
Chapter 1

Krylov methods for large linear

systems

1.1 Motivation

We shall first motivate the title of this chapter, since the people not dealing
with numerical analysis may naturally ask: ”which is the role of such a
study, since the Cramer formulas and the Gauss method are known for
such a long time, and may be applied to any nonsingular linear system?”.

The answer to this question is dictated by practical considerations, spe-
cific to the numerical analysis. More precisely, both of the mentioned meth-
ods present major impediments when we try to use them with computers,
for large number of unknowns.

Below we present the situation arising if we want to solve with the
computer a linear system of dimension n = 100 using the Cramer formulas,
without optimizing the operations:

Following the argument from [30, p.311], let us imagine that we have

a computer occupying a volume V , formed by cubic elements of side

l, which performs parallel operations. Let us admit that the time
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required by an element for performing an elementary arithmetic op-

eration is t = l/c, c = 3 · 108 m/s and that there does not appear

the problem of transferring the information between the elements of

this computer. In such a case, the amount of elementary arithmetic

operations performed in a second is

No. of op. = No. of elem.
Time required by an elem. = V

l3
/ l

c = cV
l4
.

For V = 1 km3 and l = 10−8 cm (the order of the size of an atom)

we get

No. of op. = 3·108·109

10−40 = 3 · 1057.

Let us admit that the Cramer formulas for the considered system

require the performing of only 100! elementary arithmetic operations.

Since 100! = 10157,9..., this means that this computer would need

approximately 1094 years to compute the solution of the system.

The Cramer formulas are not used for practical problems even in the
case of small numbers of unknowns, because the number of elementary
operations (if admitting that are just of order O (n!)) is much higher than of
other direct methods, which require only O

(

n3
)

operations. As an example,
Ciarlet [73, p.81] mentions that for a linear system with n = 10 unknowns,
the Gauss method requires 700 operations, while the Cramer rule requires
400.000.000 operations. On the other hand, the size of the cumulated errors
in the Cramer rule may lead in floating point arithmetic to meaningless
solutions.

Let us see now the drawbacks of the Gauss method when used at the
computer, being known that the representation of the real numbers and
the floating point operations are inherently performed with errors. In the
case of the partial pivoting variant for solving the system Ax = b, it is
known that the relative error of the obtained ”solution” x̃ is bounded in
the following way (see [108] and [137, ch.9]):

‖x∗ − x̃‖∞
‖x∗‖∞

≤ 4n2ρǫ · κ∞ (A) ,
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where

• n is the dimension of the system;

• ǫ is the machine epsilon (the exact upper bound of the relative errors
appearing in the representation of the real numbers and in performing
the elementary arithmetic operations in floating point arithmetic);

• κ∞ (A) is the condition number of the matrix A in the Chebyshev
norm;

• ρ is a parameter specific to any matrix, its maximum value being
2n−1; Wilkinson has shown in 1965 that this bound is exact and
has provided theoretical examples of matrices when this bound is
attained, but for the majority of the practical problems the value of
ρ is small.1

The above relation shows in a clear way that the floating point solution
computed by the Gauss method may be far away from the exact one when
the number of unknowns is large or when the matrix A is ill conditioned.

On the other hand, the number of elementary arithmetic operations
performed by the algorithm makes that the time required to be exaggerated
long as n increases.

For n ≥ 100.000 no linear system with ”full” matrix has been solved by
direct methods (cf. [226, p.339]); the ”record” seems to be attained by a
system having dimension n = 76.800. Most often, the large linear systems

1Wilkinson has further stated that in all his activity he has not found practical appli-
cations for which the amplification factor to be larger than 16. This was a challenge for
those willing to find counterexamples. Only in 1993 Wright (cf. [137, ch.9]) has found
a class of two point boundary value problems for ordinary differential equations which,
if solved by the multiple shooting method, leads to linear systems for which the partial
pivoting has exponential growth of the error; Foster [108] has shown next in 1994 that
applying to a Volterra integral equation often arising in practice a certain quadrature
method, we obtain exponential growth in ρ when solving by partial pivoting. Despite of
these, Trefethen and Bau [226, p.167] have offered a preliminary argumentation, through
statistical considerations, according to which the amplification factor has small values in
the majority of the practical situations.
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have sparse matrices, coming from different discretizations. The Gauss
method does not take into account such structures, and its different variants
as well as other direct methods for sparse matrices have not imposed.

