is achieved at the

time tf , when the number of particles which left the interval [−1, 1] is 1% of the total

number of particles. From the condition

1

N0

1
∫

−1

c
Gauss

(x, tf ) dx = erf

(

1
√

2tf

)

= 0.99,

we have tf = 0.15.

The numerical solution is obtained using the GRW, GRWD and GRWR algorithms, for

vi = 0 and d = 1. Initially N particles are introduced in the origin of the space grid. We

consider a sequence of grids with the space steps δx = (10g)−1, where g = 1, 2, ..., 10.

Since D = 0.5, from (23) it follows that the corresponding time steps are δt = r δx2 =
r (10g)−2 and the numerical simulation contains kf = tf/δt = 15g2/r time steps. To

eliminate the boundaries effect on the numerical solution we must choose a large enough

grid so that no particles reach the boundary at time tf . A particle covers the maximum

distance if it makes all the kf jumps in the same direction. Therefore the space grid must

contain at least kf nodes on a side and on the other of the origin where all the N particles

initially are located.

We want to compare c defined by (13) with the analytic solution (29), at time tf and

over the spatial interval [−1, 1]. For r = 1, because of the singular initial condition , there
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are independent even and odd modes and we have to chose l = 2 in the concentration

definition (13), i.e., c = n̄/(2δx). The nodes corresponding to x = ±1 are always even,

±1/δx = ±10g, and we introduce the quantity

if =

{

10g if kf is even

10g − 1 if kf is odd
,

such that xf = ±if δx should be the node in the interval [−1, 1] which contains particles at

tf and is the closest to x = ±1. Then for r = 1 we characterize the accuracy of the solution

c with respect to the analytical solution c
Gauss

by the norm ‖c− c
Gauss

‖, defined as

‖c− c
Gauss

‖2 = 1

if + 1

if
∑

i=0

[

1

N
c((2i − if )δx, tf )−

1

N0

c
Gauss

((2i− if )δx, tf )

]2

, (30)

where only the nodes containing particles at tf are taken into account. If r < 1, then the

two numerical modes are mixed by the particles remaining at the same node. In this case

one can use a formula analogous to (30) with if = 10g, summing over all (2if + 1) nodes

of the grid and with c = n̄/δx, defined by (13) for l = 1.

The analysis of the GRWD algorithm, equivalent to a FD scheme, indicates a linear

behavior of the norm ‖cFD − c
Gauss

‖ as function of δx2 for several values of the parameter

r, hence the convergence of order δx2 of the FD scheme. The same investigation shows

that the maximum precision of the finite difference scheme is obtained for r ≈ 0.3 [43].

In the following we fix the parameter r = 1. By c(xi, tk) we denote the numerical

solution obtained with the GRW algorithm described in the previous section. In fact this

solution also depends on the spatial resolution δx = (10g)−1, the total number of the

particles N , and the number of simulations used to compute the mean number of particles n̄
which, introduced in (13), give the concentration estimation. To investigate the convergence

of as function of δx and N , we consider here single GRW simulations, for which n̄ = n
and, because r = 1, from (13) we have c = n/(2δx). We computed the norm (29) for

the numerical solution for increasing N obtained with GRW and GRWR algorithms for

δx = 0.1 (Fig. 8) and δx = 0.01 (Fig. 9). The results shown in Figs. 8 and 9 indicate

that for a large enough number of particles N , both GRW and GRWR approximates the

analytical solution as well as the FD scheme. Since the fluctuations in GRWR are reduced

to minimum, this algorithm becomes equivalent to the FD scheme for a smaller value of N .

We also remark the decrease ∼ 1/
√
N of the norm in case of GRW solutions. Thus

this numerical investigations suggests a converges to the analytical solution as O(δx2)
+O(1/

√
N), at moderate N , and a convergence of the order O(δx2) as for the finite dif-

ferences scheme, for larger N , when the condition 1/
√
N = O(δx2) is met. The GRWR

curves from Figs. 8 and 9 indicate a faster convergence with N , as already suggested by

the results from Fig. 5.

Since GRW algorithm can use large numbers of particles, it is “self-averaging”, in the

sense that Monte Carlo repetitions are not necessary and the required precision can be

achieved in a single GRW simulation. This is the essential difference with respect to the se-

quential PT procedures, which may be thought as “analogical Monte Carlo method” where

the solution of the diffusion equation is obtained by averages over individual trajectories of

individual particles (e.g. [19]).
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Figure 8. Convergence of GRW and reduced fluctuations algorithm GRWR towards the analytical

Gaussian solution as function of number of particles for δx = 0.1.
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Figure 9. Convergence of GRW and reduced fluctuations algorithm GRWR towards the analytical

Gaussian solution as function of number of particles for δx = 0.01.

3.3. Numerical Boundary Conditions

The boundary conditions for GRW algorithm depend on the values of d and vi. In this

section we discuss only the simplest case d = 1 and vi = 0 analyzed in the previous section.

In more complicated cases the boundary conditions can be similarly derived by means of

the methods presented in the following.

To formulate the boundary conditions we use the numerical flux of particles J(x, t)
defined as the number of particles crossing at time t the coordinate x. We evaluate the

numerical flux during a time step δt , so that the value obtained should be assigned to

the middle of the time step. For d = 1 and vi = 0 the particles jump only between the

neighboring nodes, so that the numerical flux should be assigned to the middle of the space

step,

J(i+ 1/2, k + 1/2) =
1

δt
[δn(i+ 1, i, k) − δn(i, i + 1, k)] . (31)

For the GRWD algorithm, using (26) and (13) with l = 1, the relation (31) becomes

J(i+ 1/2, k + 1/2) = r
δx

2 δt
[c(xi, tk)− c(xi+1, tk)] .
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From (23) it follows that this is the usual FD form of the Fick’s law

J(x, t) = −D∂xc(x, t) . (32)

