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ABSTRACT
This paper represents a continuation of our previous work, where a
mathematical model which describes the equilibrium of an elastic body in
frictional contact with a moving foundation was considered. An existence
and uniqueness result was proved, together with a convergence result.
The proofs were carried out by using arguments of elliptic variational
inequalities. In this current paper, we complete our model by taking into
account the wear of the foundation. This makes the problem evolutionary
and leads to a new and nonstandard mathematical model, which couples
a time-dependent variational inequality with an integral equation. We
provide the unique weak solvability of the model by using a fixed point
argument, amongothers. Then,wepenalize theunilateral contact condition
and prove that the penalized problem has a unique solution which
converges to the solution of the original problem, as the penalization
parameter converges to zero.
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1. Introduction

Contact processes between deformable bodies or between a deformable body and a foundation
abound in industry and everyday life. Their modeling is rather complex and, usually, leads to strongly
nonlinear boundary value problems. Basic reference in the field includes [1–5] and,more recently.[6–
9] There, the mathematical analysis of various models of contact is provided, including existence
and uniqueness results of the solution. The references [2,3,7] deal also with the numerical analysis of
variousmodels of contact, including the study of fully discrete schemes, error estimates andnumerical
simulations.

Contact processes are accompanied by a number of phenomena among which the main one is
the friction. Nevertheless, more is involved in contact than just friction. Indeed, during a contact
process elastic or plastic deformations of the surface asperities may happen. Also, some or all of
the following may take place: squeezing of oil or other fluids, breaking of the asperities’ tips and
production of debris, motion of the debris, formation or welding of junctions, creeping, fracture, etc.
Moreover, frictional contact is associated with heat generation, material damage, wear and adhesion
of contacting surfaces.

As the contact process evolves, the contacting surfaces evolve too, via their wear. Wear in sliding
systems is often very slow but it is persisting, continuous and cumulative. There may be increase in
the conformity of the surfaces and their smoothness, or increase in the surface roughness, fogging
of the surface, generation of scratches and grooves, initiation of cracks and generation of debris

CONTACT Mircea Sofonea sofonea@univ-perp.fr
© 2015 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

D
ea

ki
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

0:
22

 2
7 

O
ct

ob
er

 2
01

5 



2 M. SOFONEA ET AL.

which may change the contact characteristics. Asperities under large contact stresses may deform
plastically or break. In the first case, the surface morphology changes and, therefore, both the contact
stress and the friction traction are affected. These may be incorporated into a history or memory-
dependent friction coefficient. In the second case, when asperities break, the surfaces wear out, debris
are produced, and again the surface structure changes over time. This must be taken into account if
the long time behavior of the system is to be realistically predicted.

To model the wear of the contacting surfaces the wear function w = w(x, t) is introduced,
measuring the depth, in the normal direction, of the removed material. Therefore, it measures the
change in the surface geometry, and represents the cumulative amount of material removed, per unit
surface area, in the neighborhood of the point x up to time t. Since the amounts of material removed
are small, as an approximation, one may treat it as a change in the gap. It is usually assumed that the
rate of wear of the surface is proportional to the contact pressure and to the relative slip rate, that is
to the dissipated frictional power. This leads to the rate form of Archard’s law of surface wear,

ẇ = k |σν | ‖v‖, (1.1)

where k is the wear coefficient, a very small positive constant in practice. Also, σν represents the
normal stress on the contact surface and ‖v‖ denotes the relative slip rate. The initial condition is
w(x, 0) = w0(x), and w0(x) = 0 when the surface is new or the initial shape is used as the reference
configuration. The wear implies the evolution of contacting surfaces and these changes affect the
contact process. Thus, due to its crucial role, there exists a large engineering and mathematical
literature devoted to this topic. We resume to mention here the references [8,10–22], among others.

Amathematicalmodel which describes the equilibriumof an elastic body in frictional contact with
a moving foundation was recently considered in [23]. There, the contact was modeled with a normal
compliance condition with unilateral constraints, associated to a sliding version of Coulomb’s law
of dry friction. The unique weak solvability of the model was proved, by using arguments of elliptic
quasivariational inequalities. The current paper represents a continuation of [23]. Here, we complete
the model studied in [23] by taking into account the wear of the foundation. We model the wear
process with a version of Archard’s law (1.1), as is customary in themathematical literature. This leads
to a new and interesting mathematical model which, in contrast to the model in [23], is evolutionary.
Providing the variational analysis of this new model represents the main aim of this paper.

The rest of the manuscript is structured as follows. In Section 2, we present the notation and some
preliminary material. In Section 3, we introduce the model of sliding frictional contact with wear,
list the assumptions on the data and derive its variational formulation. The unique weak solvability
of the contact problem is presented in Section 4. There, we state and prove our main existence and
uniqueness result, Theorem 4.1. The proof is based on arguments on time-dependent variational
inequalities and fixed point. Finally, in Section 5 we present our second result, Theorem 5.1. It states
the convergence of the solution of a penalized frictional contact problem with wear to the solution of
the contact model considered in Section 3, as the penalization parameter converges to zero.

2. Notations and preliminaries

In this section, we present the notation we shall use and some preliminary material. Everywhere in
this paper we use the notation N for the set of positive integers and R+ will represent the set of
nonnegative real numbers, i.e. R+ = [0,∞). For d ∈ N, we denote by S

d the space of second-order
symmetric tensors on R

d . Moreover, the inner product and norm on R
d and S

d are defined by

u · v = uivi , ‖v‖ = (v · v)
1
2 ∀ u, v ∈ R

d ,

σ · τ = σijτij , ‖τ‖ = (τ · τ )
1
2 ∀ σ , τ ∈ S

d .