The Strassen and resp. Coppersmith and Winograd methods require
just O

(

n2,81...
)

resp. O
(

n2,37...
)

operations, but they had until present only
a more theoretical impact (cf. [226, p.247]). The closeness between n2,81...

and n3 makes that the difference between the efficiency of the Strassen
and Gauss methods to become essential for such large values of n, that
such systems are not approachable with the computers from today. The
methods with exponents smaller than 2, 81 have the constant factors from
the asymptotic expressions so large that they are more inefficient that the
Gauss method (again for the systems representable in the nowadays com-
puters). On the other hand, the stability of this type of methods is very
less understood.

1.2 Krylov methods based on backward error minimization

properties

Consider the linear system

(1.1) Ax = b,

where A ∈ RN×N is nonsingular and b ∈ RN . The Krylov methods for
solving such systems when the dimension N is large, are methods based on
the Krylov subspaces – defined for any initial approximation x0 ∈ RN and
for any value m ∈ {1, . . . , N} as

Km = Km (A, r0) = span
{

r0, Ar0, . . . , A
m−1r0

}

,

where r0 = b−Ax0 is the residual of x0. We shall assume in the following
that the matrix A is unstructured. It is known however that the Krylov
methods for symmetric and/or positive (semi)definite matrices have a be-
havior better understood than those for the general case (see, e.g., [121],
[89], [27]).
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The Krylov are regarded as iterative methods (some authors call them
semiiterative methods); though, unlike the Jacobi, Gauss-Seidel and other
iterations, the exact solution may be computed (in exact arithmetic) in at
most N steps, for any initial approximation.

The study of the iterative methods of this kind has begun with the
paper of Hestenes and Stiefel [136] from 1952, who introduced the con-
jugate gradient method (cf. [27, p.451] and [226, p.341]).2 Lanczos [154]
has introduced the iterations bearing his name two years before, these itera-
tions being connected to the conjugate gradient methods, but Hestenes and
Stiefel have independently given the standard formulation of this method
(cf. [226, p.341]). Krylov subspaces seem to be associated to the paper
[153].3 Regarding the Arnodi algorithm, the original paper [25] dates since
1951, the intentions from that paper being however far from its present uses
(cf. [226, p.340]).

The clear advantages of the Krylov methods were recognized and ex-
ploited from the seventies, when the development of the computational
tools have permitted the approach of large linear systems, in the present
accept of the notion.

The efficiency of the Krylov methods consists in the following aspects:

• For large values of N , one may obtain in many situations satisfactory
approximations, by performing a small amount of steps and compu-
tations. We present in the following a justification of this fact given
by Ipsen and Meyer [141].

The minimal polynomial P (t) of the matrix A is the unique monic
polynomial (i.e., having the coefficient of the maximum degree
term equal to 1) of minimal degree for which P (A) = 0. It
can be constructed with the aid of the eigenvalues of A as fol-
lows. Denoting the distinct eigenvalues of A by 4 λ1, . . . , λd and

2Concerning the history of these methods one may also consult [118].
3In [134] there are expressed some doubts concerning this.
4Ipsen and Meyer do not explicitly mention this, but for the real case it is necessary

for the matrix A to have N real eigenvalues (counting the multiplicity orders).
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if λi has index mi (the dimension of the largest Jordan block
associated to λi), then

M =
d
∑

i=1

mi and P (t) =
d
∏

i=1

(t− λi)
mi .

Writing P (t) =
∑M

i=0 αit
i, then the last term is α0 =

d
∏

i=1
(−λi)

mi

and so α0 6= 0 ⇔ ∃A−1.

It follows next that

A−1 = − 1
α0

M−1
∑

i=0

αi+1A
i,

and, consequently, the smaller the degree of the minimal poly-
nomial is, the shorter is the description of A−1. The connection
with the Krylov subspaces is immediately obtained.

Theorem 1.1 [141] If the minimal polynomial of the nonsin-
gular matrix A has degree M , then the solution of the system
Ax = b is contained in the subspace KM (A, b).

We remark that KM (A, b) is the Krylov subspace corresponding
to the initial approximation x0 = 0.