Let us consider a finite grid with 2L + 1 nodes, i = −L,−L+ 1, ..., L. Since vi = 0
and d = 1, the boundary conditions imply only the nodes i = ±L. We discuss only the

boundary i = L, the case i = −L being similar. A Dirichlet boundary condition can be

formulated fixing the number of particles at the boundary n(L, k) = nb(k), with nb(k) a

given function of time. For other boundary conditions, including those of von Neumann

type, we must evaluate the boundary flux

J(L+ 1/2, k + 1/2) =
1

δt
[δn(L+ 1, L, k) − δn(L,L+ 1, k)] (33)

In this formula δn(L+1, L, k) is determined by means of the GRW algorithm from n(L, k),
but the number of particles δn(L,L + 1, k) jumping from outside in the node i = L is

unknown. Therefore the boundary condition can be formulated by calculating δn(L,L +
1, k) such that the flux (31) would have the requested value. Consider a von Neumann

boundary condition

J(L+ 1/2, k + 1/2) = Jb(k + 1/2) , (34)

where Jb is a given function of time. From (33) it follows the boundary condition

δn(L,L+ 1, k) = δn(L+ 1, L, k) − δtJb(k + 1/2). (35)

For Jb(k + 1/2) = 0, from (35) we obtain the boundary condition for impermeable walls.

For numerical simulations with r = 1 which use a single numerical mode, we must take

into account that (35) mixes the numerical modes. The mixing of the numerical modes can

be avoided by summing up (35) over two time steps.

Absorbing boundary condition corresponds to the case when all the particles leaving

the grid are removed, no particles being introduced from the exterior of the grid. In this

case,

δn(L,L+ 1, k) = 0 , (36)

and the flux from the grid towards its exterior has the maximum value. The stationary

boundary condition imposes the equality of the fluxes on a side and the other of the bound-

ary

J(L+ 1/2, k + 1/2) = J(L− 1/2, k + 1/2) .

Using (31) and (19) we obtain the boundary condition

δn(L,L + 1, k) = n(L, k)− δn(L,L, k) − δn(L,L− 1, k). (37)

Applied to GRWD (which is equivalent to the FD algorithm), this condition becomes, by

means of (26) and (27), the “transmission boundary condition” [18]

n(L+ 1, k) = 2n(L, k)− n(L− 1, k).

If we perform a numerical simulation on a finite grid of a nonstationary diffusion pro-

cess in an unbounded domain after the particles reach the grid boundary, then we must



Global Random Walk Algorithm for Diffusion Processes 21

formulate special boundary conditions. A method to obtain such nonstationary conditions

is to express the time derivative of the concentration at the boundary by means of the time

derivatives of the inside neighboring nodes. From the one-dimensional version of (1) with

V (x) = 0,

∂tc = D∂2
xc.

one obtains

∂tc(x− δx, t− δt) = D∂2
xc(x− δx, t− δt)

= D∂2
x[c(x, t) − ∂xc(x, t)δx − ∂tc(x, t)δt +O(δx2)]

= ∂tc(x, t) −D∂3
xc(x, t)δx +O(δx2),

where we used the relation δt = O(δx2) derived from (23). Then we have

∂tc(x, t) = ∂tc(x− δx, t− δt) +O(δx). (38)

Repeating the same argument for ∂tc(x− 2δx, t− δt) we also obtain

∂tc(x, t) = 2∂tc(x− δx, t− δt)− ∂tc(x− 2δx, t− δt) +O(δx2). (39)

For x = Lδx and t = (k + 1) δt, these relations written in finite difference, using (13),

give the nonstationary boundary condition

n(L, k + 1) = n(L− 1, k + 1)− n(L− 1, k) + n(L, k) (40)

and
n(L, k + 1) = 2n(L− 1, k + 1)− 2n(L− 1, k)− n(L− 2, k + 1)+

n(L− 2, k) + n(L, k) .
(41)

These conditions are expected to give an useful approximation when the particles distribu-

tion near the boundary is a good approximation of the solution. But when the first particles

approach the boundary, there are significant fluctuations of the particles number. There-

fore at the value obtained from (40) and (41) supplementary conditions are imposed: a)

n(L, k + 1) > 0; b) n(L, k + 1) must be smaller than the value obtained from the imper-

meable wall condition (35) with Jb = 0.

As an illustration of these boundary conditions we continue the simulation of the previ-

ous section for a temporal interval three times larger than tf . We use the GRWD algorithm

defined by (26) and (27) with the parameter r = 0.3, In these simulations δx = 0.1 and

the computational interval contains the spatial interval [−1, 1]. In Fig. 10 we represent

the time evolution of the boundary concentration for four different boundary conditions.

The points BC1 correspond to the impermeable wall boundary condition given by (35) with

Jb = 0, BC2 and BC3 to the nonstationary boundary conditions (40) and (41), and BC4

to the absorbing condition (36). The nonstationary condition (40) do not improve the ac-

curacy with respect to (35) and (36). We have found that the condition BC3 given by (41)

keeps the norm (30) at values smaller than 0.02, which proves that it is suitable to be used in

simulation of nonstationary diffusion. The same conclusion can be drawn from the spatial

variation of the concentration at the final time shown in Fig. 11.
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Figure 11. Spatial concentration profiles at the final simulation time tf for different boundary

conditions.

3.4. Two-dimensional GRW Algorithms

As already mentioned in Section 3.1, for constant diffusion coefficients the two and

three-dimensional algorithms can be simply built by repeating the one-dimensional proce-

dure for all space directions. Figure 12 illustrates such a two-dimensional GRW algorithm

where, after the advective step the particles execute jumps on x2-direction, then jumps on

x1-direction, both according to the one-dimensional rule (19). When the diffusion coeffi-

cients vary in space two different parameters r are needed to describe the ratios of particles

undergoing jumps (see Section 3.5 below) and the GRW algorithm follows the rules illus-

trated in Fig. 13 [33].

