Analysis of a contact problem with wear and unilateral constraint
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1. Introduction

Contact processes between deformable bodies or between a deformable body and a foundation
abound in industry and everyday life. Their modeling is rather complex and, usually, leads to strongly
nonlinear boundary value problems. Basic reference in the field includes [1-5] and, more recently.[6-
9] There, the mathematical analysis of various models of contact is provided, including existence
and uniqueness results of the solution. The references [2,3,7] deal also with the numerical analysis of
various models of contact, including the study of fully discrete schemes, error estimates and numerical
simulations.

Contact processes are accompanied by a number of phenomena among which the main one is
the friction. Nevertheless, more is involved in contact than just friction. Indeed, during a contact
process elastic or plastic deformations of the surface asperities may happen. Also, some or all of
the following may take place: squeezing of oil or other fluids, breaking of the asperities’ tips and
production of debris, motion of the debris, formation or welding of junctions, creeping, fracture, etc.
Moreover, frictional contact is associated with heat generation, material damage, wear and adhesion
of contacting surfaces.

As the contact process evolves, the contacting surfaces evolve too, via their wear. Wear in sliding
systems is often very slow but it is persisting, continuous and cumulative. There may be increase in
the conformity of the surfaces and their smoothness, or increase in the surface roughness, fogging
of the surface, generation of scratches and grooves, initiation of cracks and generation of debris



which may change the contact characteristics. Asperities under large contact stresses may deform
plastically or break. In the first case, the surface morphology changes and, therefore, both the contact
stress and the friction traction are affected. These may be incorporated into a history or memory-
dependent friction coefficient. In the second case, when asperities break, the surfaces wear out, debris
are produced, and again the surface structure changes over time. This must be taken into account if
the long time behavior of the system is to be realistically predicted.

To model the wear of the contacting surfaces the wear function w = w(x,t) is introduced,
measuring the depth, in the normal direction, of the removed material. Therefore, it measures the
change in the surface geometry, and represents the cumulative amount of material removed, per unit
surface area, in the neighborhood of the point x up to time ¢. Since the amounts of material removed
are small, as an approximation, one may treat it as a change in the gap. It is usually assumed that the
rate of wear of the surface is proportional to the contact pressure and to the relative slip rate, that is
to the dissipated frictional power. This leads to the rate form of Archard’s law of surface wear,

w=kloy|llv], (1.1)

where k is the wear coeflicient, a very small positive constant in practice. Also, o, represents the
normal stress on the contact surface and ||v|| denotes the relative slip rate. The initial condition is
w(x,0) = wo(x), and wp(x) = 0 when the surface is new or the initial shape is used as the reference
configuration. The wear implies the evolution of contacting surfaces and these changes affect the
contact process. Thus, due to its crucial role, there exists a large engineering and mathematical
literature devoted to this topic. We resume to mention here the references [8,10-22], among others.

A mathematical model which describes the equilibrium of an elastic body in frictional contact with
a moving foundation was recently considered in [23]. There, the contact was modeled with a normal
compliance condition with unilateral constraints, associated to a sliding version of Coulomb’s law
of dry friction. The unique weak solvability of the model was proved, by using arguments of elliptic
quasivariational inequalities. The current paper represents a continuation of [23]. Here, we complete
the model studied in [23] by taking into account the wear of the foundation. We model the wear
process with a version of Archard’slaw (1.1), as is customary in the mathematical literature. This leads
to a new and interesting mathematical model which, in contrast to the model in [23], is evolutionary.
Providing the variational analysis of this new model represents the main aim of this paper.

The rest of the manuscript is structured as follows. In Section 2, we present the notation and some
preliminary material. In Section 3, we introduce the model of sliding frictional contact with wear,
list the assumptions on the data and derive its variational formulation. The unique weak solvability
of the contact problem is presented in Section 4. There, we state and prove our main existence and
uniqueness result, Theorem 4.1. The proof is based on arguments on time-dependent variational
inequalities and fixed point. Finally, in Section 5 we present our second result, Theorem 5.1. It states
the convergence of the solution of a penalized frictional contact problem with wear to the solution of
the contact model considered in Section 3, as the penalization parameter converges to zero.

2. Notations and preliminaries

In this section, we present the notation we shall use and some preliminary material. Everywhere in
this paper we use the notation N for the set of positive integers and R will represent the set of
nonnegative real numbers, i.e. Ry = [0,00). For d € N, we denote by S9 the space of second-order
symmetric tensors on R?. Moreover, the inner product and norm on R and S¢ are defined by

1
u-v=uvi, |v|l=w-v)Z VuveR?