D
ow

nl
oa

de
d 

by
 [

D
ea

ki
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

0:
22

 2
7 

O
ct

ob
er

 2
01

5 



APPLICABLE ANALYSIS 3

Let � ⊂ R
d (d = 1, 2, 3) be a bounded domain with Lipschitz continuous boundary � and let �1,

�2, and �3 be three measurable parts of � such that meas (�1) > 0. We use the notation x = (xi)
for a typical point in � ∪ � and we denote by ν = (νi) the outward unit normal at �. Also, we use
standard notation for the Lebesgue and Sobolev spaces associated to� and �. In particular, we recall
that the inner products on the Hilbert spaces L2(�)d and L2(�)d are given by

(u, v)L2(�)d =
∫

�

u · v dx, (u, v)L2(�)d =
∫

�

u · v da,

and the associated norms will be denoted by ‖ · ‖L2(�)d and ‖ · ‖L2(�)d , respectively. Moreover, we
consider the spaces

V = { v ∈ H1(�)d : v = 0 on �1 },
Q = { τ = (τij) ∈ L2(�)d : τij = τji }.

These are real Hilbert spaces endowed with the inner products

(u, v)V =
∫

�

ε(u) · ε(v) dx, (σ , τ )Q =
∫

�

σ · τ dx,

and the associated norms ‖ · ‖V and ‖ · ‖Q, respectively. Here ε is the deformation operator given by

ε(v) = (εij(v)), εij(v) = 1
2

(vi,j + vj,i) ∀ v ∈ H1(�)d.

Recall that the completeness of the space (V , ‖ · ‖V ) follows from the assumption meas (�1) > 0,
which allows the use of Korn’s inequality.

For an element v ∈ V we still write v for the trace of v on the boundary�. We denote by vν and vτ

the normal and the tangential component of v on�, respectively, definedby vν = v·ν, vτ = v−vνν.
By the Sobolev trace theorem, there exists a positive constant c0 which depends on�, �1 and �3 such
that

‖v‖L2(�3)d
≤ c0 ‖v‖V ∀ v ∈ V . (2.1)

For a regular function σ : � ∪ � → S
d we denote by σν and σ τ the normal and the tangential

components of the vector σν on �, respectively, and we recall that σν = σν · ν and σ τ = σν − σνν.
Moreover, the following Green’s formula holds:∫

�

σ · ε(v) dx +
∫

�

Div σ · v dx =
∫

�

σν · v da ∀ v ∈ V . (2.2)

We end this section with two abstract results which will be used in the rest of the paper. The first
one represents an existence, uniqueness, and convergence result for elliptic variational inequalities.
To introduce it, we consider a real Hilbert space X endowed with the inner product (·, ·)X and the
associated norm ‖ · ‖X . We assume that:

K is a nonempty, closed, convex subset of X. (2.3)
A : X → X is a strongly monotone Lipschtz continuous operator. (2.4)⎧⎨⎩

(a) G : X → X is a monotone Lipschtz continuous operator.
(b) (Gu, v − u)X ≤ 0 ∀ u ∈ X, v ∈ K .

(c) Gu = 0X iff u ∈ K .

(2.5)

f ∈ X. (2.6)
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4 M. SOFONEA ET AL.

With these given data we consider the problem of finding an element u such that

u ∈ K , (Au, v − u)X ≥ (f , v − u)X , ∀ v ∈ K (2.7)

and, for each ρ > 0, we consider the problem of finding an element uρ such that

uρ ∈ X, Auρ + 1
ρ
Guρ = f . (2.8)

The following result, proved in [9], will be used in Sections 4 and 5 of this paper.
Theorem 2.1: Let X be a Hilbert space and assume that (2.3)–(2.5) hold. Then:

(1) The variational inequality (2.7) has a unique solution.
(2) For each ρ > 0 there exists a unique element uρ which solves the nonlinear Equation (2.8).
(3) The solution uρ of (2.8) converges strongly to the solution u of (2.7), i.e.

uρ → u in X as ρ → 0. (2.9)

The second abstract result we need is a fixed point result. To introduce it we consider a Banach
space X. We use the notation C(R+;X) for the space of continuous functions defined on R+ with
values in X and, for a subset K ⊂ X, we still use the symbol C(R+;K) for the set of continuous
functions defined on R+ with values in K . We also use the notation C1(R+;X) for the space of
continuous differentiable functions defined on R+ with values in X.

The following fixed-point result will be used in Section 5 of the paper.
Theorem 2.2: Let (X, ‖ · ‖X) be a real Banach space and let 	 : C(R+;X) → C(R+;X) be a
nonlinear operator with the following property: for each n ∈ N there exists cn > 0 such that

‖	u(t) − 	v(t)‖X ≤ cn
∫ t

0
‖u(s) − v(s)‖Xds, (2.10)

for all u, v ∈ C(R+;X) and for all t ∈ [0, n]. Then the operator 	 has a unique fixed point η∗ ∈
C(R+;X).

Theorem2.2 represents a simplified versionofCorollary 2.5 in [24].Weunderline that in (2.10) and
below, the notation	η(t) represents the value of the function	η at the point t, i.e.	η(t) = (	η)(t).

3. Themodel

In this section we introduce the contact problem, list the assumptions on the data and derive its
variational formulation.

The physical setting is as follows. An elastic body occupies a bounded domain � ⊂ R
d (d = 2, 3)

with a Lipschitz continuous boundary �, divided into three measurable parts �1, �2, and �3 such
that meas (�1) > 0 and, in addition, �3 is plane. The body is subject to the action of body forces of
density f 0. It is fixed on �1 and surfaces tractions of density f 2 act on �2. On �3, the body is in
frictional contact with a moving obstacle, the so-called foundation. We denote by v∗ the velocity of
the foundation, which is supposed to be a non-vanishing time-dependent function in the plane of
�3. The friction implies the wear of the foundation that we model with a surface variable, the wear
function. Its evolution is governed by a simplified version of Archard’s law that we shall describe
below. Moreover, we assume that the foundation is deformable and, therefore, its penetration is
allowed.Wemodel the contact with a normal compliance condition with unilateral constraint, which
takes into account the wear of the foundation. We associate this condition to a sliding version of
Coulomb’s law of dry friction. We adopt the framework of the small strain theory and we assume
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APPLICABLE ANALYSIS 5

that the contact process is quasistatic and it is studied in the interval of time R+ = [0,∞). Then, the
classical formulation of the contact problem under consideration is the following.
Problem P . Find a stress field σ : � × R+ → S

d, a displacement field u : � × R+ → R
d, and a

wear function w : �3 × R+ → R+ such that

σ (t) = Fε(u(t)) in �, (3.1)
Divσ (t) + f 0(t) = 0 in �, (3.2)

u(t) = 0 on �1, (3.3)
σ (t)ν = f 2(t) on �2, (3.4)

uν(t) ≤ g , σν(t) + p(uν(t) − w(t)) ≤ 0,
(uν(t) − g)