The two-dimensional algorithm from Fig. 12 is mainly useful in simulations of

advective-diffusive transport, described by (1), in heterogeneous media characterized by

highly variable velocity fields dominating the diffusion process, which therefore can be

sufficiently well approximated as isotropic and characterized by a single diffusion coeffi-

cient [28, 30, 31, 33, 34, 36, 37]. The values of the normalized concentration at a given

time t = kδt and at a lattice site (x1, x2) = (i1δx1, i2δx2), where δt is the time step and

δx1, and δx2 the space steps, can be estimated from the particles distribution produced by
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Figure 12. Two-dimensional GRW algorithm as a superposition of one-dimensional GRW proce-
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Figure 13. Two-dimensional GRW algorithm for independent longitudinal and transverse random

walks.

GRW simulations with the formula

c(x1, x2, t) =
1

N

1

4δx1δx2

i1+1
∑

i′
1
=i1−1

i2+1
∑

i′
2
=i2−1

n(i′1, i
′
2, kδt). (42)

Figure 14 shows the concentration field at successive times given by (42) for a GRW sim-

ulation of isotropic diffusion in a velocity field generated as a sample of a random space

function (see Section 5.1), in case of a singular initial distribution of particles. Figure 15

shows concentration fields for a non-singular initial condition.

Let us analyze in more detail the particles distribution in case of the initial

condition consisting of N particles uniformly distributed over N
X0

grid sites. By

n(i1, i2, k;x0,1, x0,2) we denote the distribution of particles at the time step k given by

the GRW procedure for a diffusion process staring at (x0,1, x0,2). Since the distribution of

the particles at time k can be written as

n(i1, i2, k) =
∑

x0,1,x0,2

n(i1, i2, k;x0,1, x0,2),
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Figure 14. The concentration field, at t = 0, t = 5δt and t = 10δt, for a singular initial distribution

of 1010 particles released at the origin of the lattice.
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Figure 15. The concentration field at the same times as in Fig. 14, for a uniform initial distribution

of 1010 particles in the square of sides δx1 and δx2.

it follows that

1

N

∑

i1,i2

n(i1, i2, k)

=
1

N
X0

∑

x0,1,x0,2

N
X0

N

∑

i1,i2

n(i1, i2, k;x0,1, x0,2). (43)

Thus, according to (43), the concentration (42), as well as its spatial moments, are averages
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over the trajectories of the diffusion process starting at given initial positions and over the

distribution of the initial positions. The ability of the GRW to distinguish between the

two kind of averages has useful applications in investigations on dependence on initial

conditions and memory effects of diffusion in random velocity fields [34, 36, 37].

3.5. GRW Algorithm for Two-dimensional Diffusion in Non-homogeneous

and Anisotropic Media

In the following we consider a two-dimensional diffusion process described by the di-

agonal diffusion tensor
∥

∥

∥

∥

∥

Dx(x, y) 0
0 Dy(x, y)

∥

∥

∥

∥

∥

and the diffusion equation

∂tc = ∂x(Dx∂xc) + ∂y(Dy∂yc).

The GRW solution of the diffusion equation with spatially dependent diffusion coefficients

should use correction terms associated with the drift term (−∂xDx,−∂yDy) [32]. However,

for the purpose of illustration, we consider here only the particular case of slowly variable

diffusion coefficients, i.e., ∂xDx ≈ 0 and ∂yDy ≈ 0, for which the diffusion equation can

be approximated by

∂tc = Dx∂
2
xc+Dy∂

2
yc. (44)

The equation (44) has no drift terms and the diffusion coefficients vary in space. In this

case, simulations using the superposition of one-dimensional GRW rules (19) illustrated in

Fig. 12 are no longer accurate. Therefore, we use the new algorithm from Fig. 13, where

the particles lying at a lattice site are globally spread according to the rule

n(i, j, k) = δn(i, j | i, j, k)
+ δn(i− dx, j | i, j, k) + δn(i+ dx, j | i, j, k)
+ δn(i, j − dy | i, j, k) + δn(i, j + dy | i, j, k) (45)

where n(i, j, k) is the number of particles at the site (xi, yj) = (iδx, jδy) at the time kδt.
Unlike the two-dimensional algorithm presented in Fig. 12, where the one-dimensional

procedure is applied successively for longitudinal and transversal directions, the procedure

(45) moves the particles simultaneously along the principal directions of the diffusion tensor

as illustrated in Fig. 13 (for the general case of a non vanishing drift).

The anisotropy is taken into account by two different parameters dx and dy which de-

scribe the diffusive jumps along the coordinates axes. The spatial variation of the diffusion

coefficients is described through the variable parameters

rx =
2Dxδt

(dxδx)2
, ry =

2Dyδt

(dyδy)2
. (46)

After the global change of state of the lattice by the procedure (45) applied at every site

containing particles, the new numbers of particles at sites are obtained similarly to (20) by

summation over two spatial indices.
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The average over an ensemble of simulations of the terms in (45) are related by

δn(i ± dx | j, k) = 1

2
rx(i, j) n(i, j, k),

δn(i | j ± dy, k) =
1

2
ry(i, j) n(i, j, k),

δn(i, j | i, j, k) = [1− rx(i, j) − ry(i, j)] n(j, k).

These relations can be used to show that for slowly variable diffusion coefficients this two-

dimensional GRW algorithm approximates the finite difference scheme for the diffusion

equation (44).

The lattice steps δx and δy are chosen accordingly to the desired resolution of the

concentration field. The time step δt is inferred from the condition rx + ry ≤ 1, which

states that the numbers of diffusing particles are limited by the numbers of particles at the

lattice sites. Using (46) one obtains

δt ≤
[

2Dmax
x

(dxδx)2
+

2Dmax
y

(dyδy)2

]−1

, (47)

where Dmax
x and Dmax

y are the upper bounds of the diffusion coefficients Dx(x, y) and

Dy(x, y).
The two dimensional algorithm (45) has been used to simulate the diffusion through

the human skin [33]. A two dimensional geometry with the x-axis parallel and the y-axis

perpendicular to the surface of the skin was used. A thin film consisting of N = 1020 water

molecules with ∆x = 10 mm was considered to be applied on the surface of the skin.