1
o-t=0y7, ltl=@ 1)z VYo,zres%



Let @ ¢ RY (d = 1,2,3) be a bounded domain with Lipschitz continuous boundary I' and let T},
', and I'3 be three measurable parts of I' such that meas (I';) > 0. We use the notation x = (x;)
for a typical point in Q2 U I' and we denote by v = (v;) the outward unit normal at I". Also, we use
standard notation for the Lebesgue and Sobolev spaces associated to €2 and I In particular, we recall
that the inner products on the Hilbert spaces L?(2)¥ and L?(I")? are given by

(w, 0)12(qpa = / u-vdx, (W, V)p2ryd = / u-vda,
Q r

and the associated norms will be denoted by | - || 12(@)d and || - g2 (e, respectively. Moreover, we
consider the spaces

V={veH @®@%: v=00n T4},
Q={t=(t) e X" tj =1;i}.

These are real Hilbert spaces endowed with the inner products
(u,v)y = / e(m)-e(w)dx, (0,7)g= / o - tdx,
Q Q
and the associated norms || - ||y and || - ||, respectively. Here € is the deformation operator given by
1
e(v) = (e(v), &(v) = (ij+v;) YveH(@"

Recall that the completeness of the space (V, || - ||v) follows from the assumption meas (I';) > 0,
which allows the use of Korn’s inequality.

For an element v € V we still write v for the trace of v on the boundary I'. We denote by v, and v,
the normal and the tangential component of v on T, respectively, definedby v, = v-v, v, =v—v,v.
By the Sobolev trace theorem, there exists a positive constant ¢y which depends on 2, I'y and I's such
that

Iollpaye < ollvlly Yo e V. 21

For a regular function 6 : Q UT — S% we denote by 0, and o, the normal and the tangential
components of the vector v on T', respectively, and we recall thato, = ov-vando, = ov —o,v.
Moreover, the following Green’s formula holds:

/a-e(v)dx—}—/ Diva~vdx=/av-vda YveV. (2.2)
Q Q r

We end this section with two abstract results which will be used in the rest of the paper. The first
one represents an existence, uniqueness, and convergence result for elliptic variational inequalities.
To introduce it, we consider a real Hilbert space X endowed with the inner product (-, -)x and the
associated norm || - ||x. We assume that:

K is a nonempty, closed, convex subset of X. (2.3)
A : X — X is a strongly monotone Lipschtz continuous operator. (2.4)

(a) G:X — X is amonotone Lipschtz continuous operator.
(b) (Gu,v —u)x <0 YueX,veKk. (2.5)
(¢) Gu=0yx iff ueK.

feX. (2.6)



With these given data we consider the problem of finding an element u such that
uek, (Au,v—uwx>(f,v—uwx, VvekK (2.7)

and, for each p > 0, we consider the problem of finding an element u, such that
1
up, € X, Au,+ ; Gu, =f. (2.8)

The following result, proved in [9], will be used in Sections 4 and 5 of this paper.
Theorem 2.1:  Let X be a Hilbert space and assume that (2.3)-(2.5) hold. Then:

(1)  The variational inequality (2.7) has a unique solution.
(2) Foreach p > 0 there exists a unique element u, which solves the nonlinear Equation (2.8).
(3) The solution u, of (2.8) converges strongly to the solution u of (2.7), i.e.

u, > u inX as p— 0. (2.9)

The second abstract result we need is a fixed point result. To introduce it we consider a Banach
space X. We use the notation C(R4; X) for the space of continuous functions defined on R with
values in X and, for a subset K C X, we still use the symbol C(R; K) for the set of continuous
functions defined on R with values in K. We also use the notation C'(R,; X) for the space of
continuous differentiable functions defined on R with values in X.

The following fixed-point result will be used in Section 5 of the paper.

Theorem 2.2: Let (X, || - ||x) be a real Banach space and let A : C(Ry;X) — C(Ry;X) bea
nonlinear operator with the following property: for each n € N there exists ¢, > 0 such that

t
[Au(t) = Av(t)|x < Cn/ llu(s) — v(s)lIxds, (2.10)
0

forall u,v € C(R4; X) and for all t € [0,n]. Then the operator A has a unique fixed point n* €
C(R4; X).

Theorem 2.2 represents a simplified version of Corollary 2.5 in [24]. We underline thatin (2.10) and
below, the notation A7 (t) represents the value of the function An at the pointt,i.e. An(t) = (An)(f).

3. The model

In this section we introduce the contact problem, list the assumptions on the data and derive its
variational formulation.

The physical setting is as follows. An elastic body occupies a bounded domain 2 c R¥ (d = 2,3)
with a Lipschitz continuous boundary I', divided into three measurable parts I'j, I';, and I's such
that meas (I'1) > 0 and, in addition, '3 is plane. The body is subject to the action of body forces of
density f. It is fixed on I'1 and surfaces tractions of density f, act on I';. On I's, the body is in
frictional contact with a moving obstacle, the so-called foundation. We denote by v* the velocity of
the foundation, which is supposed to be a non-vanishing time-dependent function in the plane of
I's3. The friction implies the wear of the foundation that we model with a surface variable, the wear
function. Its evolution is governed by a simplified version of Archard’s law that we shall describe
below. Moreover, we assume that the foundation is deformable and, therefore, its penetration is
allowed. We model the contact with a normal compliance condition with unilateral constraint, which
takes into account the wear of the foundation. We associate this condition to a sliding version of
Coulomb’s law of dry friction. We adopt the framework of the small strain theory and we assume



that the contact process is quasistatic and it is studied in the interval of time Ry = [0, 00). Then, the
classical formulation of the contact problem under consideration is the following.