• The Krylov methods do not require the storage of the matrix A in the
computer memory, for these algorithms being necessary only matrix-
vector products of the form Av, for certain values v ∈ RN .

• In the case when the matrix A is rare, the speed of computing Av is
considerably increased.

At present, the solving of the general linear systems by this type of meth-
ods constitutes a domain of assiduous research, the literature containing an
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abundance of results on this theme. There exists two main classes of such
methods (cf. [226, p.305]). The first class is formed by the Hessenberg or-
thogonalization methods; after a modified Gram-Schmidt orthogonalization
(the Arnoldi algorithm) one obtains, in the notations below, the factoriza-
tion A = Vm+1H̄mV

t
m (the matrix H̄m is upper Hessenberg and the matrix

Vm+1 = [Vm vm+1] contains on its columns orthogonal normed vectors).
The most representative algorithm of this class is GMRES, introduced by
Saad and Schultz [211] in 1986. The second class contains the tridiagonal
biorthogonalization methods: A = QTQ−1, where T is a tridiagonal matrix
and Q is a matrix which generally is not orthogonal; the term of biorthog-
onalization refers to the fact that the columns of Q are orthogonal to the
columns of the inverse of the adjoint of Q [226, p.305]. The algorithms
from this class are based on three term recurrence formulas; among the
most representatives we mention BiCGStab, QMR and TFQMR, intro-
duced by Vorst [232] in 1992, Freund and Nachtigal [110] in 1991 and resp.
by Freund [109] in 1993.

In the case of symmetric matrices (or hermitian, in the complex case) the
tridiagonal orthogonalization is possible (the conjugate gradient method,
the Lanczos method) but in the general case, one must renounce either to
orthogonalization or to tridiagonalization.

In this chapter we shall study the GMRES, GMBACK and MINPERT
methods. According to the above classification, they belong to the first cat-
egory, and we shall see that they are based on backward error minimization
properties.

1.2.1 The GMRES method

Given an initial approximation x0 ∈ RN to the solution x∗ of the linear
system (1.1), the GMRES method uses the Arnoldi process for constructing
an orthonormal basis {v1, . . . , vm} in the subspace Km. By the exact solving
of a least squares problem in Rm, one determines the approximate solution
xGM

m ∈ RN satisfying:

(1.2)
∥

∥b−AxGM
m

∥

∥

2
= min

xm∈x0+Km

‖b−Axm‖2 = min
z∈Km

‖r0 −Az‖2 .
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Saad and Schultz have considered this problem also in the approxima-
tion theory framework, obtaining some error bounds. From this viewpoint,
the GMRES method with x0 = 0 solves the following problem: 5

∥

∥pGM
m,b (A) b

∥

∥

2
= min

pm∈Pm

‖pm (A) b‖2 ,

where Pm = {p : p polynomial of degree ≤ m with p (0) = 1}; the polyno-
mial pGM

m,b always exists, being uniquely determined if the above minimum
is nonzero.

”The convergence speed ” of GMRES attained when increasing m (see
also Proposition 1.3 below) depends both on the matrix A and on the
vector b. However, in practical situations, apart of some cases when b has a
special structure, it seems that the matrix A is the one which predominantly
determines the convergence speed. Greenbaum and Trefethen [124] have
considered the ”ideal GMRES problem”

∥

∥pGM
m (A)

∥

∥

2
= min

pm∈Pm

‖pm (A)‖2 .

The polynomial pGM
b always exists, being uniquely determined if the above

minimum is nonzero. The norm of the error from the ideal approximation
problem constitutes an upper bound for the error norm corresponding to
the ”real” case, for any m = 1, . . . , N (see [124]):

max
b∈CN , ‖b‖2=1

∥

∥pGM
m,b (A) b

∥

∥

2
≤
∥

∥pGM
m (A)

∥

∥

2
.

It is known that this inequality becomes equality when A belongs to
different classes of matrices (normal, triangular Toeplitz, etc.) and also
when A is arbitrary and m = 1 (see [124], [223], [121] and the references
therein). Such results led Greenbaum and Trefethen to the conjecture that
in the above relation one has equality for any matrix and iteration step m.