Since the skin structure is stratified, the diffusion can be described by the two-dimensional

equation (44). To describe the diffusion in the horizontal direction the lattice dimension on

the x axis was 3∆x. An acceptable resolution was obtained with δx = 0.1mm, (300 nodes

per horizontal lattice length). A simplified two layers structure of the skin was considered,

with thickness y1 = 0.1mm and y2 = 0.5mm respectively. With a resolution of δy = 0.01
mm the lattice extended over 10 nodes in the first layer and over 50 nodes in the second.

Because of the nonhomogeneous structure of the skin the diffusion coefficients show

spatial fluctuations about the mean value. At every lattice site the coefficients Dx and Dy

were generated as normal random variables with the mean value equal to half the maximum

values Dmax
x and Dmax

y and variance equal to a fraction p = 0.1 of the corresponding

maximum. Since the cells are rather flat, the coefficient Dmax
x = 2Dmax

y = 5.8810−7 m2/s
was considered for the first layer. In the second layer an isotropic diffusion coefficient ten

times larger than in the superior layer was chosen. Between the layers a transition zone of

thickness 3δy was placed, where diffusion coefficients vary linearly [33].

Two different boundary conditions were used. At the surface of the skin, the molecules

which jump in the exterior of the domain were blocked on the boundary. At the infe-

rior boundary a “transmission boundary condition” in the first order of approximation (41)

was imposed. This last condition has the property to not disturb the diffusion front at the

boundary. The time step was chosen using the condition (47). Some simulation results are

presented in Figs. 16 and 17. The high resolution GRW simulations were further used to

estimate probability distributions of water molecules and fluxes through the superior and

inferior layers of the skin model [33].
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Figure 16. The distribution of the water molecules in the skin after 5 minutes.

Figure 17. The distribution of the water molecules in the skin after 200 minutes.

4. Two Dimensional Biased-GRW Algorithm

4.1. The BGRW Algorithm

The GRW algorithm was introduced in Section 2.2 as a superposition of many PT pro-

cedures, implemented as weak Euler schemes for the Itô equation (2). Further, in Section

3.1, GRW was generalized by allowing groups of particles to be captured at a lattice site

after the advection step, so that it remains equivalent with the Weak Euler scheme (i.e.,

it moves particles by advection displacements followed by unbiased random walk jumps)

only for a time step. Both GRW algorithms were shown to be also equivalent, in case

of vanishing or constant drift coefficients, with the FD scheme for the diffusion equation.

Since the global spreading of the particles is given by rules which update the state of the

lattice sites, e.g. (8-9), (19-20), (45), GRW is a particular cellular automaton (CA), i.e., it is

a stochastic process in the space of configurations, defined at a given time by the occupation

numbers at each lattice site [29]. What makes the GRW algorithm different from a typical

CA approach [17] is that the number of particles per grid site is not limited by an “exclu-

sion principle” and there are no limitations for the total number of particles. Therefore, as



28 Nicolae Suciu and Călin Vamoş

shown in Figs. 8-9, GRW is “self-averaging” in the sense that the solution given by a single

simulation is practically the same as that obtained after averaging over large ensembles of

simulations. By working with integers, GRW is free of round-of errors, avoids numerical

diffusion and it is inherently stable (see Sections 2.2 and 3.1). However, for variable drift

and diffusion coefficients overshooting errors occur when the particles jump over more than

one lattice site (see Fig. 18). This is mainly the case of diffusion in space variable velocity

fields, when the velocity at the sites between the initial and final position of the group of

particles during the advection step may have sharp variations. Since by playing only with

the parameters δx, δt, d, and r of the unbiased GRW algorithm it is very difficult to reduce

the overshooting errors [28], a better solution is to modify the CA rule of moving groups of

particles.

To get rid of overshooting errors, we impose that particles jump only to the nearest

sites (Fig. 19). In this procedure the advection will be simulated by a bias in the random

walk jumps. Therefore, we call it “biased global random walk” (BGRW) algorithm. Since

BGRW moves all the particles lying at a lattice site in a single numerical procedure, N
can be as large as necessary to ensure the self-averaging, which is the main difference with

respect to other CA for diffusion without exclusion principle (e.g. [17]).
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Figure 18. Change of state in unbiased GRW algorithm over a time step δt = 0.5.
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Figure 19. Change of state in BGRW algorithm over a time step δt = 0.0025.
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The 2-dimensional BGRW is defined by the CA rule

n(i, j, k) = δn(i, j | i, j, k)
+ δn(i+ 1, j | i, j, k) + δn(i− 1, j | i, j, k)
+ δn(i, j + 1 | i, j, k) + δn(i, j − 1 | i, j, k), (48)

where n(i, j, k) is the number of particles at the site (x, y) = (iδx, jδy) at the time t =
kδt. Corresponding to the components of the drift (velocity) and diffusion coefficients of

the transport problem, Vx(x, y, t), Vy(x, y, t), Dx(x, y, t) and Dy(x, y, t), we define the

dimensionless parameters

vx = Vx
δt

δx
, vy = Vy

δt

δy
, rx = Dx

2δt

δx2
, ry = 2Dy

2δt

δy2
. (49)

The averages of the terms in (48) over an ensemble of simulations are related by

δn(i, j | i, j, k) = (1− rx − ry) n(i, j, k),

δn(i± 1, j | i, j, k) = 1

2
(rx ± vx)n(i, j, k),

δn(i, j ± 1 | i, j, k) = 1

2
(ry ± vy)n(i, j, k). (50)

The last four terms in (48) are Bernoulli random variables which, for the simulations pre-

sented in the following, were approximated as in the reduced fluctuations algorithm GRWR

presented in Section 3.1.