Problem P. Find a stress field o : Q@ x Ry — S% a displacement field u : Q@ x Ry — R%, and a
wear function w : T's x Ry — Ry such that

o(t) = Fe(u(t)) in £, (3.1)
Dive(t) + fo(t) =0 in €, (3.2)
u(t)=0 on I'y, (3.3)
a(t)v = f,(t) on I'y, (3.4)

uy(t) < g 0y(t) + pluy(t) — w(t)) <0,
(s (1) — ) (00 (1) + plus (1) — w(1)) = 0 } on I ()
=0 (t) = pwp(uy(t) —w(t)) n*(t) on I, (3.6)
w(t) = a(t) p(u,(t) —w(t)) on Iz, (3.7)

forallt € Ry and, in addition,

w(0) =0 on I3. (3.8)

Here and below, for simplicity, we do not indicate explicitly the dependence of various functions
on the spatial variable x. Moreover, the functions n* and « are given by

v (1)

ol a() =kl O  VieRy, (3.9)

n*(t) =

where k represents the wear coefficient.

We now provide a brief explanation for the equations and conditions in Problem P. First, Equation
(3.1) represents the elastic constitutive law of the material in which F denotes a given nonlinear
operator. Equation (3.2) is the equilibrium equation in which Div represents the divergence operator
for tensor-valued functions. Conditions (3.3) and (3.4) are the displacement and traction boundary
conditions, respectively.

Next, condition (3.5) represents the contact condition in which ¢ > 0 and p is a positive Lipschitz
continuous increasing function which vanishes for a negative argument. This condition can be derived
in the following way. First, we assume that the obstacle is made of a hard material covered by a layer of
soft material of thickness g. Thus, at each moment ¢, the normal stress has an additive decomposition
of the form

oy (t) = af(t) + avs(t) on I3, (3.10)

in which the function o R (t) describes the reaction to penetration of the hard material and o (t)
describes the reaction of the soft material. The hard material does not wear and is perfectly rigid.
Therefore, the penetration is limited by the bound g and o} satisfies the Signorini condition in the
form with a gap function, i.e.

wt)<g ofky<o, RO (t)—g) =0 onTs. (3.11)

The soft material is elastic and could wear. Therefore, we assume that ovs(t) satisfies a normal
compliance contact condition with wear, that is

—o5(t) = p(uy(t) — w(t))  onTsj. (3.12)

This condition shows that at each moment #, the reaction of the soft layer depends on the current
value of the penetration, represented by u, (t) — w(t). Indeed, we assume that a wear process of the



soft layer of the foundation takes place and the debris are immediately removed from the system.
Thus, the penetration becomes u, (t) — w(t), instead of u, (t) as in the case without wear. Condition
(3.12) describes the fact that the surface geometry of foundation is affected by wear, see [8] for details.
We now combine (3.10) and (3.12) to see that

oR(t) = oy (t) + p(uy(t) — w(t)) onTs. (3.13)

Then we substitute equality (3.13) in (3.11) to obtain the contact condition (3.5).
We now describe the frictional contact condition (3.6). First, we recall the classical Coulomb law
of dry friction,

loc @)l < plov(®)l,
—o (1) = o] e =gry i (B — v () £ 0

on I'3. (3.14)
Here p represents the friction coeflicient, @ (¢) is the tangential velocity, and @ (t) — v* (¢) represents
the relative tangential velocity or the relative slip rate. We assume that at each moment ¢ the velocity
of the foundation, v*(t), is large in comparison with the tangential velocity & (t) and, for this reason,
we approximate the relative slip rate by v*(¢). Therefore, using the approximations i (t) — v*(¢) =~
—v*(t) £ 0, ||i (t) — v*()|| = ||v*(¢)]|, the friction law (3.14) implies that

) = oy (0] 20
o:(t) = uloy on
EROI ’
Therefore, using the definition (3.9) of the vector n*(t) yields
—0.(t) = puloy(t)|n*(t)  on Ts. (3.15)

Next, we note that as far as the contact of the elastic body is in the status of normal compliance (i.e.
uy(t) < g), condition (3.5) shows that

—oy(t) = p(uy(t) —w(t))  onlj (3.16)
and, therefore, substituting this equality in (3.15) we deduce that (3.6) holds. We extend this condition
to the case when the contact is unilateral, i.e. when u, (t) = g. In this way, we fully justify the friction
law (3.6).

Next, to obtain the differential Equation (3.7) we start from the Archard’s law, (1.1), i.e.
w(t) = kloy ()] it (t) — v* ()| on I's. (3.17)

Then, using again the approximation ||it; (t) — v*(¢)|| =~ ||[v*(¢)||, Equation (3.17) leads to

w(t) = kloy@®] v @) on Is.
We now use the definition (3.9) of the function « to obtain

w(t) = a(t) |oy(t)] on I'sz. (3.18)
Next, we note that as far as the contact of the elastic body is in the status of normal compliance (3.16)
holds and, therefore, substituting this equality in (3.18) we deduce (3.7). We extend this equality in

the case of the unilateral contact, i.e. in the case when u,(t) = g. In this way we fully justify the
differential Equation (3.7) which governs the evolution of the wear function.



