Unsteady Boundary Layer Flow and Heat Transfer Over a
Stretching Sheet

Cornelia Revnic*, Teodor Grosan® and Ioan Pop'”

*“Tiberiu Popoviciu" Institute of Numerical Analysis, P.O.Box. 68-1, 400110, Cluj-Napoca, Romania
TBabes-Bolyai University, Applied Mathematics, R-3400 Cluj, CP 253, Romania

Abstract. Unsteady two-dimensional boundary layer flow and heat transfer over a stretching flat plate in a viscous and
incompressible fluid of uniform ambient temperature is investigated in this paper. It is assumed that the plate is isothermal and
is stretched in its own plane. Using appropriate similarity variables, the basic partial differential equations are transformed
into a set of two ordinary differential equations. These equations are solved numerically for some values of the governing
parameters, using Rungge-Kutta method of fourth order. Flow and heat transfer characteristics are determined and represented
in some tables and figures. It is found that the structure of the boundary layer depends on the ratio of the velocity of the
potential flow near the stagnation point to that of the velocity of the stretching surface. In addition, it is shown that the heat
transfer from the plate increases when the Prandtl number increases. Our results are shown to include the steady situation as
a special case considered by other authors. Comparison with known results is very good.
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INTRODUCTION

The unsteady boundary layers are important in several physical problems in aero - nautics, missile dynamics, acoustics
etc. The work in this area was initiated by Moore [1], Lighthill [2] and Lin [3]. Critical reviews of unsteady boundary
layers were presented by Stuart [4], Riley [5], Telionis [6], [7] and Pop [8]. In recent years certain aspects of the
unsteady flows were investigated by Ma and Hui [9] and Ludlow et al. [10] using the classical method of Lie-group.
The essence of the Lie-group method is that each of the variables in the initial equation is subjected to an infinitesimal
transformation and the demand that the equation is invariant under these transformations leads to the determination
of the possible symmetries (see Ludlow et al. [10]). The fundamental governing equations for fluid mechanics are the
Navier-Stokes equations. This nonlinear set of partial differential equations have no general solutions, and only a small
number of exact solutions have been found (see Wang [11]). Exact solutions are important for the following reasons:
(1) the solutions represent fundamental fluid-dynamic flows. Also, owing to the uniform validity of exact solutions, the
basic phenomena described by the Navier-Stokes equations can be more closely studied. (ii) the exact solutions serve
as standards for checking the accuracies of the many approximate methods, whether they are numerical, asymptotic,
or empirical.

Flow of a viscous fluid over a stretching sheet has an important bearing on several technological processes. In
particular in the extrusion of a polymer in a melt-spinning process, the extruded from the die is generally drawn
and simultancously stretched into a sheet which is then solidified through quenching or gradual cooling by direct
contact with water. Further, glass blowing, continuous casting of metals and spinning of fibres involve the flow due to
a stretching surface, see Lakshmisha et al. [12]. In all these cases, a study of the flow field and heat transfer can be of
significant importance since the quality of the final product depends to a large extent on the skin friction coefficient
and the surface heat transfer rate. Crane [13] presented a simple closed form exponential solution of the steady two-
dimensional flow caused solely by a lincarly stretching sheet in an otherwise quiescent incompressible fluid. The
simplicity of the geometry and the possibility of obtaining further exact solutions through simple generalizations
have generated a lot of interest in extending it to more general situations. Such extensions include consideration of
more general stretching velocity, application to non-Newtonian fluids, and inclusion of other physical effects such
as suction or blowing, magnetic ficlds, etc. Unsteady two-dimensional boundary layer flow over a stretching surface



has been studied by Na and Pop [14], Wang et al. [15], Elbashbeshy and Badiz [16], Sharidan ¢t al. [17] and Ali
and Magyari [18], while Lakshmisha et al. [12], Devi et al. [19] and Takhar et al. [20] have considered the unsteady
three-dimensional-flow due to the impulsive motion of a stretching surface. The aim of the present analysis is to
study the unsteady flow and heat transfer in the stagnation-point flow on a heated stretched surface in a viscous
and incompressible fluid when both velocities of the stretching sheet and of the external flow (inviscid flow) are
proportional to the distance from the stagnation-point and inversely to time. The geometry is similar to that proposed
by Mahapatra and Gupta [21] for the steady two-dimensional stagnation-point flow towards a stretching sheet. The
parabolic partial differential equations governing the flow and heat transfer have been reduced to a system of two
ordinary differential equations which are solved using an implicit finite-difference scheme in combination with the
shooting method.

PROBLEM FORMULATION

We consider the unsteady two-dimensional forced convection flow and heat transfer of a viscous and incompressible
fluid near a stagnation point on a surface coinciding with the plain y = 0, the flow being confined to y > 0. Two equal
and opposite forces are applied along the x - axis at the initial time ¢ = 0, so that the surface is stretched keeping the
origin fixed as shown in Fig.1. It is assumed that the uniform temperature of the plane is 7, , while the temperature
of the ambient fluid is Ti., where 7, > T.. (heated plate). It is also assumed that the viscous dissipation effects are
neglected. Under these assumptions, the system of boundary layer equations are given by
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FIGURE 1. Physical model and coordinate system.