Defining the particle density ρ(x, y, t) = n(i, j, k) and summing the contributions from

the first neighbors to a lattice site, from (48-50) one obtains

ρ(x, y, t+ δt) − ρ(x, y, t)

δt
+

Vxρ(x+ δx, y, t) − Vxρ(x− δx, y, t)

2δx
+

Vyρ(x, y + δy, t)− Vyρ(x, y − δy, t)

2δy
=

Dxρ(x+ δx, y, t) − 2Dxρ(x, y, t) +Dxρ(x− δx, y, t)

δx2
+

Dyρ(x, y + δy, t)− 2Dyρ(x, y, t) +Dyρ(x, y − δy, t)

δy2
, (51)

which is just the forward in time centered in space FD scheme for the Fokker-Plank equation

∂tρ+ ∂x(Vxρ) + ∂y(Vyρ) = ∂2
x(Dxρ) + ∂2

y(Dyρ). (52)

The advection-diffusion equation which corresponds to Fick’s law

∂tρ+ ∂x(V
∗
x ρ) + ∂y(V

∗
y ρ) = ∂xDx∂xρ+ ∂yDy∂yρ,

is equivalent to (52) if the new drift coefficients are given by the relations V ∗
x = Vx−∂xDx

and V ∗
y = Vy − ∂yDy [19] and the corresponding BGRW algorithm can be easily derived.

As it follows from (50), BGRW is subject to the restrictions

rx + ry ≤ 1, |vx| ≤ rx, |vy| ≤ ry. (53)
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Adding the conditions rx ≤ 0.5 and ry ≤ 0.5, the von Neumann criterion for stability

is satisfied, implying that there is no numerical diffusion. The last two inequalities in (53)

ensure that the Courant numbers Vxδt/δx and Vyδt/δy are sub-unitary, thus the algorithm

also avoids the overshooting errors. As shown by (51), the BGRW algorithm is equivalent

with a FD scheme even in case of space-time variable velocity fields, unlike the unbiased

GRW, for which the equivalence holds only for constant velocity. Instead, because the ad-

vective displacement is accounted for by biased jump probabilities, BGRW is not equivalent

with an Euler scheme.

As a direct consequence of (53), we can see that removing the overshooting errors re-

quires high computational costs. Let us consider an isotropic two-dimensional diffusion

in groundwater (Dx = Dy = D = 0.01 m2/day) in a mean flow of U = 1 m/day ori-

ented along the x axis and with a standard deviation σ = 0.2 m/day. The velocity field is

generated as a realization of a periodic random field, consisting of a superposition of 64 sin-

modes which approximates a Gaussian field (see Section 5.1 and Equation (60)). Assuming

that the maximum velocity can be as large as V max = U+5σ = 2 m/day, from (49) and the

second condition (53) it follows that δx ≤ 2D/V max
x = 0.01 m. Since this space step also

fulfils the third condition (53), in the following we take δy = δx. Correspondingly, from

(49), δt = 0.0025 day (the case represented in Fig. 19). The simulation of the transport

over 100 days, for a point instantaneous injection at the origin of the lattice, required about

15 cpu hours. For the same problem and consuming the same cpu time, the unbiased GRW

algorithm with δx = 0.1 m and δt = 0.5 day (Fig. 18) was able to perform a transport sim-

ulation over 4000 days, on the same computer (IBM Regatta-Power 4) [32]. Nevertheless,

the BGRW simulations are very helpful for the evaluation of other numerical methods [32],

mainly, as in the case presented here, when no analytical solutions are available.

We computed the first and second centered spatial moments of the density ρ, defined by

µα(t) =

∫ ∫

αρ(x, y, t)dxdy, µαα(t) =

∫ ∫

(α− µα)
2ρ(x, y, t)dxdy, (54)

where α stands for x or y and the integrals are computed over the support of ρ. Further,

using (54), we computed the derivatives of the 1-st moments V cm
α = dµα/dt, which rep-

resent the velocity components of the center of mass of the solute body, and the half-rates

of increase with time of the 2-nd moments Deff
αα = µαα/(2t), which in the large time limit

define the effective diffusion coefficients for the transport process [2].

The self-averaging of the GRW simulations for the transport problem considered here is

ensured if the total number of particles is of the order N = 1010 [28]. Using this value of N
in all cases, the numerical solution ρ = n was estimated by the actual number of particles

n at the lattice sites.

The moments (54) were computed with BGRW for the parameters δx = 0.01 m and

δt = 0.0025 day (case b1) and for a finer discretization, δx = 0.005 m and δt = 0.000625
day (case b2), with rx = ry = r = 0.5 in both cases. The errors of BGRW simulation for

the case (b1) are estimated by

ε(V cm
α ) =

√

1

T

∑k=T

k=0
(∆V cm

α )2(k), ε(Deff
αα ) =

√

1

T

∑k=T

k=0
(∆Deff

αα )2(k) (55)

where ∆V cm
α and ∆Deff

αα are the deviations of the corresponding quantities computed in

case (b1) with respect to those obtained in case (b2) and T is the simulation duration. The
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Table 1. Errors for the BGRW simulation case (b1) estimated by comparison with the

BGRW simulation case (b2)

ε(V cm
x ) ε(V cm

y ) ε(Deff
xx ) ε(Deff

yy )

0.00033 m/day 0.00026 m/day 0.00075 m2/day 0.00002 m2/day

error estimates presented in Table 1 are orders of magnitude smaller than the fluctuations

of the first two moments of the density ρ (governed by the physical parameters D = 0.01
m2/day and σ = 0.2 m/day). A numerical investigation on the convergence of BGRW by

comparisons with analytical solutions has not yet been done. However, since there are no

overshooting errors, it is expected that, for the large number of particles used in simulations,

the convergence order for BGRW is the same as that for GRW simulations of genuine

diffusion (which was shown in Section 3.2 to be O(δx2)). Since, due to conditions (53), this

order is much smaller than for the particles methods with overshooting, BGRW solutions

can serve as reference to evaluate the coarser (but faster) unbiased GRW algorithm.