5The following relations concerning this aspect remain essentially the same if the
initial approximation x0 is arbitrary (according to the last equality in relation (1.2), b is
replaced with r0).
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In 1994, Faber, Joubert, Knill and Manteuffel have presented a counterex-
ample with a ”dense” matrix of dimension N = 4 for which the inequality
is strict at step m = 3, namely ‖pGM

m,b (A) b‖ = 0.99988 < 1 =
∥

∥pGM
m (A)

∥

∥

(cf. [223]). Toh presents in [223] a class of bidiagonal matrices depending
on a parameter ε, for which

max
‖b‖2=1

‖pGM
m,b (A) b‖2

‖pGM
m (A) ‖2

→ 0 as ε→ 0,

so that this conjecture is even more categorically invalidated.
Other results concerning the GMRES as a problem in the approximation

theory may be found in the references [211], [121], [124], [223], [141] and
[48]. We shall also mention the interpretation of the GMRES method as
an interpolation problem.

For x0 = 0, if the matrix A is diagonalizable, the following inequalities
hold:

∥

∥b−AxGM
m

∥

∥

2
≤ min

pm∈Pm

∥

∥V pm (Λ)V −1b
∥

∥

2

≤ κ2 (V ) min
pm∈Pm

max
i=1,...,N

|pm (λi)| ‖b‖2 ,

where V is the passing matrix and the matrix Λ is diagonal, containing the
eigenvalues λi. If the matrix A is normal, then κ2 (V ) = 1 and it is known
that the above upper bound is exact (see [121, pp. 54–55] and the references
therein). The problem may be interpreted as how well may the zero value
is approximated on the nodes λi by a polynomial of degree m which has
the value 1 at the origin. In this case it can be seen that there may appear
unfavorable situations when there exists an eigenvalue of A close to 0, resp.
favorable when all the eigenvalues are close to a value far away from zero.
Though, when the matrix A is not normal, the algebraic and geometric
orders of the eigenvalues remain important, but not the distribution of the
eigenvalues on the axis (or on the plane, in the complex case) — see also
Theorem 1.4 below.

From the practical viewpoint, the GMRES method is based on the
following algorithm:
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A. (Arnoldi)

A1. Let r0 = b−Ax0, β = ‖r0‖2 and v1 = 1
β r0;

A2. For j = 1, . . . ,m do

hij = (Avj, vi) , for i = 1, . . . , j

v̂j+1 = Av̂j −
∑i

j=1 hijvi

hj+1,j = ‖v̂j+1‖2

vj+1 = 1
hj+1,j

v̂j+1

A3. Form the Hessenberg matrix H̄m ∈ R(m+1)×m with the (possible)
nonzero elements hij determined above, and the matrix Vm ∈
RN×m having as columns the vectors vj: Vm = [v1 . . . vm].

GM. (GMRES)

GM1. Determine the exact solution yGM
m to the least squares prob-

lem

(1.3) min
ym∈Rm

∥

∥H̄mym − βe1
∥

∥

2

GM2. Set xGM
m = x0 + Vmy

GM
m .

At a certain step j0 in the Arnoldi algorithm, there may appear the
division by zero, when hj0+1,j0 = 0 (or, equivalently, when dimKj0+1 = j0).
Such situations are called breakdowns, but in this case the solving of the
problem GM1 with m = j0 leads to the exact determination of x∗ using
only Vm and H̄m. The terminology is therefore happy breakdown.

Saad and Schultz have obtained the following result.

Proposition 1.2 [211] Consider the linear system (1.1) and an initial ap-
proximation x0 ∈ RN . If the Arnoldi algorithm determines the elements
hj+1,j 6= 0 for j = 1, . . . ,m − 1, then the approximation xGM

m is exact
(xGM

m = x∗) if and only if one of the following equivalent relations hold:
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• hm+1,m = 0;

• v̂m+1 = 0;

• the polynomial of minimal degree of A with respect to r0 has degree
m, i.e.,

min
pm∈Pm

‖pm (A) r0‖ = 0 and min
pi∈Pi

‖pi (A) r0‖ 6= 0 for i < m.

In the case when hm+1,m 6= 0, the vector yGM
m from step GM1 is uniquely

determined.

