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Abstract. Unsteady two-dimensional boundary layer flow and heat transfer over a stretching flat plate in a viscous and 
incompressible fluid of uniform ambient temperature is investigated in this paper. It is assumed that the plate is isothermal and 
is stretched in its own plane. Using appropriate similarity variables, the basic partial differential equations are transformed 
into a set of two ordinary differential equations. These equations are solved numerically for some values of the governing 
parameters, using Rungge-Kutta method of fourth order. Flow and heat transfer characteristics are determined and represented 
in some tables and figures. It is found that the structure of the boundary layer depends on the ratio of the velocity of the 
potential flow near the stagnation point to that of the velocity of the stretching surface. In addition, it is shown that the heat 
transfer from the plate increases when the Prandtl number increases. Our results are shown to include the steady situation as 
a special case considered by other authors. Comparison with known results is very good. 
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INTRODUCTION 

The unsteady boundary layers are important in several physical problems in aero - nautics, missile dynamics, acoustics 
etc. The work in this area was initiated by Moore [1], Lighthill [2] and Lin [3]. Critical reviews of unsteady boundary 
layers were presented by Stuart [4], Riley [5], Tehonis [6], [7] and Pop [8]. In recent years certain aspects of the 
unsteady flows were investigated by Ma and Hui [9] and Ludlow et al. [10] using the classical method of Lie-group. 
The essence of the Lie-group method is that each of the variables in the initial equation is subjected to an infinitesimal 
transformation and the demand that the equation is invariant under these transformations leads to the determination 
of the possible symmetries (see Ludlow et al. [10]). The fundamental governing equations for fluid mechanics are the 
Navier-Stokes equations. This nonlinear set of partial differential equations have no general solutions, and only a small 
number of exact solutions have been found (see Wang [11]). Exact solutions are important for the foUowing reasons: 
(i) the solutions represent fundamental fluid-dynamic flows. Also, owing to the uniform vahdity of exact solutions, the 
basic phenomena described by the Navier-Stokes equations can be more closely studied, (ii) the exact solutions serve 
as standards for checking the accuracies of the many approximate methods, whether they are numerical, asymptotic, 
or empirical. 
Flow of a viscous fluid over a stretching sheet has an important bearing on several technological processes. In 
particular in the extrusion of a polymer in a melt-spinning process, the extruded from the die is generally drawn 
and simultaneously stretched into a sheet which is then solidified through quenching or gradual cooling by direct 
contact with water. Further, glass blowing, continuous casting of metals and spinning of fibres involve the flow due to 
a stretching surface, see Lakshmisha et al. [12]. In all these cases, a study of the flow field and heat transfer can be of 
significant importance since the quahty of the final product depends to a large extent on the skin friction coefficient 
and the surface heat transfer rate. Crane [13] presented a simple closed form exponential solution of the steady two-
dimensional flow caused solely by a linearly stretching sheet in an otherwise quiescent incompressible fluid. The 
simphcity of the geometry and the possibility of obtaining further exact solutions through simple generalizations 
have generated a lot of interest in extending it to more general situations. Such extensions include consideration of 
more general stretching velocity, apphcation to non-Newtonian fluids, and inclusion of other physical effects such 
as suction or blowing, magnetic fields, etc. Unsteady two-dimensional boundary layer flow over a stretching surface 
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has been studied by Na and Pop [14], Wang et al. [15], Elbashbeshy and Badiz [16], Sharidan et al. [17] and Ah 
and Magyari [18], while Lakshmisha et al. [12], Devi et al. [19] and Takhar et al. [20] have considered the unsteady 
three-dimensional-flow due to the impulsive motion of a stretching surface. The aim of the present analysis is to 
study the unsteady flow and heat transfer in the stagnation-point flow on a heated stretched surface in a viscous 
and incompressible fluid when both velocities of the stretching sheet and of the external flow (inviscid flow) are 
proportional to the distance from the stagnation-point and inversely to time. The geometry is similar to that proposed 
by Mahapatra and Gupta [21] for the steady two-dimensional stagnation-point flow towards a stretching sheet. The 
parabohc partial differential equations governing the flow and heat transfer have been reduced to a system of two 
ordinary differential equations which are solved using an implicit finite-difference scheme in combination with the 
shooting method. 

PROBLEM FORMULATION 

We consider the unsteady two-dimensional forced convection flow and heat transfer of a viscous and incompressible 
fluid near a stagnation point on a surface coinciding with the plain y = 0, the flow being confined toy>0. Two equal 
and opposite forces are applied along the x - axis at the initial time f = 0, so that the surface is stretched keeping the 
origin fixed as shown in Fig.l. It is assumed that the uniform temperature of the plane is T^ , while the temperature 
of the ambient fluid is Too, where T^ > Too (heated plate). It is also assumed that the viscous dissipation effects are 
neglected. Under these assumptions, the system of boundary layer equations are given by 
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subject to the initial and boundary conditions are of the form: 

< 0 : M = 0, V = 0, r = Too for any y>Q 

> 0 : M = Mw(f,x), V = 0, T = T„ for y = 0 

= 0: u = Uwsix), V = 0, T = Tw 

u^ Ue{t,x), T^Too as y^oo 

(4) 

" • ^ ( ^ ^ ) -

FIGURE 1. Physical model and coordinate system. 
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where u and v are the velocity components along the x- and y- axis, T is the fluid temperature, v is the kinematic 
viscosity, u^s = ex (c is a positive constant) and a is the thermal diffusivity. Following Surma Devi [19] et al., we 
assumed that Uw{t,x) and Ue{t,x) are given by 

CX dX 

where a is a positive constant. The momentum and energy equations can be transformed to the corresponding ordinary 
differential equations by the following substitutions: 