As an illustration, we compare in Figs. 20 and 21 the deviations ∆V cm
α and ∆Deff

αα with

respect to BGRW (case b1) of the results given by unbiased GRW for the sets of parameters

δx = 0.1 m, δt = 0.5 day, r = 0.25 (case u1) and δx = 0.01 m, δt = 0.1 day, r = 0.408
(case u2). The corresponding error estimations via (55) are given in Table 2.
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Figure 20. Deviations ∆V cm
α from BGRW solution of unbiased-GRW results for simulations (u1)

and (u2).

Table 2. Errors for the unbiased GRW simulations case (u1) and case (u2) estimated

by comparisons with the BGRW simulation case (b1)

ε(V cm
x ) ε(V cm

y ) ε(Deff
xx ) ε(Deff

yy )

(u1) 0.02359 m/day 0.01716 m/day 0.01317 m2/day 0.00257 m2/day

(u2) 0.00612 m/day 0.00524 m/day 0.00312 m2/day 0.00039 m2/day

Estimates like those given in Table 2 can be used to check whether the numerical setup
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Figure 21. Deviations ∆Deff
αα from BGRW solution of unbiased-GRW results for simulations (u1)

and (u2).

of the unbiased GRW simulation fulfils the accuracy requirements for specific investiga-

tions. For instance, we conclude that even if the coarser discretization (u1) yields errors

ε(Deff
xx ) of the order of the local diffusion coefficient D it is still accurate enough to re-

produce the behavior of the expectations (averages over ensembles of velocity fields) of the

longitudinal effective coefficients Deff
xx , which are one order of magnitude larger than D

[30, 31]. In this case the unbiased GRW can be successfully used in investigations on the

large time behavior and self-averaging properties of the transport process [31, 11]. Since

for (u2) the errors are one order of magnitude smaller, in this case the unbiased GRW can

be used to simulate the behavior in single realizations. BGRW should be used when higher

accuracy is necessary (e.g. smaller time scales, transport in multi-phase systems, complex

reaction-diffusion processes).

BGRW is similar to the CA method for reaction-diffusion processes proposed by Kara-

piperis and Blankleider [17] and their modeling strategy for the reaction step can be directly

implemented in our algorithm. The essential difference is that, instead of the sequential

procedure of Karapiperis and Blankleider [17], BGRW performs a global spreading of par-

ticles over lattice sites and, moreover, benefits from the flexibility of choosing the global

spreading method (Bernoulli distributions, reduced fluctuations GRW, erf-GRW, presented

in Section 3.1). Since BGRW is anyway equivalent to a FD method, the question naturally

arising is why don’t use just the FD scheme? For two reasons. First, by using particles

BGRW yields a physical meaningful smallest particles density, that of one particle per lat-

tice site, and diffusion fronts have a smaller extent than for FD schemes, which reduces

the computational effort. The second reason is that BGRW mimics the molecular chaos by

the fluctuations of the numbers of particles. Therefore, BGRW is able to describe phenom-

ena that are not captured by FD numerical approaches. For instance, coherent structures

produced by the interplay of reaction dynamics and molecular chaos, in absence of concen-

tration gradients, when the diffusion term of FD vanish, already captured by particles-CA

[17], can be efficiently simulated by a BGRW algorithm.
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4.2. Evaluation of Unbiased GRW by Comparison with BGRW

We consider the generic problem for transport in groundwater, the numerical setup (b1)

for BGRW, and the setup (u1) for the unbiased GRW, described in the previous section.

To assess the reliability of the faster, but coarser, unbiased GRW simulations we shall

use the overshooting-free (and more expensive in terms of cpu time) BGRW algorithm.

Because of the statistical nature of the predictions for groundwater contamination, we go

beyond the single realization comparisons done in the previous section, and proceed with

an evaluation of GRW solutions for the means and fluctuations of the observables of the

transport process, computed by averaging over an ensemble of 256 velocity realizations.

As observables we consider the spatial moments of the solute concentration and the space

average of the concentration over the cross-section of the solute plume.

The two-dimensional version of the equation (1) was solved by GRW and BGRW, for

identical realizations of the velocity, point instantaneous injection at the origin of the com-

putational domain. The grid dimensions were fixed to L1 = 150 m and L2 = 20 m, so that

during the total simulation time, T = 100 days, no particle reached the boundary. We eval-

uated, from both GRW and BGRW simulations, the first and the 2-nd spatial moments of

the concentration (54), the velocity components of the center of mass V cm
l (t) = dµl(t)/dt,

and the effective diffusion coefficients Deff
ll (t) = µll(t)/(2t), where l = 1, 2. The cross-

section concentration was computed as mean concentration in a narrow slab of dimensions

1 m (= 10δx) times 20 m (= L2) with the formula [30]

C(x1, t) =
1

N

1

10δxL2

L2/δx
∑

i2=1

5
∑

i′
1
=−5

n(i1 + i′1, i2, kδt). (56)

For comparisons we used the cross-section concentration at the center of mass of the plume,

i.e., (56) evaluated at x1 = µ1(t).

The evaluation of the center of mass velocity was done using the absolute errors

δ(Φ) = Φ(GRW)− Φ(BGRW), (57)

where Φ stands, respectively, for the expectation E(V cm
l ), computed by arithmetic

means over the 256 velocity realizations, and for the corresponding standard deviations

SD(V cm
l ) = {E[(V cm

l )2]− [E(V cm
l )]2}1/2. The results for l = 1 and l = 2 are presented

in Figs 22 and 23. In these figures we also plotted by horizontal lines the mean values of

the errors (57) calculated by

‖δ(Φ)‖ =

{

1

T − T1

∫ T

T1

[δ(Φ)(t)]2dt

}1/2

, (58)

where T1 = 1 day.

The evaluation for the effective coefficients Deff
ll and cross-section concentration C

were achieved by using the percentage relative errors

ε(Φ) = 100
Φ(GRW)− Φ(BGRW)

Φ(BGRW)
, (59)
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where Φ stands, again, for the corresponding expectations, E(·), and standard deviations,

SD(·). The results for the longitudinal and transverse effective coefficients are given in

Figs 24 and 25, respectively, and those for the cross-section concentration in figure 26. The

horizontal lines in these figures correspond to the mean errors (59), calculated similarly to

(58), as ‖ε(Φ)‖.
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Figure 22. Evaluation of the longitudinal component of the center of mass velocity.
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Figure 23. Evaluation of the transverse component of the center of mass velocity.