Finally (3.8) represents the initial condition for the wear function, which shows that at the initial
moment the foundation is new.

We note that considering an arbitrary contact surface I'3 and a thickness g = g(x) depending on
the spatial variable does not cause additional mathematical difficulties in the analysis of Problem P.
Nevertheless, we decided to assume that I'; is plane and g is a constant since these assumptions arise
in a large number of the industrial process and lead to a simple geometry which helps the reader to
better understand the wear phenomenon.

We now turn to the variational formulation of Problem P and, to this end, we list the assumptions
on the data. First, we assume that the elasticity operator F and the normal compliance function
satisfy the following condition.

(@) F:QxS?— s,
(b) There exists Lz > 0 such that
[F(x,e1) — F(x,e2)| < Lrler — ez
Ve,e, €S9 ae x e Q.
(c) There exists mx > 0 such that (3.19)
(F(x,e1) — F(x,€2)) - (61 — €2) > mr |le1 — &2
Ve e, eS% ae xeQ.
(d) The mapping x +— F(x,e) is measurable on @, Ve € s,
(e) The mapping x — F(x,0) belongs to Q.

@p: T3 xR — Ry.
(b) There exists L, > 0 such that
lp(x,11) — p(x,12)| < Ly |11 — 12|
Vr, m eR, ae x el

3.20
() (p(x,11) — p(x,72))(r1 —12) = 0 (3:20
Vri, n eR, ae x el
(d) The mapping x — p(x,r) is measurable on I'3,Vr € R.
(e) p(x,r) =0forallr <0, a.e. x € I's.
The densities of body forces and surface tractions have the regularity
fo€ CRLXQY, f, € C(Ry: LAT)Y). (321)
Finally, the friction coefficient, the wear coeflicient, and the foundation velocity verify
uwel®T3), u(x)>0 aexecls, (3.22)
ke L*®(T3), k(x)>0 ae xels, (3.23)
v* € C(R; RY) and there exists v > 0 such that [[v*()|| > v, VI € R, (3.24)

Note that assumption (3.24) is compatible with the physical setting described above since, at each
time moment, the velocity of the foundation is assumed to be large enough. In addition, (3.9), (3.23),
and (3.24) imply that

n* € CRy; RY, o e CRy; L®(T3)) (3.25)
and, moreover,
a(t) >0 ae:onls, forallteR,. (3.26)

Next, we introduce the set of admissible displacements fields defined by

U={veV:y,<gonljs}. (3.27)



In addition, we use the Riesz representation theorem to define the function f : Ry — V by equality
(S, v)v = (fo(t), )2y + (f2(1), V) 2(1y)d> (3.28)

forallv € Vand t € R.. It follows from assumption (3.21) that f has the regularity
feCR:; V). (3.29)

Assume in what follows that (o, u, w) are sufficiently regular functions which satisfy (3.1)-(3.8)
andlet v € U and t > 0 be given. We use Green formula (2.2) and the equilibrium Equation (3.2) to
obtain

/ o (H)(e(v) — e(u(t))) dx —/ fo @ — u(t)) dx = / oty (v—u(t)da YveU.
Q Q r

Next, we split the boundary integral over I'1, I's, and I's. Since v — u(t) = 0on 'y, o (t)v = f,(t)
on I'y, taking into account (3.28) we deduce that

(o(t),e(w) —e(t)o = (f(H),v —ut))y +/ o)y - (v —u(t)) da. (3.30)

I3

Note that
o()v-(v—ut) =o0,(t)(vy —uy(t)) +0(t) - (vy —u(f)) on I'3 (3.31)

and, using contact condition (3.5) and the definition (3.27) of the set U, we have

oy () (vy — uy (1)) = (00 (1) + p(uy () — w(t) (vy — &)
+(ov () + p(uy(t) — w(1))) (g — un(t)) — p(uy () — w(t))(vy — uy (1))
= —p(uy () = w(t))(vy —uy(t)) on I. (3.32)

Therefore, taking into account identity (3.31), inequality (3.32), and the friction law (3.6) we obtain
that

/r o)y (v—ut)da= _/r pluy () = w(t))(vy — uy(1)) da
- /1“3 e p(uy(t) — w)n* () - (v — u (1)) da. (3.33)
We now combine (3.30) and (3.33) to obtain that
(0(t),e(v) — e(u(t))q + /1:3P(uu(t) —w(D)(vy — uy(t)) da
+/l_ wp(uy () = w)n*(t) - (vr —u () da > (f®),v —u(®)y YveU. (3.34)

In addition, we note that the boundary condition (3.3), the first inequality in (3.5) and (3.27) imply
that u(t) € U. Finally, we integrate the differential Equation (3.7) with the initial condition (3.8) to
obtain that

t
w(t) = / a(s) p(uy,(s) — w(s)) ds. (3.35)
0

We now gather the constitutive law (3.1), the variational inequality (3.34), and the integral
Equation (3.35) to obtain the following variational formulation of the contact problem P.