^ = {cv/{\-Yt)fihf{n), 
0(r]) = {T-T„)/{T„-T„), (6) 

r] = {c/v{l-Yt))^l^y 

where i//" is the stream function which is defined in the usual way as u = d\j//dy and v= -d\j//dx. 
Substituting (6) into Eqs. (2) and (3), we obtain the following two ordinary differential equations: 

ĉ  c \c 2 J 

^e"+fe'-^rie' = o (8) 
Pr 2c 

subject to the boundary conditions (4) which become 

/(O) = O,/(O) = 1,0(O) = 1 (9) 

/ H = - , 0 H = o (10) 
c 

where Pr is the Prandtl number and primes denote differentiation with respect to rj. 
The physical quantities of interest are the skin friction coefficient Cf and the local Nusselt number Nu^, which are 
defined as 

Cf = —^, NUjc = rfT^ _ T V ^ ' 

where T^ is the skin friction and qw is the heat transfer from the plate which are given by 

with jj. and k being the dynamic viscosity and thermal conductivity, respectively. Using (6), we get 

{i-rtf/WJ^Cf = f"{o), (13) 

Where Re = (cx)x/v is the low Reynolds number. It is important to notice that for the steady-state case,Eqs. (7) and 
(8) reduced to 

/"'+//"-r+4=o (14) 
1 

e"+fe' = o (15) 
Pr 

with the boundary conditions (9)-(10). Equations (14) and (15) with the boundary conditions (9)-(10) where estab­
lished by Mahapatra and Gupta [21]. 
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TABLE 1. Values of /"(O) for some values of a/c when the 
flow is steady. () values reported by Mahapatra and Gupta [21]. 

ale 0.10 0.20 0.50 2.00 

/"(O) -0.9696 -0.9182 -0.6673 2.0175 
(-0.9694) (-0.9181) (-0.6673) (2.0175) 

TABLE 2. Values of 0'(O) for some values of a/c and Pr 
when the flow is steady. () values reported by Mahapatra and 
Gupta [21]. 

a/c 1 Pr 

0.1 

0.5 

2 

0.05 

-0.081 
(-0.081) 

-0.137 
(-0.136) 

-0.248 
(-0.241) 

0.5 

-0.381 
(-0.383) 

-0.472 
(-0.473) 

-0.711 
(-0.709) 

1 

-0.603 
(-0.603) 

-0.691 
(-0.692) 

-0.978 
(-0.974) 

1.5 

-0.777 
(-0.777) 

-0.863 
(-0.863) 

-1.171 
(-1.171) 

SOLUTION 

The systems of ordinary differential equations (7)-(8) and (14)-(15) subject to the boundary condition (9)-(10) have 
been solved numerically for some values of the parameters a/c, t and Pr using Rungge-Kutta method of fourth order 
combined with the shooting technique. For the physical considearation we take 7 = - 1 . Some values of/"(O) and 
0'(O) are given in Tables 1 and 2 for the case of the steady flow. 

We can see from these tables that there is a very good agreement between our results and those obtained by 
Mahapatra and Gupta [21]. Therefor, we are confident that the results obtained using the present method are accurate. 

Figures 2 - 5 show the velocities profiles / and / ' along with the corresponding streamlines patterns for the case of 
unsteady flow, Eqs. (7) and (8). The values of the parameters are a = 0.1, c = 1 and f = 0,1,2,3. It is interesting to 
notice that the solution of Eq. (7) is not unique. Thus, there are two solutions, one Fig. 2 representing an attached flow 
and the other one Fig. 4 the reversed flow. These is in agreement with the results obtained by Ma and Hui [9] for the 
unsteady two-dimensional boundary layer flow near a stagnation point of a fixed plat plate. 

FIGURE 2. The first solution oi f{^) and f'{^) for a/c = 0.1. 
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FIGURE 3. The streamlines function for: t = 0,1,2 and 3 corresponding to the first solution for a/c = 0.1. 
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FIGURE 4. The second solution of/(T]) and / ' (T]) for a/c = 0.1. 

Fig. 6 illustrates the dimensionless temperature profiles d{r\) for some values of Pr when a/c = 2. We notice that 
temperature profile increase when Pr decreases. Further, Fig. 7 shows the variation of the heat transfer from the wall 
- 0'(O) with a/c and different values of Pr. It is evident from Fig. 7 that an increase in Pr result in a decrease in the 
thermal boundary layer thickness and as a consequence the heat transfer from the wall increases with Pr. 
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FIGURE 5. The streamlines function for: t = 0,1,2 and 3 corresponding to the first solution for a/c = 0.1. 

FIGURE 6. Temperature profiles of 6 (77) for several values of Pr and a/c = 2 in respect with 77. 

CONCLUSION 

The unsteady two-dimensional stagnation-point flow and heat transfer of a viscous and incompressible fluid over an 
isothermal stretching flat plate in its own plane has been numerically analyzed in detailed. Following Surma Devi et 
al. [19] similarity variables where used to reduced the governing partial differential equations to ordinary differential 
equations. Solving numerically these equations, we have been able to determine the velocity and temperature profiles, 
skin friction and heat transfer from the plate. For the case of steady-state flow, we have compared our present results 
with those of Mahapatra and Gupta [21]. The agreement between the results is excelent. Effects of a/c and Pr on 
the flow and heat transfer characteristic have been examened and discussed in detail. It is shown that for small values 
of a/c the solution of the ordinary differential equation is not unique. One solution represents an attached flow and 
the other one a reversed flow. It shoud be noticed that we have determined solutions of the problem for more values 
of the governing parameters but in order to save space, the reported results are limited only to some values of these 
parameters. 
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FIGURE 7. Variation of the heat transfer with a/c for several values of Pr. 
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