(
σν(t) + p(uν(t) − w(t))

)
= 0

}
on �3, (3.5)

−σ τ (t) = μ p(uν(t) − w(t)) n∗(t) on �3, (3.6)
ẇ(t) = α(t) p(uν(t) − w(t)) on �3, (3.7)

for all t ∈ R+ and, in addition,
w(0) = 0 on �3. (3.8)

Here and below, for simplicity, we do not indicate explicitly the dependence of various functions
on the spatial variable x. Moreover, the functions n∗ and α are given by

n∗(t) = − v∗(t)
‖v∗(t)‖ , α(t) = k ‖v∗(t)‖ ∀ t ∈ R+, (3.9)

where k represents the wear coefficient.
Wenowprovide a brief explanation for the equations and conditions in ProblemP . First, Equation

(3.1) represents the elastic constitutive law of the material in which F denotes a given nonlinear
operator. Equation (3.2) is the equilibrium equation in which Div represents the divergence operator
for tensor-valued functions. Conditions (3.3) and (3.4) are the displacement and traction boundary
conditions, respectively.

Next, condition (3.5) represents the contact condition in which g > 0 and p is a positive Lipschitz
continuous increasing functionwhich vanishes for anegative argument. This condition canbederived
in the followingway. First, we assume that the obstacle ismade of a hardmaterial covered by a layer of
soft material of thickness g . Thus, at eachmoment t, the normal stress has an additive decomposition
of the form

σν(t) = σR
ν (t) + σ S

ν (t) on �3, (3.10)

in which the function σR
ν (t) describes the reaction to penetration of the hard material and σ S

ν (t)
describes the reaction of the soft material. The hard material does not wear and is perfectly rigid.
Therefore, the penetration is limited by the bound g and σR

ν satisfies the Signorini condition in the
form with a gap function, i.e.

uν(t) ≤ g , σR
ν (t) ≤ 0, σR

ν (t)(uν(t) − g) = 0 on �3. (3.11)

The soft material is elastic and could wear. Therefore, we assume that σ S
ν (t) satisfies a normal

compliance contact condition with wear, that is

−σ S
ν (t) = p(uν(t) − w(t)) on �3. (3.12)

This condition shows that at each moment t, the reaction of the soft layer depends on the current
value of the penetration, represented by uν(t) − w(t). Indeed, we assume that a wear process of the
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6 M. SOFONEA ET AL.

soft layer of the foundation takes place and the debris are immediately removed from the system.
Thus, the penetration becomes uν(t) − w(t), instead of uν(t) as in the case without wear. Condition
(3.12) describes the fact that the surface geometry of foundation is affected by wear, see [8] for details.
We now combine (3.10) and (3.12) to see that

σR
ν (t) = σν(t) + p(uν(t) − w(t)) on �3. (3.13)

Then we substitute equality (3.13) in (3.11) to obtain the contact condition (3.5).
We now describe the frictional contact condition (3.6). First, we recall the classical Coulomb law

of dry friction,

‖σ τ (t)‖ ≤ μ |σν(t)|,
−σ τ (t) = μ |σν(t)| u̇τ (t)−v∗(t)

‖u̇τ (t)−v∗(t)‖ if u̇τ (t) − v∗(t) �= 0

}
on �3. (3.14)

Hereμ represents the friction coefficient, u̇τ (t) is the tangential velocity, and u̇τ (t)−v∗(t) represents
the relative tangential velocity or the relative slip rate. We assume that at each moment t the velocity
of the foundation, v∗(t), is large in comparison with the tangential velocity u̇τ (t) and, for this reason,
we approximate the relative slip rate by v∗(t). Therefore, using the approximations u̇τ (t) − v∗(t) ≈
−v∗(t) �= 0, ‖u̇τ (t) − v∗(t)‖ ≈ ‖v∗(t)‖, the friction law (3.14) implies that

σ τ (t) = μ |σν(t)| v∗(t)
‖v∗(t)‖ on �3.

Therefore, using the definition (3.9) of the vector n∗(t) yields

−σ τ (t) = μ |σν(t)| n∗(t) on �3. (3.15)

Next, we note that as far as the contact of the elastic body is in the status of normal compliance (i.e.
uν(t) < g), condition (3.5) shows that

−σν(t) = p(uν(t) − w(t)) on �3 (3.16)

and, therefore, substituting this equality in (3.15)we deduce that (3.6) holds.We extend this condition
to the case when the contact is unilateral, i.e. when uν(t) = g . In this way, we fully justify the friction
law (3.6).

Next, to obtain the differential Equation (3.7) we start from the Archard’s law, (1.1), i.e.

ẇ(t) = k |σν(t)| ‖u̇τ (t) − v∗(t)‖ on �3. (3.17)

Then, using again the approximation ‖u̇τ (t) − v∗(t)‖ ≈ ‖v∗(t)‖, Equation (3.17) leads to

ẇ(t) = k |σν(t)| ‖v∗(t)‖ on �3.