Problem PV. Find a stress field o : Ry — Q, a displacement field u : R, — U, and a wear function
w: Ry — L*(T'3) such that

o () = Fe(u(t)), (3.36)
(0(t),&(v) —e(u(t)))q + /F p(uy(t) —w(t))(vy — uy(t)) da

+/r wp(uy(t) — wt))n*(t) - (v —ur(t))da > (f(t),v —u(t))y YveU,
(3.37)
t
w(t) = / a(s) p(u,(s) — w(s)) ds, (3.38)
0

forallt € Ry.

The unique solvability of Problem 7" will be proved in the next section. A triple (o, u, w) which
satisty (3.36)—-(3.38) is called weak solution of Problem P.

We end this section with some additional comments on our contact model. Assume that (3.1)-
(3.8) has a classical solution. Then, since @ and p are positive functions, it follows from (3.7) what
w(t) > 0 for all ¢, i.e. the wear is increasing, in each point of the contact surface. Moreover, if at a
moment ty we have w(ty) = g, then, using Equation (3.7) and the properties (3.20) of the function
p, it can be easily proved that w(tg) = g for all t > t,. This behavior shows that the wear of the
foundation is limited by the constraint w(t) < g, which fits with the assumption that rigid layer of
the foundation does not wear.

4. An existence and uniqueness result

In this section, we state and prove the following existence and uniqueness result.

Theorem 4.1:  Assume that (3.19)-(3.24) hold. Then there exists a constant juo which depends only
on @, I'1, I's, F, and p such that, if

Il iellLoe(rs) < o, (4.1)
then Problem PV has a unique solution. Moreover, the solution has the regularity
0 €CR4:Q, ueCRyU), weC Ry LX), (42)
and, in addition,
w(t) >0 a.e.onls, forall t € R;. (4.3)

We conclude from above that Problem P has a unique weak solution, provided that assumptions
of Theorem 4.1 are satisfied. In addition, note that condition (4.1) represents a smallness condition
on the coeflicient of friction which is frequently needed in the study of static or quasistatic frictional
contact problems with elastic materials. The question if this condition describes an intrinsic feature
of the frictional contact process or it represents a limitation of our mathematical tools represents an
open question which, clearly, has to be investigated in the future.

The proof of Theorem 4.1 will be carried out in several steps. We assume in the rest of this section
that (3.19)—(3.24) hold. In the first step, we consider a given wear function w € C(R,; L?(I'3)) and
we construct the following intermediate variational problem.



Problem P . Find a displacement field u,, : Ry — U such that

(Fe(uy(t)),e(v) — e(uy())q + /1“ Py () — w(t)(vy — iy (1)) da

+/r Pty (1) — w(E)R* (1) - (vr — wye (D) da = (f(),v —uy())y Yvel,
(4.4)

forallt € Ry.
In the study of Problem PV, we have the following existence and uniqueness result.

Lemma 4.2:  There exists a constant jo which depends only on @, T'y, I's, F, and p such that, if (4.1)
holds, then there exists a unique solution to Problem P) which satisfies u,, € C(Ry; U).

Proof: Lett € Ry and consider the operator A, : V — V defined by

(Awiu, )y = (Fe(u),e(v))q +/r p(uy —w(t)vy da

+/ up(uy, —w@)n*(t)-v;da  Vu,veV. (4.5)
I3

We use assumptions (3.19), (3.20), (3.22), and inequality (2.1) to see that the operator A, is Lipschitz
continuous, i.e. it verifies the inequality

lAweur — Awerially < (L + cgLp(1 + el qry)) lur — uzllv, (4.6)
for all u;, u, € V. Next, we introduce the constant 1o defined by

mg

_mr (4.7)
2
oLy

Mo

and note that it depends only on 2, I'}, I'3, F, and p. Assume that (4.1) holds. Then, we obtain

GLplltllroe(rs) < me. (4.8)

We use again assumptions (3.19), (3.20), and (3.20) and inequalities (2.1) and (4.8) to deduce that
the operator A, is strongly monotone, i.e. it satisfies the inequality

(Aweur — Atz uy — )y > (mx — gLpll il ) llun — ua 13, (4.9)

forall uy, up € V.
Using these ingredients, by Theorem 2.1(1), we deduce that there exists a unique element u,,;, € U
such that

Ayttt v — )y = (f(@),v —uyw)y YveU. (4.10)

Denote u,,; = u,,(t). Then, it follows from (4.10) and (4.5) that the element u,, () € U is the unique
element which solves the variational inequality (4.4).