A comparison between Figs. 22 and 23 and the theoretical expectation values

E(V cm
1 ) = 1 m/day and E(V cm

2 ) = 0 m/day [37], shows that GRW reproduces the mean

and the fluctuations of the velocity of the plume center of mass with a very good precision

of the order of a few cm/day. Figures 25 and 27 also show that the GRW estimations of the

longitudinal effective coefficient and cross-section concentration are obtained with a satis-

factory precision of about 5%. The errors for the transverse effective coefficient are larger,

mainly those for the standard deviation (Fig. 25). However, since limit theorems results for

the long time behavior of the transport process considered here predict up-scaled diffusion

coefficients given by asymptotic expansions truncated at the order of local diffusion coef-

ficient D [37], absolute errors of the GRW estimates for the transverse coefficient smaller

than D are also acceptable. The GRW algorithm, validated in this way by comparisons

with BGRW results, has been used to evaluate the classical “first-order approximation” of

the longitudinal effective diffusion coefficients [31].
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Figure 24. Evaluation of the longitudinal effective diffusion coefficient.
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Figure 25. Evaluation of the transverse effective diffusion coefficient.
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Figure 26. Evaluation of the cross-section concentration at the plume center of mass.

5. Sensitivity/Uncertainty Analysis of Macrodispersion Model

5.1. Monte Carlo Simulations

To enable the simulation of large ensembles of transport realizations, a linearization of

the flow equation (3) was considered and the velocity samples were generated, for given
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statistics of the hydraulic conductivity K , by the Kraichnan’s randomization method [26],

which has been successfully used in numerical investigations on large scale behavior of the

passive transport in aquifers [11, 30, 31]. We considered a log-normally distributed con-

ductivity K , i.e., a normal lnK field with variance σ2 and exponential isotropic correlation

ρ(|x1 − x2|) = σ2 exp(−|x1 − x2|/λ), where λ is the correlation length. For a given pres-

sure gradient between the inlet and outlet boundaries, which fixes the value of the ensemble

mean velocity U = |〈V〉|, the incompressible Darcy flow, solution of equations (3), was

approximated by a superposition of Np periodic modes [27]

Vi(x)=Uδi1 + Uσ

√

2

Np

Np
∑

l=1

pi(ql) sin(ql · x+ αl). (60)

The wave vectors ql are mutually independent random variables, with probability distribu-

tion proportional with the spectral density of the lnK field, and the phases αl are random

variables uniformly distributed in the interval [0, 2π]. The functions pl are projectors which

ensure the incompressibility of the flow. It has been shown that Vi tends to a Gaussian

random field when Np → ∞ [26]. It was also found that Np = 6400, which we fix in

the following, provides reliable approximations of the velocity field at the problem’s spatial

scale considered here [30, 11].
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Figure 27. Single realization GRW estimates of longitudinal diffusion coefficient for increasing N
show that N = 1010 ensures the self-averaging of the estimate.

The mean velocity occurring in (60), which can be freely chosen, was set to a typical

value of U = 1 m/day. We also have chosen a typical local-scale diffusion coefficient in

(1), D = 0.01 m2/day, and λ = 1 m for the correlation length of the lnK field, so that the

Péclet number was set to Pe= Uλ/D = 100. Transport simulations were carried out with

the two-dimensional unbiased GRW algorithm with reduced fluctuations, constructed as a

superposition of one-dimensional GRW procedures (see Section 3.4 and Fig. 12), within the

numerical setup (u1) described in Section 4.1. The total number of particles was N = 1010,

a value which ensures the self averaging of the single GRW simulations and, as shown in

Fig. 27, yields estimates of effective diffusion coefficients that are indistinguishable from

those for N > 1010 (in fact we found that they coincide in the limit of double precision

[28]). In this way, we excluded a possible source of errors, that was important in traditional

Monte Carlo simulations based on PT procedures using thousands of particles (e.g. [27]).
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Figure 28. Monte Carlo estimates of mean value and standard deviations (thin lines) of the longi-

tudinal and transverse diffusion coefficients for a singular initial condition.

By averaging over ensembles of 1024 realizations we estimated mean values and standard

deviations of the effective diffusion coefficients (see e.g. Fig. 28) with Monte Carlo errors

smaller than half the local coefficient D [34].

We conducted Monte Carlo simulations for two cases, corresponding to two extreme

degrees of heterogeneity: σ2 = 0.1, for which the approximation (60) of the velocity field

is accurate and the macrodispersion model is expected to provide a reliable description of

the mean behavior of the transport process, and σ2 = 6, an extremely large value, for which

(60) is no longer close to the true solution of flow equations (3) but can however serve to

illustrate the situation when the macrodispersion model might be inadequate.

The behavior of a passive tracer, initially uniformly distributed in slabs of dimensions

100λ × λ perpendicular to the mean flow direction, was simulated over 2000 days for the

low heterogeneity case σ2 = 0.1, in 1024 realizations of the random field (60), and over

300 days, in 100 realizations in the highly heterogeneous case σ2 = 6. The contours of

the solute plumes in the two extreme cases are compared in Figs. 29 and 30. (Note that

the spatial simulation domain was, in all cases, large enough to avoid the influence of the

boundaries.)
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Figure 29. Plume contours for σ2 = 0.1 at t = 1000 days and at t = 1500 days.
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Figure 30. Plume contours for σ2 = 6.0 at t = 10 days and at t = 100 days.