The solution of the problem (1.2) may be explicitly written as (see [41]):

xGM
m = x0 + Vm

(

H̄t
mH̄m

)−1
H̄t

mV
t
m+1r0(1.4)

= x0 + Vm

(

H̄t
mH̄m

)−1
H̄t

mβe1,

but the computations are not performed by this formula. Problem (1.3)
has a structure which makes it to be easily solved, and its size is small. For
different implementation variants the following references may be consulted:
[211], [233], [234], [236], [148], [121] and [36], to mention only a few.

In practice there is usually considered a maximum value m̄ for the
dimensions of the Krylov subspaces (in many situations, the values are of
order m̄ ∈ {10, . . . , 20}, or even smaller). The iterations from step A2 in the
Arnoldi algorithm are performed for j = 1, . . . , m̄. In case of breakdown one
determines the exact solution, and the algorithm is stopped. The algorithm
may also be stopped if at a certain step j < m̄ the residual of the solution
xGM

j is smaller than a given value. It is interesting to notice that this test

may be performed without the explicit computation of xGM
j (see [211]),

which avoids some costly operations when, as we have assumed, N has
large values.

If after m̄ steps the determined solution does not have a sufficiently
small residual,6 the whole algorithm is restarted, taking as initial approx-

6As a stopping test one may also consider the value of the relative residual, as well as
other quantities based on the residual (see [121], [23], [137], [237]).
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imation x0 the previously determined solution xGM
m̄ . The terminology for

this variant is restarted GMRES, and is the most used variant.

In the case of the restarted variant we shall denote by x
GM(0)
m , m =

1, . . . , m̄ the first m̄ solutions, by x
GM(1)
m , m = 1, . . . , m̄ the following m̄

solutions, and so on. The initial starting value x0 will be clear from the
context. For the nonrestarted variant we shall use the notations xGM

m , while
for a generic GMRES solution7 we shall simply write xGM ; the notations
which will correspond to the k-th correction from the Newton-GMRES
method will be sGM

k,m resp. sGM
k .

With these notations, the following result can be immediately obtained
by the optimality properties of the GMRES solutions. As we have previ-
ously mentioned, the algorithm stops whenever at a certain step the exact
solution may be determined. This aspect is implicitly assumed in the fol-
lowing results.

Proposition 1.3 Consider the linear system (1.1) and the initial approx-
imation x0 = 0. Then the following statements are true:

• For any m ∈ {1, . . . , N}, the residual rGM
m of the solution xGM

m obeys

∥

∥rGM
m

∥

∥

2
≤ ‖b‖2 .

Moreover, this inequality is strict if and only if the solution xGM
m is

nonzero.

• The residuals associated to the GMRES solutions obey

0 =
∥

∥rGM
N

∥

∥

2
≤ . . . ≤

∥

∥rGM
1

∥

∥

2
≤ ‖b‖2 .

Moreover, the inequalities between the norms of two consecutive resid-
uals are strict if and only if the corresponding GMRES solutions are
distinct.

7In such a case we shall assume that the initial approximation x0 ∈ RN , the upper
bound m̄ ∈ {1, . . . , N − 1}, the number of (eventual) restarts l ≥ 0 and the number
m ∈ {1, . . . , m̄} of (final, if l ≥ 1) iterations are arbitrary.
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• For any fixed upper bound m̄ ∈ {1, . . . , N − 1}, the residuals from the
restarted variant obey

. . . ≤
∥

∥r
GM(l+1)
1

∥

∥

2
≤
∥

∥r
GM(l)
m̄

∥

∥

2
≤ . . . ≤

∥

∥r
GM(l)
1

∥

∥

2
≤

≤
∥

∥r
GM(l−1)
m̄

∥

∥

2
≤ . . . ≤

∥

∥r
GM(0)
1

∥

∥

2
≤ ‖b‖2 .

The inequalities between the norms of two consecutive residuals are
strict if and only if the corresponding GMRES solutions are distinct.

The above Proposition does not appear in the literature in this form
though some of its statements are implicitly in different papers (see [41],
[40], [122] and [24]). We enounce only the result obtained by Greenbaum,
Pták and Strakoš.

Theorem 1.4 [122] For any nonincreasing sequence f (1) ≥ f (2) ≥ . . . ≥
f (N − 1) > 0 of positive numbers and any set {λ1, . . . , λN} of (real, dis-
tinct8) values there exists a matrix A ∈ RN×N having the eigenvalues
λ1, . . . , λN , and a vector b ∈ RN such that the residuals of the GMRES
method with x0 = 0 applied to the system Ax = b satisfy

∥

∥rGM
m

∥

∥ = f (m) , for m = 1, . . . , N − 1.