We now prove the continuity of the function t — u,, () : Ry — V. Tothisend, lett;, t, € Ry
and denote u; = u,(t), wi = w(ty), f; = f(t), n} = n*(t;), for i = 1,2. We use standard



arguments in (4.4) to find that

(Fe(u) — Fe(uz),e(ur) —e(m2) < (f1 — fou1 —u2)y

+ - [p(ury — wi) — p(uzy — w2)l[(u2y — w2) — (U1, — wy)lda

+ . [p(u1y — w1) — p(uzy — w2)l(wr — wy) da

+/ wlp(uiy — winy — p(uzy — w2)nil - (e — u1;) da
I3
+f wp(uzy — wa)nj — p(uzy — wa)nz] - (uar — 1) da.
I3
Therefore, (3.19), (3.20), (3.22), and (2.1) yield

(mr — gLl lur — ua |}

< (coLp(1 + el iw = wallizgey + 11 = fallv

o @) el I = w31 )y = wally + Lpllwr = wall2 r
We now use (4.8) and the elementary inequality
X, 9,2 > 0 and x? <yx+z = x? §y2+22
to deduce that

2
lur — wz|ly

2
< a(||w1 — w2y + 1Lf1 = faoll + ny — ";”) +blw — W2||iz(r3): (4.11)

where a and b denote two positive constants which do not depend on #; and f,. This inequality
combined with (3.25), (3.29), and the regularity w € C(R; L*(I'3)) show that u,, € C(R; V).
Thus, we conclude the existence part in Lemma 4.2. The uniqueness part follows from the unique
solvability of (4.10) for each t € R... ([l

We assume in what follows that (4.1), (4.7) hold and we consider the operator A : C(Ry; L?(I'3)) —
C(Ry; L*(I'3)) defined by

t
Aw(t) = / a(s) p(uwy(s) — w(s)) ds, (4.12)
0

for all w € C(R,; L?(T'3)), where u,, is the unique solution of Problem PX . We have the following
fixed point result, which represents the second step in the proof of Theorem 4.1.

Lemma4.3: The operator A has a unique fixed point w* € C(Ry; L2(T3)).

Proof: Let wi,ws € C(Ry; L?(I'3)). For simplicity we denote by u;, i = 1,2 the solutions of
problems ’Pxi, ie. u; = uy,. Letn € Nandlett € [0, n]. Taking into account (4.12), (3.9), and (3.20)
we deduce that

[Aw1(t) — Awa (D)l 12(ry)

t t
=75 (e /0 i (s) — uz()ly ds + /0 w1 = w2l 2qr ds), (4.13)



where
v, = Lpllkllzo<(ry) Jmax, [v* ()]l

On the other hand, using arguments similar to those used in the proof of (4.11) yield
lui(t) —ua®lv < vVa+blwi(t) = wa®)ll2ry)- (4.14)

We now combine the inequalities (4.13) and (4.14) to deduce that

t
1AW (8) = Awa (D)l 2ry) < Vi(coVa+ b+ 1)/ lwi(s) = wa(s)llL2(ry)- (4.15)

0
Lemma 4.3 is now a direct consequence of Theorem 2.2. ]

We now have all ingredients needed to provide the proof of our main existence and uniqueness
result.

Proof of Theorem 4.1: Existence. Let w* € C(R,; L?(I'3)) be the unique fixed point of the operator
A and let u*, 0* defined by

u*(t) = uy«(t), (4.16)
o (t) = Fe(u* (1)), (4.17)

forall t € R;. We recall that w* = Aw™ and using equalities (4.12) and (4.16) we deduce that

t
wH(t) = f a(s) p(ul,,(s) — w*(s)) ds, (4.18)
0

forall t € Ri. We show that the triple (¥, u*, w*) satisfies (3.36)-(3.38). First, we note that (3.36) is
a direct consequence of (4.17). Then, we write the inequality (4.4) for w = w* and use the notation
(4.16), (4.17) to see that (3.37) holds. Finally, (3.38) follows from (4.18). We conclude from above
that the triple (0%, u*, w*) represents a solution of Problem PV, as claimed. The regularity expressed
in (4.2) is a direct consequence of the Lemma 4.2 combined with assumption (3.19) and formula
(4.18). Finally, condition (4.3) follows from (4.18), since « and p are positive functions, as it results
from (3.26) and (3.20)(a).

Uniqueness. The uniqueness of the solution follows from the unique solvability of Problem P,
provided in Lemma 4.2, combined with the uniqueness of the fixed point of operator A defined by
(4.12). 0

5. A convergence result

In this section we provide a convergence result in the study of Problem P, based on the penalization
of the unilateral constraint and arguments similar to those used in [25]. To this end, we assume in
what follows that (3.19)-(3.24) and (4.1) hold where, recall, 11 is given by (4.7). Then, it follows from
Theorem 4.1 that Problem P has a unique solution (a, u, w), with regularity (4.2). Next, for each
p > 0 we consider the following contact problem.