We now use the definition (3.9) of the function α to obtain

ẇ(t) = α(t) |σν(t)| on �3. (3.18)

Next, we note that as far as the contact of the elastic body is in the status of normal compliance (3.16)
holds and, therefore, substituting this equality in (3.18) we deduce (3.7). We extend this equality in
the case of the unilateral contact, i.e. in the case when uν(t) = g . In this way we fully justify the
differential Equation (3.7) which governs the evolution of the wear function.
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APPLICABLE ANALYSIS 7

Finally (3.8) represents the initial condition for the wear function, which shows that at the initial
moment the foundation is new.

We note that considering an arbitrary contact surface �3 and a thickness g = g(x) depending on
the spatial variable does not cause additional mathematical difficulties in the analysis of Problem P.

Nevertheless, we decided to assume that �3 is plane and g is a constant since these assumptions arise
in a large number of the industrial process and lead to a simple geometry which helps the reader to
better understand the wear phenomenon.

We now turn to the variational formulation of ProblemP and, to this end, we list the assumptions
on the data. First, we assume that the elasticity operator F and the normal compliance function
satisfy the following condition.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) F : � × S
d → S

d.
(b) There exists LF > 0 such that

‖F(x, ε1) − F(x, ε2)‖ ≤ LF‖ε1 − ε2‖
∀ ε1, ε2 ∈ S

d , a.e. x ∈ �.

(c) There existsmF > 0 such that
(F(x, ε1) − F(x, ε2)) · (ε1 − ε2) ≥ mF ‖ε1 − ε2‖2

∀ ε1, ε2 ∈ S
d , a.e. x ∈ �.

(d) The mapping x �→ F(x, ε) is measurable on �, ∀ ε ∈ S
d .

(e) The mapping x �→ F(x, 0) belongs to Q.

(3.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) p : �3 × R → R+.

(b) There exists Lp > 0 such that
|p(x, r1) − p(x, r2)| ≤ Lp |r1 − r2|

∀ r1, r2 ∈ R, a.e. x ∈ �3.
(c) (p(x, r1) − p(x, r2))(r1 − r2) ≥ 0

∀ r1, r2 ∈ R, a.e. x ∈ �3.
(d) The mapping x �→ p(x, r) is measurable on �3,∀ r ∈ R.

(e) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ �3.

(3.20)

The densities of body forces and surface tractions have the regularity

f 0 ∈ C(R+; L2(�)d), f 2 ∈ C(R+; L2(�2)
d). (3.21)

Finally, the friction coefficient, the wear coefficient, and the foundation velocity verify

μ ∈ L∞(�3), μ(x) ≥ 0 a.e. x ∈ �3, (3.22)
k ∈ L∞(�3), k(x) ≥ 0 a.e. x ∈ �3, (3.23)
v∗ ∈ C(R+; R

d) and there exists v > 0 such that ‖v∗(t)‖ ≥ v, ∀ t ∈ R+. (3.24)

Note that assumption (3.24) is compatible with the physical setting described above since, at each
time moment, the velocity of the foundation is assumed to be large enough. In addition, (3.9), (3.23),
and (3.24) imply that

n∗ ∈ C(R+; R
d), α ∈ C(R+; L∞(�3)) (3.25)

and, moreover,
α(t) ≥ 0 a:e: on �3, for all t ∈ R+. (3.26)

Next, we introduce the set of admissible displacements fields defined by

U = { v ∈ V : vν ≤ g on �3 }. (3.27)
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8 M. SOFONEA ET AL.

In addition, we use the Riesz representation theorem to define the function f : R+ → V by equality

( f (t), v)V = ( f 0(t), v)L2(�)d + ( f 2(t), v)L2(�2)d
, (3.28)

for all v ∈ V and t ∈ R+. It follows from assumption (3.21) that f has the regularity

f ∈ C(R+;V). (3.29)

Assume in what follows that (σ , u,w) are sufficiently regular functions which satisfy (3.1)–(3.8)
and let v ∈ U and t > 0 be given. We use Green formula (2.2) and the equilibrium Equation (3.2) to
obtain∫

�

σ (t)(ε(v) − ε(u(t))) dx −
∫

�

f 0(t)(v − u(t)) dx =
∫

�

σ (t)ν · (v − u(t)) da ∀ v ∈ U .

Next, we split the boundary integral over �1, �2, and �3. Since v − u(t) = 0 on �1, σ (t)ν = f 2(t)
on �2, taking into account (3.28) we deduce that

(σ (t), ε(v) − ε(u(t)))Q = ( f (t), v − u(t))V +
∫

�3

σ (t)ν · (v − u(t)) da. (3.30)

Note that
σ (t) ν · (v − u(t)) = σν(t)(vν − uν(t)) + σ τ (t) · (vτ − uτ (t)) on �3 (3.31)

and, using contact condition (3.5) and the definition (3.27) of the set U , we have

σν(t)(vν − uν(t)) = (σν(t) + p(uν(t) − w(t)))(vν − g)
+(σν(t) + p(uν(t) − w(t)))(g − uν(t)) − p(uν(t) − w(t))(vν − uν(t))

≥ −p(uν(t) − w(t))(vν − uν(t)) on �3. (3.32)

Therefore, taking into account identity (3.31), inequality (3.32), and the friction law (3.6) we obtain
that ∫

�3

σ (t)ν · (v − u(t)) da ≥ −
∫

�3

p(uν(t) − w(t))(vν − uν(t)) da

−
∫

�3

μ p(uν(t) − w(t))n∗(t) · (vτ − uτ (t)) da. (3.33)

We now combine (3.30) and (3.33) to obtain that

(σ (t), ε(v) − ε(u(t)))Q +
∫

�3

p(uν(t) − w(t))(vν − uν(t)) da

+
∫

�3

μ p(uν(t) − w(t))n∗(t) · (vτ − uτ (t)) da ≥ ( f (t), v − u(t))V ∀ v ∈ U . (3.34)

In addition, we note that the boundary condition (3.3), the first inequality in (3.5) and (3.27) imply
that u(t) ∈ U . Finally, we integrate the differential Equation (3.7) with the initial condition (3.8) to
obtain that

w(t) =
∫ t

0
α(s) p(uν(s) − w(s)) ds. (3.35)