Nachtigal, Reddy and Trefethen mentioned in the paper [167] a neces-
sary and sufficient condition for strict monotonicity

∥

∥rGM
m+1

∥

∥ <
∥

rGM
m for

m = 0, . . . , N − 1 and for any initial approximation x0 (”the field of values
of A should lie in an open half-plane with respect to the origin”)

A natural question raises: can one compute the exact solution x∗ using
the GMRES method considering a small dimension m̄, and performing
sufficiently restarts? We shall see that the answer is negative.

8In the cited paper, the above theorem is enounced for the complex case. The authors
do not explicitly mention, but is required that the eigenvalues to be distinct in order to
have rGM

N−1 2
> 0.
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Even if (in exact arithmetic) the GMRES method always offers the
unique solution of the problem (1.2) in at most N steps, in some situations
there may appear a stagnation in improving the iterations.9

Example 1.1. [41], [40] Consider the permutation matrix

A =













0 1

1
. . .
. . .

. . .

1 0













∈ RN×N

and the vector b = e1 ∈ RN , the system Ax = b having the unique solution
x∗ = eN . Taking x0 = 0 and performing m steps of the Arnoldi algorithm,
for m < N one obtains

H̄m =













0

1
. . .
. . . 0

1













∈ R(m+1)×m and Vm = [e1 . . . em] .

Using formula (1.4) it easily follows that xGM
m = 0; the initial approx-

imation x0 = 0 cannot be improved by increasing m until the final step,
m = N , when the exact solution is obtained. The situation is the same in
the restarted version if m̄,m ≤ N − 1.

This example of theoretical nature is meant to show that there exist
situations when satisfactory approximations may be obtained only for large
values of the Krylov subspaces — in which case the method is no longer
efficient.

In the above description of GMRES we have supposed that the arith-
metic operations are performed exactly. Since the numbers are represented
in computers in floating point arithmetic, there inherently appear errors in

9This phenomenon is tightly connected to the breakdowns of the Arnoldi-FOM method
[210], as shown by the results of Brown [40] and resp. Cullum and Greenbaum [81].
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their representation as well as in the elementary arithmetic operations. For
certain results regarding the behavior of GMRES in this context one may
consult [121], [105], [123] and [22].

*
* *

The test based on the magnitude of the residual of an approximate
solution is not always indicated. It is known that, in exact arithmetic, ”for
an approximate solution x̃ of the linear system (1.1), if the error x̃− x∗ is
small, then so is the residual b − Ax̃”10 [146] (see also [137], [237]). The
converse of this statement is not true: ”when the matrix A is ill conditioned,
if the residual b−Ax̃ is small, it does not necessarily follow that the error
x̃− x∗ is small” [146] (see also [237]).

Methods for minimizing other quantities than residuals have been re-
cently proposed by Kasenally, resp. Kasenally and Simoncini in [146] and
[147], where they consider the normwise backward error corresponding to
an approximation x̃ to x∗:

Π (x̃) = min
{

ε : (A+ ∆) x̃ = b+ δ, ‖∆‖F ≤ ε ‖E‖F , ‖δ‖2 ≤ ε ‖f‖2

}

,

where the parameters E ∈ RN×N and f ∈ RN are arbitrary, but fixed. The
value of Π (x̃) is known to be given by

Π (x̃) =
‖b−Ax̃‖2

‖E‖F · ‖x̃‖2 + ‖f‖2

,

and the minimum value is attained by the backward errors

∆A =
‖E‖F · ‖x̃‖2

‖E‖F · ‖x̃‖2 + ‖f‖2

(b−Ax̃)
x̃t

‖x̃‖2
2

, and

∆b =
‖f‖2

‖E‖F · ‖x̃‖2 + ‖f‖2

(b−Ax̃) .

10It is interesting to mention that if the residual b − Ax̃ is computed in floating point
arithmetic, then this statement does not hold in general [23].
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Kasenally [146] mentions that these results have been obtained by Rigal
and Gaches in 1967, in [208].

The problem solved by the mentioned algorithms is that of finding an
element xm ∈ x0 + Km which minimizes the backward errors.