Problem P,,. Find a stress field o, : Q x Ry — S% a displacement fieldu, : @ x Ry — RY, and a
wear function w, : I's x Ry — Ry such that

o,(t) =Fe(uy,(t)) in L, (5.1)
Dive,(t) + fo(t) =0 in (5.2)
u,(t) =0 on Iy, (5.3)
o,y = fo(t) on I'y, (5.4)

1
O'pv(t) +p(”pv(t) - Wp(t)) + ;P(upv(t) - g) =0 on I}, (5.5)
—0 pc(t) = up(upy(t) — wy()) n*(t)  on T3, (5.6)
Wy (t) = a(t) p(upy(t) — wp(t)) on Iz, (5.7)

forallt € Ry and, in addition,

w,(0) =0 on [I;. (5.8)

Note that here and below u,,, is the normal component of the displacement field u, and o,,,
0 ¢ represent the normal and tangential components of the stress tensor o ,, respectively. Moreover,
recall that the functions r* and « are defined by (3.9). The equations and boundary conditions in
problem (5.1)-(5.8) have a similar interpretation as those in problem (3.1)-(3.8). The difference
arises in the fact that here we replace the contact condition (3.5) with condition (5.5), i.e. we remove
the unilateral constraint. In (5.5) p represents a penalization parameter which may be interpreted as
a deformability coefficient of the foundation, and then 2 is the surface stiffness coefficient.

In order to provide the variational formulation of Problem P, we define the operator G : V — V
by equality

(Gu,v)y = p(uy, — g)vyda Yu,veV. (5.9)
I3

Then, using the assumptions (3.20) on the normal compliance function, we deduce that the operator
G has the following properties:

(a) G:V — V isamonotone Lipschitz continuous operator.
(b) (Gu,v—u)y <0 YueV,vel. (5.10)
(c) Gu=0y iff uecU.

The proof of these properties is straightforward and, therefore, we skip it.

Next, using notation (5.9) and arguments similar to those used in Section 3 we obtain the following
variational formulation of Problem P,,.
Problem PX. Find a stress field 0, : Ry — Q, a displacement field u, : Ry — V, and a wear
Sfunctionw, : Ry — L2(I'3) such that

o,(t) = Fe(uy(t)), (5.11)
(@ p(D), ()0 + /F Pl (1) — wo(B))vy da
1
+/r wp(upy(t) — wp(t))n*(t) -v;da + ; (Gu,(t),v)y = (f(t),v)y YveV,
(5.12)
t
wy(t) = /0 a(s) p(upy(s) — wp(s)) ds, (5.13)

forallt € Ry.



The following theorem states the unique solvability of Problem PX and describes the behavior of
its solution as p — 0.

Theorem 5.1:  Assume that (3.19)-(3.24) and (4.1) hold, with 1o given by (4.7). Then:

(1) For each p > 0 there exists a unique solution of Problem PX. Moreover, the solution has the
regularity
0,€CR;Q), u,eCRy;V), w,e C(Ry; LAT3)). (5.14)

(2) Foreachn € N there exists w, > 0 such that
llu,(]lv < wy Vie[0,n], Vo >0. (5.15)

(3) The solution (0, u,,w)y) of the Problem PX converges to the solution (o, u, w) of the Problem
PV, that is

lop(®) —a@®llq+ lup(t) —u@®lly + [lwo () = w®ll2qrs) > 0 as p— 0, (516)

forallt e Ry.

The proof of Theorem 5.1 will be carried out in several steps. We assume in what follows that
(3.19)-(3.24) and (4.1) hold. Recall that everywhere below w represents the third component of the
solution of Problem PV, provided by Theorem 4.1. Therefore, w is fixed and, moreover, it satisfies
condition (4.3). In the first step, we consider the following intermediate variational problem.

Problem 73:5/). Find a displacement field U, : Ry — V such that

(Fe(t,y(t)), e(v)q + /F pip,(t) —w(t))v, da
~ |
+/r wp(tipy () — w(t))n*(t) - v, da + ; (Gu,(t),v)v = (f(H),v)y YveV,

forallt e Ry.

Note that Problem 7~3x o is similar to Problem PV considered in Section 4. Its solution depends on
p and w but, for simplicity, we do not indicate explicitly its dependence with respect to w.

We have the following existence, uniqueness, and convergence result.

Lemma 5.2:

(1) Foreach p > 0 Problem 7~3::p has a unique solution which satisfies u, € C(Ry; V).
(2) Foreachn € N there exists w, > 0 which does not depend on w such that

I (Olly < wp Vi e[0,n], Vo >0, (5.17)

(3)  The solution U, of Problem ’ﬁxp converges to the second component of the solution of the
Problem PV, that is
lu,t) —u®)|lyv -0 as p—0, (5.18)
forallt € Ry.

Proof: (1) Let p > 0 be fixed and let t € R . Using the definition (4.5) of the operator A,,;, we
deduce that the variational Equation (5.17) is equivalent to equation

y y 1
U,(t) €V, Awii,(t) + p Gli, (1) = f(b). (5.19)



Recall that inequalities (4.6), (4.8) and (4.9) show that A,,; is a strongly monotone Lipschitz contin-
uous operator on V. Therefore, taking into account (5.10), we are in a position to apply Theorem
2.1(2) with X = V and K = U. In this way, we deduce the existence of a unique element %, (t) which
solves (5.19). The continuity of the function t — %, (t) : Ry — V follows from estimates similar to
those used in the proof of Lemma 4.2.