120



where « and v are the velocity components along the x— and y— axis, 7 is the fluid temperature, v is the kinematic
viscosity, uys = cx (C is a positive constant) and ¢ is the thermal diffusivity. Following Surma Devi [19] et al., we
assumed that u,,(1,x) and u.(t,x) are given by

CX - ax
Ty “ =00

where a is a positive constant. The momentum and energy equations can be transformed to the corresponding ordinary
differential equations by the following substitutions:

v = (ev/(1—y0)xf(n),
6(n) = (T-T.)/(Ty—T.), 6)
n o= (¢/vil—y1)y

where v is the stream function which is defined in the usual way as u = dy/dy and v = —dy/dx.
Substituting (6) into Eqs. (2) and (3), we obtain the following two ordinary differential equations:
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subject to the boundary conditions (4) which become

f(0)=0,f(0)=1,6(0)=1 )
a
f(ee) = 2,6() =0 (10)
where Pr is the Prandtl number and primes denote differentiation with respect to 1.
The physical quantities of interest are the skin friction coefficient Cy and the local Nusselt number Nu,, which are
defined as

Tw Xqw
Cr=—,Nity=—7"7—~ 11
! pu%vs7 Uy k(TW—Too)7 ( )
where T, is the skin friction and ¢, is the heat transfer from the plate which are given by
du > ( oT >
a2 g = k(2 (12)
with g and & being the dynamic viscosity and thermal conductivity, respectively. Using (6), we get
(1—y0)¥?Rer*C; = f"(0), (13)

(1—y0)2Re; V> Nuy = —0'(0)

Where Re = (cx)x/v is the low Reynolds number. It is important to notice that for the steady-state case,Eqs. (7) and
(8) reduced to
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with the boundary conditions (9)-(10). Equations (14) and (15) with the boundary conditions (9)-(10) where estab-
lished by Mahapatra and Gupta [21].

121



TABLE 1. Values of f”(0) for some values of a/c when the
flow is steady. () values reported by Mahapatra and Gupta [21].

alc 0.10 0.20 0.50 2.00

£7(0)  -09696 09182  -0.6673  2.0175
(-0.9694) (-09181) (-0.6673) (2.0175)

TABLE 2. Values of 8’(0) for some values of a/c and Pr
when the flow is steady. () values reported by Mahapatra and

Gupta [21].
ajcl Pr 0.05 0.5 1 1.5
0.1 -0.081 -0.381 -0.603 -0.777
(-0.081) (-0.383) (-0.603) (-0.777)
0.5 -0.137 -0.472 -0.691 -0.863
(-0.136) (-0.473) (-0.692) (-0.863)
2 -0.248 -0.711 -0.978 -1.171

(-0241)  (-0.709) (-0974) (-1.171)

SOLUTION

The systems of ordinary differential equations (7)-(8) and (14)-(15) subject to the boundary condition (9)-(10) have
been solved numerically for some values of the parameters a/c, t and Pr using Rungge-Kutta method of fourth order
combined with the shooting technique. For the physical considearation we take y = —1. Some values of f/”(0) and
6’(0) are given in Tables 1 and 2 for the case of the steady flow.

We can see from these tables that there is a very good agreement between our results and those obtained by
Mahapatra and Gupta [21]. Therefor, we are confident that the results obtained using the present method are accurate.

Figures 2 - 5 show the velocities profiles f and f along with the corresponding streamlines patterns for the case of
unsteady flow, Eqs. (7) and (8). The values of the parameters are a = 0.1, c= 1 and t = 0,1,2,3. It is interesting to
notice that the solution of Eq. (7) is not unique. Thus, there are two solutions, one Fig. 2 representing an attached flow
and the other one Fig. 4 the reversed flow. These is in agreement with the results obtained by Ma and Hui [9] for the
unsteady two-dimensional boundary layer flow near a stagnation point of a fixed plat plate.

1.4

fand f

FIGURE 2. The first solution of f(n) and f'(n) for a/c =0.1.
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FIGURE 3. The streamlines function for: s = 0,1,2 and 3 corresponding to the first solution for a/c = 0.1.
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FIGURE 4. The second solution of f(1) and f/(n) for a/c = 0.1.

Fig. 6 illustrates the dimensionless temperature profiles 6(n) for some values of Pr when a/c = 2. We notice that
temperature profile increase when Pr decreases. Further, Fig. 7 shows the variation of the heat transfer from the wall
— 0'(0) with a/c and different values of Pr. It is evident from Fig. 7 that an increase in Pr result in a decrease in the
thermal boundary layer thickness and as a consequence the heat transfer from the wall increases with Pr.
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FIGURE 5. The streamlines function for: r = 0,1,2 and 3 corresponding to the first solution for a/c = 0.1.
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FIGURE 6. Temperature profiles of 8(n) for several values of Pr and a/c = 2 in respect with 17.

CONCLUSION

The unsteady two-dimensional stagnation-point flow and heat transfer of a viscous and incompressible fluid over an
isothermal stretching flat plate in its own plane has been numerically analyzed in detailed. Following Surma Devi et
al. [19] similarity variables where used to reduced the governing partial differential equations to ordinary differential
equations. Solving numerically these equations, we have been able to determine the velocity and temperature profiles,
skin friction and heat transfer from the plate. For the case of steady-state flow, we have compared our present results
with those of Mahapatra and Gupta [21]. The agreement between the results is excelent. Effects of a/c and Pr on
the flow and heat transfer characteristic have been examened and discussed in detail. It is shown that for small values
of a/c the solution of the ordinary differential equation is not unique. One solution represents an attached flow and
the other one a reversed flow. It shoud be noticed that we have determined solutions of the problem for more values
of the governing parameters but in order to save space, the reported results are limited only to some values of these
parameters.
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FIGURE 7. Variation of the heat transfer with a/c for several values of Pr.
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