Remark 1.2. Kasenally shows in [146] that the property of (1.2) the
GMRES solution may be expressed in terms of the backward errors:

min
xm∈x0+Km

‖b−Axm‖2 = min
xm∈x0+Km

{

‖∆b‖2 : Axm = b− ∆b

}

,

i.e., xGM
m minimizes the backward error ∆b, assuming ∆A = 0.

1.2.2 The GMBACK method

The GMBACK algorithm determines an element xGB
m ∈ x0 + Km which

minimizes the backward error in the matrix A, assuming zero the error in
b:

(1.5) min
xm∈x0+Km

‖∆A‖F , such that (A− ∆A) xm = b.

The solution xGB
m is obtained in the following way.

A. (Arnoldi)

Determine the elements H̄m and Vm+1;

GB. (GMBACK)

GB1. Let β = ‖r0‖2,

Ĥm =
[

−βe1 H̄m

]

∈ R(m+1)×(m+1),

Ĝm = [x0 Vm] ∈ RN×(m+1),

P = Ĥt
mĤm ∈ R(m+1)×(m+1),

Q = Ĝt
mĜm ∈ R(m+1)×(m+1);

GB2. Determine an eigenvector um+1 corresponding to the smallest
eigenvalue λGB

m+1 of the problem Pu = λQu;
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GB3. Compute yGB
m such that11

[

1

yGB
m

]

= 1

u
(1)
m+1

um+1;

GB4. Set xGB
m = x0 + Vmy

GB
m .

Remark. The matrices P and Q from step GB1 are symmetric, P is
positively defined Q is semipositively defined, such that the eigenvalues of
the generalized eigenproblem Pu = λQu are positive: +∞ ≥ λGB

1 ≥ λGB
2 ≥

. . . ≥ λGB
m+1 > 0. The case λGB

1 = +∞ appears when Q is singular (see,
e.g., [221]).

Kasenally [146] shows that, for any initial approximation x0 ∈ RN and
for any m ∈ {1, . . . , N}, the backward error ∆GB

A,m corresponding to the

GMBACK solution xGB
m is given by

(1.6) ∆GB
A,m = Vm+1

(

H̄my
GB
m − βe1

)

(

xGB
m

)t

‖xGB
m ‖2

2

,

and its norm is

(1.7)
∥

∥∆GB
A,m

∥

∥

F
=
√

λGB
m+1.

As in the GMRES method, the happy breakdowns from the Arnoldi al-
gorithm lead to the determination of the exact solution12. Unlike GMRES,
the solution xGB

m of the problem (1.5) may not be uniquely determined
if the eigenvalue λGB

m+1 is not simple. Moreover, there may appear some
undesired situations when the solution xGB

m cannot be determined (”uncir-
cumventible breakdowns”). Such situations appear when all the eigenvec-
tors corresponding to λGB

m+1 have the first component zero, which leads to
divisions by zero.

11See the notations from page xiii.
12This property is in fact true for all the Krylov methods based on Hessenberg orthog-

onalization.
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Example 1.3. [146] Consider again the linear system Ax = b from the
previous example. Taking again x0 = 0 and m ≤ N − 1, one obtains the
same matrices H̄m, Vm, and then

P = Im+1 and Q =











0
1

. . .

1











= [0 e2 . . . em+1] ∈ R(m+1)×(m+1).

The eigenvalues of the problem Pu = λQu are λ1 = +∞ and λ2 = . . . =
λm+1 = 1, with the eigenvectors u1 = e1 ∈ Rm+1 and u2 = e2, . . . , um+1 =
em+1 ∈ Rm+1, such that the vector yGB

m cannot be determined. For m = N
one obtains the exact solution.

This example is, as the previous one, of theoretical nature. In practical

situations, when one cannot choose an eigenvector um+1 with u
(1)
m+1 6= 0,

either one considers a further step in the Arnoldi algorithm, or the algorithm
is restarted with another initial approximation x0. In the following results
presented in this work we shall assume that in the GMBACK method one
does not encounter divisions by zero. The same assumption shall be made
on the MINPERT solutions.

Unlike GMRES, the residual of an approximate solution xGB
m cannot be

computed without having explicitly the approximation; one may however
determine the norm of the backward error in A, by computing the eigen-
value λGB

m+1. Also, the computation of the eigenpair
(

λGB
m+1, um+1

)

consti-
tutes a different problem compared to the linear least squares problem with
Hessenberg matrix from GMRES.