5.2. Sensitivity and Uncertainty Analysis

Monte Carlo estimates, by equal-weight (arithmetic) averages over the corresponding

ensembles of realizations, hereafter denoted by 〈· · ·〉, were computed for the set of in-

put parameters of the macrodispersion model, consisting of longitudinal u = dE(X1)/dt
and transverse v = dE(X2)/dt components of the center of mass velocity, longitudinal

Dx = Deff
11 and transverse Dy = Deff

22 effective diffusion coefficients, for the only output

parameter considered here, consisting of the cross-section space average concentration at

the center of mass (hereafter denoted by c), as well as for their cross-correlations, 〈uv〉,
〈uDx〉, 〈uDy〉, 〈vDx〉, 〈vDy〉, 〈DxDy〉, 〈uc〉, 〈vc〉, 〈Dxc〉, and 〈Dyc〉. Probability densi-

ties of the parameters, approximated by histograms, were summed-up to estimate cumula-

tive probability distributions.

Figure 31 shows that for low heterogeneity (σ2 = 0.1) the only input-input relevant

correlation is that between the longitudinal velocity of the center of mass and the transverse

effective diffusion coefficient. The sensitivity to the longitudinal mean flow velocity of the

transverse effective diffusion coefficient indicates its increased role in case of small mean

flow velocity. The results for the highly heterogeneous case (σ2 = 6) presented in Fig. 5

show stronger correlations between the input parameters, which are expected to facilitate

the uncertainty propagation and to reduce the reliability of the macrodispersion model.

As expected, for low heterogeneity (Fig. 33) there is a strong correlation between the

longitudinal effective diffusion coefficient and the cross-section averaged concentration.

This suggests that, when the only output parameter of interest is the cross-section concen-

tration, the macrodispersion model can be trusted as reliable for single-realizations of the

transport process, in agreement with other observations that the cross-section concentration

can be modeled as an one-dimensional advection-diffusion process governed by the longi-

tudinal effective diffusion coefficient [30]. The situation is different for high heterogeneity

(Fig. 34), where the cross-section concentration is also strongly correlated with the trans-

verse effective diffusion coefficient. Again, this result renders questionable the applicability

of the macrodispersion model to highly heterogeneous media.

To illustrate the capability of the Monte Carlo approach based on GRW simulations

to produce a full statistical description of the transport process, we present in Fig. 35 the

estimated cumulative probability distribution of the longitudinal velocity of the center of
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Figure 31. Correlations between the input parameters of the macrodispersion model (velocity

components of center of mass, u and v, and effective diffusion coefficients, Dx and Dy) for σ2 =
0.1.
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Figure 32. Correlations between the input parameters of the macrodispersion model (velocity

components of center of mass, u and v, and effective diffusion coefficients, Dx and Dy) for σ2 =
6.0.
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Figure 33. Correlations between input parameters u, v, Dx, and Dy , and the output parameter c
(the cross-section space average concentration at the center of mass) for σ2 = 0.1.

mass and in Fig. 36 the distribution of the cross section concentration at the plume’s center
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Figure 34. Correlations between input parameters u, v, Dx, and Dy , and the output parameter c
(the cross-section space average concentration at the center of mass) for σ2 = 6.0.
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Figure 35. Probability distributions of the longitudinal component of the velocity of the center of

mass as function of time ucm(t) for σ2 = 0.1.
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6. Conclusion

The GRW algorithm moves groups of particles according to the random walk rule,

generalizing the usual sequential algorithms which generate trajectories of the individual

particles. Practically, GRW simulates the collective diffusive behavior of large systems of

particles at costs comparable with those of moving a single particle by sequential algo-

rithms. This results in a significant saving of memory and computing time. The number of

particles is limited only by the maximum number that can be represented on a computer.

As a random walk method, GRW is stable and free of numerical diffusion [43].

The unbiased GRW algorithm can be thought of as a weak Euler scheme for the Itô

equation which, instead of simulating individual trajectories, provides a numerical solution

for the corresponding probability density governed by the associated Fokker-Planck equa-

tion. For simple diffusion processes with constant drift coefficients, GRW generalizes the

FD scheme and, for large enough number of particles, has the same precision and reaches

the same order of convergence. The biased algorithm BGRW models the drift as a bias in

the jump probability, and, therefore, it is no longer equivalent to an Euler scheme for the

Itô equation. Instead, BGRW is equivalent to a stable FD scheme free of numerical diffu-

sion for the Fokker Planck equation, even in the general case of space-time variable drift

and diffusion coefficients. Even though BGRW requires finer grids, hence higher computa-

tional resources, it is very useful as a reference method in evaluating the overshooting errors

of the unbiased GRW codes [32, 31]. By working with indivisible particles, both BGRW

and unbiased GRW avoid extending diffusion fronts beyond the minimum concentration

of one particle per lattice site, saving time, and mimic the molecular chaos by fluctuations

of the number of particles, accounting for subtle phenomena such as coherent structures at

equilibrium, which cannot be described by FD methods [17].

GRW algorithms are suitable for modeling complex diffusion processes such as

advection-dominated transport with random space-variable coefficients, with chemical re-

actions between several molecular species, as well as radioactive decay processes. The

numerical modeling may benefit of the simple cellular automaton structure of the GRW

algorithms and of their ability to consider systems of particles as large as the real number

of species molecules involved in chemical reactions. Owing to the formal equivalence of

Fick’s and Darcy’s laws, GRW solutions of flow in porous media described by Richards

equation [25] can also be implemented. Another promising application is the multidimen-

sional GRW simulation for the evolution of the probability distributions of the concentra-

tions in reactive turbulent transport, modeled as diffusive process in a multidimensional

space constructed as cartesian product between the physical space and the ranges of the

species concentrations [3, 24, 41]. In principle, the GRW algorithm can be adapted to

solve problems for parabolic differential equations or ordinary stochastic differential equa-

tions whenever they describe normal diffusion processes and are compatible with random

walk approximations. Anomalous diffusion processes do not belong to this class but some

anomalous transport problems can yet be solved similarly with the problem of diffusion in

random fields presented in this chapter. For instance, if the drift coefficients are samples of

a fractional Gaussian noise in space, ensembles of GRW simulations may be used to assess

the statistics of the resulting process, consisting of a superposition of normal diffusion and

fractional Brownian motion [37].
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