We now gather the constitutive law (3.1), the variational inequality (3.34), and the integral
Equation (3.35) to obtain the following variational formulation of the contact problem P .
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APPLICABLE ANALYSIS 9

Problem PV. Find a stress field σ : R+ → Q, a displacement field u : R+ → U, and a wear function
w : R+ → L2(�3) such that

σ (t) = Fε(u(t)), (3.36)

(σ (t), ε(v) − ε(u(t)))Q +
∫

�3

p(uν(t) − w(t))(vν − uν(t)) da

+
∫

�3

μ p(uν(t) − w(t))n∗(t) · (vτ − uτ (t)) da ≥ ( f (t), v − u(t))V ∀ v ∈ U ,

(3.37)

w(t) =
∫ t

0
α(s) p(uν(s) − w(s)) ds, (3.38)

for all t ∈ R+.
The unique solvability of Problem PV will be proved in the next section. A triple (σ , u,w) which

satisfy (3.36)–(3.38) is called weak solution of Problem P .
We end this section with some additional comments on our contact model. Assume that (3.1)–

(3.8) has a classical solution. Then, since α and p are positive functions, it follows from (3.7) what
ẇ(t) ≥ 0 for all t, i.e. the wear is increasing, in each point of the contact surface. Moreover, if at a
moment t0 we have w(t0) = g , then, using Equation (3.7) and the properties (3.20) of the function
p, it can be easily proved that w(t0) = g for all t ≥ t0. This behavior shows that the wear of the
foundation is limited by the constraint w(t) ≤ g , which fits with the assumption that rigid layer of
the foundation does not wear.

4. An existence and uniqueness result

In this section, we state and prove the following existence and uniqueness result.
Theorem 4.1: Assume that (3.19)–(3.24) hold. Then there exists a constant μ0 which depends only
on �, �1, �3, F , and p such that, if

‖μ‖L∞(�3) < μ0, (4.1)

then Problem PV has a unique solution. Moreover, the solution has the regularity

σ ∈ C(R+;Q), u ∈ C(R+;U), w ∈ C1(R+; L2(�3)), (4.2)

and, in addition,

w(t) ≥ 0 a.e. on �3, for all t ∈ R+. (4.3)

We conclude from above that Problem P has a unique weak solution, provided that assumptions
of Theorem 4.1 are satisfied. In addition, note that condition (4.1) represents a smallness condition
on the coefficient of friction which is frequently needed in the study of static or quasistatic frictional
contact problems with elastic materials. The question if this condition describes an intrinsic feature
of the frictional contact process or it represents a limitation of our mathematical tools represents an
open question which, clearly, has to be investigated in the future.

The proof of Theorem 4.1 will be carried out in several steps. We assume in the rest of this section
that (3.19)–(3.24) hold. In the first step, we consider a given wear function w ∈ C(R+; L2(�3)) and
we construct the following intermediate variational problem.
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10 M. SOFONEA ET AL.

Problem PV
w . Find a displacement field uw : R+ → U such that

(Fε(uw(t)), ε(v) − ε(uw(t)))Q +
∫

�3

p(uwν(t) − w(t))(vν − uwν(t)) da

+
∫

�3

μ p(uwν(t) − w(t))n∗(t) · (vτ − uwτ (t)) da ≥ ( f (t), v − uw(t))V ∀ v ∈ U ,

(4.4)

for all t ∈ R+.
In the study of Problem PV

w , we have the following existence and uniqueness result.
Lemma 4.2: There exists a constantμ0 which depends only on�, �1, �3, F , and p such that, if (4.1)
holds, then there exists a unique solution to Problem PV

w which satisfies uw ∈ C(R+;U).
Proof: Let t ∈ R+ and consider the operator Awt : V → V defined by

(Awtu, v)V = (Fε(u), ε(v))Q +
∫

�3

p(uν − w(t))vν da

+
∫

�3

μ p(uν − w(t))n∗(t) · vτ da ∀ u, v ∈ V . (4.5)

We use assumptions (3.19), (3.20), (3.22), and inequality (2.1) to see that the operatorAwt is Lipschitz
continuous, i.e. it verifies the inequality

‖Awtu1 − Awtu2‖V ≤ (
LF + c20Lp(1 + ‖μ‖L∞(�3))

)‖u1 − u2‖V , (4.6)

for all u1, u2 ∈ V . Next, we introduce the constant μ0 defined by

μ0 = mF
c20Lp

, (4.7)

and note that it depends only on �, �1, �3, F , and p. Assume that (4.1) holds. Then, we obtain

c20Lp‖μ‖L∞(�3) < mF . (4.8)

We use again assumptions (3.19), (3.20), and (3.20) and inequalities (2.1) and (4.8) to deduce that
the operator Awt is strongly monotone, i.e. it satisfies the inequality

(Awtu1 − Awtu2, u1 − u2)V ≥ (mF − c20Lp‖μ‖L∞(�3))‖u1 − u2‖2V , (4.9)

for all u1, u2 ∈ V .
Using these ingredients, by Theorem 2.1(1), we deduce that there exists a unique element uwt ∈ U

such that

(Awtuwt , v − uwt)V ≥ ( f (t), v − uwt)V ∀ v ∈ U . (4.10)

Denote uwt = uw(t). Then, it follows from (4.10) and (4.5) that the element uw(t) ∈ U is the unique
element which solves the variational inequality (4.4).

We now prove the continuity of the function t �→ uw(t) : R+ → V . To this end, let t1, t2 ∈ R+
and denote ui = uw(ti), wi = w(ti), f i = f (ti), n∗

i = n∗(ti), for i = 1, 2. We use standard
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APPLICABLE ANALYSIS 11

arguments in (4.4) to find that

(Fε(u1) − Fε(u2), ε(u1) − ε(u2))Q ≤ ( f 1 − f 2, u1 − u2)V

+
∫

�3

[p(u1ν − w1) − p(u2ν − w2)][(u2ν − w2) − (u1ν − w1)] da

+
∫

�3

[p(u1ν − w1) − p(u2ν − w2)](w2 − w1) da

+
∫

�3

μ [p(u1ν − w1)n∗
1 − p(u2ν − w2)n∗

1] · (u2τ − u1τ ) da

+
∫

�3

μ [p(u2ν − w2)n∗
1 − p(u2ν − w2)n∗

2] · (u2τ − u1τ ) da.