(2) Let n € Nand let t € [0, n] be fixed. Also, let p > 0. We use Equation (5.19) to deduce that

~ ~ | ~ ~
(At (), up () v + - (Guy (), up )y = (f(1),up(@))v.
Next, we use the properties (5.10)(a) and (c) of the operator G to see that

(Gup (1), U, (t))v = 0

and, therefore,
(Awtiip(t)) ﬁp(t))V = (f(t)) ﬁp(t))Vo (5~20)

We now use inequality (4.9) with u; = %, (¢) and u; = Oy to see that

Aty (1) — AwOv, T, (1) v > (mz — gLyl itllLoo ) T, (1113 (5.21)

Therefore, using (5.20), (5.21), (4.1), and (4.7) yields

I, Ol < cULfFOllv + 1AwOvIv) (5.22)

where ¢ > 0 is a constant which is independent on #, ¢, p, and w. Also, since w satisfies (4.3), by the
definition (4.5) of the operator A,,; and the property (3.20)(e) of the function p it follows that

[AwiOvilv =< [ FeOv)llq- (5.23)

Inequality (5.17) follows now from inequalities (5.22), (5.23), and the regularity (3.29).
(3) Let p > 0 be fixed and let t € R. We substitute (3.36) in (3.37) then we use the definition
(4.5) of the operator A, to see that

ut) e U, (Apu(®),v—u®)y > (f(t),v—u®)y, Yvel. (5.24)

The convergence (5.18) is now a direct consequence of (5.19), (5.24), and Theorem 2.1(3). O

We are now in a position to provide the main result in this section.

Proof of Theorem 5.1: (1) The unique solvability of Problem PZ follows from arguments similar to
those used in the proof of Theorem 4.1 and, therefore, we skip it. Nevertheless, we note that the main
ingredient of the proof is an existence and uniqueness result similar to that in Lemma 5.2, combined
with the fixed point argument in Theorem 2.2.

(2) We note that (5.11) and (5.12) imply that the function u, satisfies an inequality of the from
(5.17) in which w is replaced by w,. Therefore, using the same arguments as those in the proof of
(5.17), we deduce that inequality (5.15) holds.

(3) Let t € Ry and let n € N be such that t € [0, n]. Also, let p > 0. Using the triangle inequality
we obtain that

lup (1) — u(®llv < [Tp(6) — up@®lly + [, (0) — u(®)]lv. (5.25)

On the other hand, arguments similar to those used in the proof of (4.14) yield

15, (8) — up()llv < Va+bllwy(t) — w2y (5.26)



where a and b represent positive constants which do not depend on n, t, and p. Moreover, using
the integral Equations (3.38), (5.13), the hypothesis (3.20) on the normal compliance function p, the
regularity (3.25) on « and the Gronwall’s argument we obtain that

t
lwo(6) = WD)l 2y < € / lp(s) — u(s)llv ds. (5.27)
0

Here and below c, represents a positive constant which depends on # but does not depend on ¢ and
0, and whose value may change from line to line.
Combining now inequalities (5.26) and (5.27) yields

t
12, (1) — up (v < Cn-/(; lup(s) — u(s)|lv ds. (5.28)

Therefore, from (5.25) and (5.28), we have

t
lu,(t) —u(@®)llv < Cn/ o (s) — w(s)llvds + %, () — u®)|v. (5.29)
0
We use again a Gronwall’s argument to deduce that
t
lup () — u®lly < 7, () — u®)lv + ¢ / eI G, (s) — u(s)|lv ds. (5.30)
0
Note that et =9 < ¢t < ¢ for all s € [0, t] and, therefore, (5.30) implies that

t
lup () —u@®lly < llu,(t) — u@®)llv + cne™ /o %, (s) — u(s)llv ds. (5.31)

On the other hand, (5.17) and (5.18) allow us to use Lebesgue’s convergence theorem to find that

/Ot 7,(s) — us)||yds — 0 as p— 0. (5.32)
Therefore, using (5.31), (5.18), and (5.32) we conclude that
lluy(t) — u@®)|ly — 0 as p— 0. (5.33)
Next, we use (3.36), (5.11), and the properties (3.19) of operator F to obtain that
lop(t) —a(®)llq = Lrllu,(t) —u@®)|v. (5.34)
We now combine inequalities (5.34) and (5.27) to see that
o) —o®)llQ+ llup() —u®llv + llwp (1) — wdllr2rs)

t
= () — w1y + /0 () = u(s) v ds). (535)

Finally, (5.15) and (5.33) allow us to use Lebesgue’s convergence theorem. Thus, we pass to the limit
in (5.35) as p — 0 to obtain (5.16). O

In addition to the mathematical interest in the convergence result (5.16) it is important from the
mechanical point of view, since it shows that the weak solution of the elastic contact problem with



deformability coefficient.
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