Therefore, (3.19), (3.20), (3.22), and (2.1) yield

(mF − c20Lp‖μ‖L∞(�3))‖u1 − u2‖2V
≤

(
c0Lp(1 + ‖μ‖L∞(�3))‖w1 − w2‖L2(�3) + ‖ f 1 − f 2‖V

+c0 p(g) ‖μ‖L∞(�3)‖n∗
1 − n∗

2‖
)
‖u1 − u2‖V + Lp‖w1 − w2‖2L2(�3)

.

We now use (4.8) and the elementary inequality

x, y, z ≥ 0 and x2 ≤ yx + z =⇒ x2 ≤ y2 + 2z

to deduce that

‖u1 − u2‖2V
≤ a

(
‖w1 − w2‖L2(�3) + ‖ f 1 − f 2‖ + ‖n∗

1 − n∗
2‖

)2 + b ‖w1 − w2‖2L2(�3)
, (4.11)

where a and b denote two positive constants which do not depend on t1 and t2. This inequality
combined with (3.25), (3.29), and the regularity w ∈ C(R+; L2(�3)) show that uw ∈ C(R+;V).
Thus, we conclude the existence part in Lemma 4.2. The uniqueness part follows from the unique
solvability of (4.10) for each t ∈ R+. �

Weassume inwhat follows that (4.1), (4.7) hold andweconsider theoperator	 : C(R+; L2(�3)) →
C(R+; L2(�3)) defined by

	w(t) =
∫ t

0
α(s) p(uwν(s) − w(s)) ds, (4.12)

for all w ∈ C(R+; L2(�3)), where uw is the unique solution of Problem PV
w . We have the following

fixed point result, which represents the second step in the proof of Theorem 4.1.
Lemma 4.3: The operator 	 has a unique fixed point w∗ ∈ C(R+; L2(�3)).
Proof: Let w1,w2 ∈ C(R+; L2(�3)). For simplicity we denote by ui, i = 1, 2 the solutions of
problems PV

wi , i.e. ui = uwi . Let n ∈ N and let t ∈ [0, n]. Taking into account (4.12), (3.9), and (3.20)
we deduce that

‖	w1(t) − 	w2(t)‖L2(�3)

≤ v∗
n

(
c0

∫ t

0
‖u1(s) − u2(s)‖V ds +

∫ t

0
‖w1(s) − w2(s)‖L2(�3) ds

)
, (4.13)
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12 M. SOFONEA ET AL.

where

v∗
n = Lp‖k‖L∞(�3) max

r∈[0,n] ‖v
∗(r)‖.

On the other hand, using arguments similar to those used in the proof of (4.11) yield

‖u1(t) − u2(t)‖V ≤ √
a + b ‖w1(t) − w2(t)‖L2(�3). (4.14)

We now combine the inequalities (4.13) and (4.14) to deduce that

‖	w1(t) − 	w2(t)‖L2(�3) ≤ v∗
n
(
c0

√
a + b + 1

) ∫ t

0
‖w1(s) − w2(s)‖L2(�3). (4.15)

Lemma 4.3 is now a direct consequence of Theorem 2.2. �
We now have all ingredients needed to provide the proof of our main existence and uniqueness

result.
Proof of Theorem 4.1: Existence. Letw∗ ∈ C(R+; L2(�3)) be the unique fixed point of the operator
	 and let u∗, σ ∗ defined by

u∗(t) = uw∗(t), (4.16)
σ ∗(t) = Fε(u∗(t)), (4.17)

for all t ∈ R+. We recall that w∗ = 	w∗ and using equalities (4.12) and (4.16) we deduce that

w∗(t) =
∫ t

0
α(s) p(u∗

wν(s) − w∗(s)) ds, (4.18)

for all t ∈ R+. We show that the triple (σ ∗, u∗,w∗) satisfies (3.36)–(3.38). First, we note that (3.36) is
a direct consequence of (4.17). Then, we write the inequality (4.4) for w = w∗ and use the notation
(4.16), (4.17) to see that (3.37) holds. Finally, (3.38) follows from (4.18). We conclude from above
that the triple (σ ∗, u∗,w∗) represents a solution of ProblemPV , as claimed. The regularity expressed
in (4.2) is a direct consequence of the Lemma 4.2 combined with assumption (3.19) and formula
(4.18). Finally, condition (4.3) follows from (4.18), since α and p are positive functions, as it results
from (3.26) and (3.20)(a).

Uniqueness. The uniqueness of the solution follows from the unique solvability of Problem PV
w ,

provided in Lemma 4.2, combined with the uniqueness of the fixed point of operator 	 defined by
(4.12). �

5. A convergence result

In this section we provide a convergence result in the study of Problem P , based on the penalization
of the unilateral constraint and arguments similar to those used in [25]. To this end, we assume in
what follows that (3.19)–(3.24) and (4.1) hold where, recall,μ0 is given by (4.7). Then, it follows from
Theorem 4.1 that Problem PV has a unique solution (σ , u,w), with regularity (4.2). Next, for each
ρ > 0 we consider the following contact problem.
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APPLICABLE ANALYSIS 13

Problem Pρ . Find a stress field σ ρ : � × R+ → S
d, a displacement field uρ : � × R+ → R

d, and a
wear function wρ : �3 × R+ → R+ such that

σ ρ(t) = Fε(uρ(t)) in �, (5.1)
Divσ ρ(t) + f 0(t) = 0 in �, (5.2)

uρ(t) = 0 on �1, (5.3)
σ ρ(t)ν = f 2(t) on �2, (5.4)

σρν(t) + p(uρν(t) − wρ(t)) + 1
ρ
p(uρν(t) − g) = 0 on �3, (5.5)

−σ ρτ (t) = μ p(uρν(t) − wρ(t)) n∗(t) on �3, (5.6)
ẇρ(t) = α(t) p(uρν(t) − wρ(t)) on �3, (5.7)

for all t ∈ R+ and, in addition,
wρ(0) = 0 on �3. (5.8)

Note that here and below uρν is the normal component of the displacement field uρ and σρν ,
σ ρτ represent the normal and tangential components of the stress tensor σ ρ , respectively. Moreover,
recall that the functions n∗ and α are defined by (3.9). The equations and boundary conditions in
problem (5.1)–(5.8) have a similar interpretation as those in problem (3.1)–(3.8). The difference
arises in the fact that here we replace the contact condition (3.5) with condition (5.5), i.e. we remove
the unilateral constraint. In (5.5) ρ represents a penalization parameter which may be interpreted as
a deformability coefficient of the foundation, and then 1

ρ
is the surface stiffness coefficient.

In order to provide the variational formulation of ProblemPρ we define the operatorG : V → V
by equality

(Gu, v)V =
∫

�3

p(uν − g)vνda ∀ u, v ∈ V . (5.9)

Then, using the assumptions (3.20) on the normal compliance function, we deduce that the operator
G has the following properties:⎧⎨⎩

(a) G : V → V is a monotone Lipschitz continuous operator.
(b) (Gu, v − u)V ≤ 0 ∀ u ∈ V , v ∈ U .

(c) Gu = 0V iff u ∈ U .

(5.10)

The proof of these properties is straightforward and, therefore, we skip it.
Next, using notation (5.9) and arguments similar to those used in Section 3we obtain the following

variational formulation of Problem Pρ .
Problem PV

ρ . Find a stress field σ ρ : R+ → Q, a displacement field uρ : R+ → V, and a wear
function wρ : R+ → L2(�3) such that

σ ρ(t) = Fε(uρ(t)), (5.11)

(σ ρ(t), ε(v))Q +
∫

�3

p(uρν(t) − wρ(t))vν da

+
∫

�3

μ p(uρν(t) − wρ(t))n∗(t) · vτ da + 1
ρ

(Guρ(t), v)V = ( f (t), v)V ∀ v ∈ V ,

(5.12)

wρ(t) =
∫ t

0
α(s) p(uρν(s) − wρ(s)) ds, (5.13)

for all t ∈ R+.
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14 M. SOFONEA ET AL.

The following theorem states the unique solvability of Problem PV
ρ and describes the behavior of

its solution as ρ → 0.
Theorem 5.1: Assume that (3.19)–(3.24) and (4.1) hold, with μ0 given by (4.7). Then:

(1) For each ρ > 0 there exists a unique solution of Problem PV
ρ . Moreover, the solution has the

regularity
σ ρ ∈ C(R+;Q), uρ ∈ C(R+;V), wρ ∈ C1(R+; L2(�3)). (5.14)

(2) For each n ∈ IN there exists ωn > 0 such that

‖uρ(t)‖V ≤ ωn ∀ t ∈ [0, n], ∀ ρ > 0. (5.15)

(3) The solution (σ ρ , uρ ,wρ) of the Problem PV
ρ converges to the solution (σ , u,w) of the Problem

PV , that is

‖σ ρ(t) − σ (t)‖Q + ‖uρ(t) − u(t)‖V + ‖wρ(t) − w(t)‖L2(�3) → 0 as ρ → 0, (5.16)

for all t ∈ R+.
The proof of Theorem 5.1 will be carried out in several steps. We assume in what follows that

(3.19)–(3.24) and (4.1) hold. Recall that everywhere below w represents the third component of the
solution of Problem PV , provided by Theorem 4.1. Therefore, w is fixed and, moreover, it satisfies
condition (4.3). In the first step, we consider the following intermediate variational problem.

Problem P̃V
wρ . Find a displacement field ũρ : R+ → V such that

(Fε(̃uρ(t)), ε(v))Q +
∫

�3

p(̃uρν(t) − w(t))vν da

+
∫

�3

μ p(̃uρν(t) − w(t))n∗(t) · vτ da + 1
ρ

(Gũρ(t), v)V = ( f (t), v)V ∀ v ∈ V ,

for all t ∈ R+.
Note that Problem P̃V

wρ is similar to ProblemPV
w considered in Section 4. Its solution depends on

ρ and w but, for simplicity, we do not indicate explicitly its dependence with respect to w.
We have the following existence, uniqueness, and convergence result.

Lemma 5.2:

(1) For each ρ > 0 Problem P̃V
wρ has a unique solution which satisfies ũρ ∈ C(R+;V).

(2) For each n ∈ IN there exists ωn > 0 which does not depend on w such that

‖ũρ(t)‖V ≤ ωn ∀ t ∈ [0, n], ∀ ρ > 0. (5.17)

(3) The solution ũρ of Problem P̃V
wρ converges to the second component of the solution of the

Problem PV , that is
‖ũρ(t) − u(t)‖V → 0 as ρ → 0, (5.18)

for all t ∈ R+.
Proof: (1) Let ρ > 0 be fixed and let t ∈ R+. Using the definition (4.5) of the operator Awt , we
deduce that the variational Equation (5.17) is equivalent to equation

ũρ(t) ∈ V , Awt ũρ(t) + 1
ρ
Gũρ(t) = f (t). (5.19)
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APPLICABLE ANALYSIS 15

Recall that inequalities (4.6), (4.8) and (4.9) show that Awt is a strongly monotone Lipschitz contin-
uous operator on V . Therefore, taking into account (5.10), we are in a position to apply Theorem
2.1(2) with X = V and K = U . In this way, we deduce the existence of a unique element ũρ(t)which
solves (5.19). The continuity of the function t �→ ũρ(t) : R+ → V follows from estimates similar to
those used in the proof of Lemma 4.2.

(2) Let n ∈ N and let t ∈ [0, n] be fixed. Also, let ρ > 0. We use Equation (5.19) to deduce that

(Awt ũρ(t), ũρ(t))V + 1
ρ

(Gũρ(t), ũρ(t))V = ( f (t), ũρ(t))V .

Next, we use the properties (5.10)(a) and (c) of the operator G to see that

(Gũρ(t), ũρ(t))V ≥ 0

and, therefore,
(Awt ũρ(t), ũρ(t))V ≤ ( f (t), ũρ(t))V . (5.20)

We now use inequality (4.9) with u1 = ũρ(t) and u2 = 0V to see that

(Awt ũρ(t) − Awt0V , ũρ(t))V ≥ (mF − c20Lp‖μ‖L∞(�3))‖ũρ(t)‖2V . (5.21)

Therefore, using (5.20), (5.21), (4.1), and (4.7) yields

‖ũρ(t)‖V ≤ c (‖ f (t)‖V + ‖Awt0V‖V ) (5.22)

where c > 0 is a constant which is independent on n, t, ρ, and w. Also, since w satisfies (4.3), by the
definition (4.5) of the operator Awt and the property (3.20)(e) of the function p it follows that

‖Awt0V‖V ≤ ‖Fε(0V )‖Q. (5.23)

Inequality (5.17) follows now from inequalities (5.22), (5.23), and the regularity (3.29).
(3) Let ρ > 0 be fixed and let t ∈ R+. We substitute (3.36) in (3.37) then we use the definition

(4.5) of the operator Awt to see that

u(t) ∈ U , (Awtu(t), v − u(t))V ≥ ( f (t), v − u(t))V , ∀ v ∈ U . (5.24)

The convergence (5.18) is now a direct consequence of (5.19), (5.24), and Theorem 2.1(3). �
We are now in a position to provide the main result in this section.

Proof of Theorem 5.1: (1) The unique solvability of ProblemPV
ρ follows from arguments similar to

those used in the proof of Theorem 4.1 and, therefore, we skip it. Nevertheless, we note that the main
ingredient of the proof is an existence and uniqueness result similar to that in Lemma 5.2, combined
with the fixed point argument in Theorem 2.2.

(2) We note that (5.11) and (5.12) imply that the function uρ satisfies an inequality of the from
(5.17) in which w is replaced by wρ . Therefore, using the same arguments as those in the proof of
(5.17), we deduce that inequality (5.15) holds.

(3) Let t ∈ R+ and let n ∈ N be such that t ∈ [0, n]. Also, let ρ > 0. Using the triangle inequality
we obtain that

‖uρ(t) − u(t)‖V ≤ ‖ũρ(t) − uρ(t)‖V + ‖ũρ(t) − u(t)‖V . (5.25)

On the other hand, arguments similar to those used in the proof of (4.14) yield

‖ũρ(t) − uρ(t)‖V ≤ √
a + b ‖wρ(t) − w(t)‖L2(�3) (5.26)
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16 M. SOFONEA ET AL.

where a and b represent positive constants which do not depend on n, t, and ρ. Moreover, using
the integral Equations (3.38), (5.13), the hypothesis (3.20) on the normal compliance function p, the
regularity (3.25) on α and the Gronwall’s argument we obtain that

‖wρ(t) − w(t)‖L2(�3) ≤ cn
∫ t

0
‖uρ(s) − u(s)‖V ds. (5.27)

Here and below cn represents a positive constant which depends on n but does not depend on t and
ρ, and whose value may change from line to line.

Combining now inequalities (5.26) and (5.27) yields

‖ũρ(t) − uρ(t)‖V ≤ cn
∫ t

0
‖uρ(s) − u(s)‖V ds. (5.28)

Therefore, from (5.25) and (5.28), we have

‖uρ(t) − u(t)‖V ≤ cn
∫ t

0
‖uρ(s) − u(s)‖V ds + ‖ũρ(t) − u(t)‖V . (5.29)

We use again a Gronwall’s argument to deduce that

‖uρ(t) − u(t)‖V ≤ ‖ũρ(t) − u(t)‖V + cn
∫ t

0
ecn(t−s)‖ũρ(s) − u(s)‖V ds. (5.30)

Note that ecn(t−s) ≤ ecnt ≤ encn for all s ∈ [0, t] and, therefore, (5.30) implies that

‖uρ(t) − u(t)‖V ≤ ‖ũρ(t) − u(t)‖V + cnencn
∫ t

0
‖ũρ(s) − u(s)‖V ds. (5.31)

On the other hand, (5.17) and (5.18) allow us to use Lebesgue’s convergence theorem to find that∫ t

0
‖ũρ(s) − u(s)‖V ds → 0 as ρ → 0. (5.32)

Therefore, using (5.31), (5.18), and (5.32) we conclude that

‖uρ(t) − u(t)‖V → 0 as ρ → 0. (5.33)

Next, we use (3.36), (5.11), and the properties (3.19) of operator F to obtain that

‖σ ρ(t) − σ (t)‖Q ≤ LF‖uρ(t) − u(t)‖V . (5.34)

We now combine inequalities (5.34) and (5.27) to see that

‖σ ρ(t) − σ (t)‖Q + ‖uρ(t) − u(t)‖V + ‖wρ(t) − w(t)‖L2(�3)

≤ cn
(
‖uρ(t) − u(t)‖V +

∫ t

0
‖uρ(s) − u(s)‖V ds

)
. (5.35)

Finally, (5.15) and (5.33) allow us to use Lebesgue’s convergence theorem. Thus, we pass to the limit
in (5.35) as ρ → 0 to obtain (5.16). �

In addition to the mathematical interest in the convergence result (5.16) it is important from the
mechanical point of view, since it shows that the weak solution of the elastic contact problem with
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normal compliance, wear, and unilateral constraint may be approached as closely as one wishes by
the solution of the elastic contact problemwith normal compliance and wear, with a sufficiently small
deformability coefficient.
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