Concerning the elements computed by GMBACK, we obtain the follow-
ing result:

Proposition 1.5 [58] Consider the initial approximation x0 ∈ RN and
m ∈ {1, . . . , N}. If these elements determine a GMBACK solution xGB

m of
the linear system (1.1), then

∥

∥∆GB
A,m · xGB

m

∥

∥

2
=
∥

∥rGB
m

∥

∥

2
,
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where rGB
m = b−AxGB

m .

Proof. The matrices Vm+1 and H̄m determined in the Arnoldi algorithm
obey the following known relation (see [211]):

AVm = Vm+1H̄m,

which shows that

∥

∥Vm+1

(

H̄my
GB
m − βe1

)∥

∥

2
=
∥

∥AVmy
GB
m − r0

∥

∥

2

=
∥

∥AVmy
GB
m +Ax0 − b

∥

∥

2

=
∥

∥AxGB
m − b

∥

∥

2

=
∥

∥rGB
m

∥

∥

2
.

Taking into account formula (1.6) we are immediately lead to the stated
affirmation.

1.2.3 The MINPERT method

The MINPERT method determines an element xMP
m ∈ x0 + Km which

minimizes the joint backward error [∆A ∆b]:

(1.8) min
xm∈x0+Km

‖[∆A ∆b]‖F , such that (A− ∆A)xm = b+ ∆b,

where the matrix [∆A ∆b] ∈ RN×(N+1) contains in its first N columns
the matrix ∆A, and in the N + 1-th column the vector ∆b. In other words,
the solution xMP

m minimizes the distance from the original system to a
perturbed system, that an approximation xm satisfies exactly. Another in-
terpretation, given by Kasenally and Simoncini [147], shows that the above
minimization is tightly connected to the total least squares problem — see
[119] and [120].

The algorithm is similar to GMBACK, the only difference appearing in
forming the matrix Q:
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A. (Arnoldi)

Determine H̄m and Vm+1;

MP. (MINPERT)

MP1. Let β = ‖r0‖2,

Ĥm =
[

−βe1 H̄m

]

,

Gm =
[ x0 Vm

1 0

]

∈ R(N+1)×(m+1),

P = Ĥt
mĤm ∈ R(m+1)×(m+1)

Q = Gt
mGm ∈ R(m+1)×(m+1);

MP2. Determine an eigenvector um+1 corresponding to the smallest
eigenvalue λMP

m+1 of the problem Pu = λQu;

MP3. Determine yMP
m such that

[

1

yMP
m

]

= 1

u
(1)
m+1

um+1;

MP4. Set xMP
m = x0 + Vmy

MP
m .

The same remarks regarding the problem Pu = λQu hold, as in the
GMBACK case.

Kasenally and Simoncini [147] have shown that the elements determined
by MINPERT verify for all x0 ∈ RN and m ∈ {1, . . . , N} the following
relations:

xMP
m = x0 + Vm

(

H̄t
mH̄m − λMP

m+1Im+1

)−1 (
H̄t

mβe1 + λMP
m+1V

t
mx0

)

,(1.9)
∥

∥

[

∆MP
A,m ∆MP

b,m

]∥

∥

F
=
√

λMP
m+1,(1.10)

∆MP
b,m = −1


[(xMP

m )t 1]
t



2

2

rMP
m ,(1.11)

∥

∥rMP
m

∥

∥

2
=
√

λMP
m+1 ·

∥

∥

∥

[ (

xMP
m

)t
1
]t
∥

∥

∥

2
,

(1.12)
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where ∆MP
A,m, ∆MP

b,m and resp. rMP
m represent the backward errors, resp. the

residual of the approximate solution xMP
m .

We obtain the following results regarding the size of the joint backward
error of MINPERT when x0 = 0, which are similar to those from GMRES.

Proposition 1.6 [66] Consider the initial approximation x0 = 0 to the
solution of the linear system (1.1). Then for any m ∈ {1, . . . , N}, the
norm of the joint backward error associated to the solution xMP

m given by
MINPERT satisfies the inequality:

∥

∥

[

∆MP
A,m ∆MP

b,m

]∥

∥

F
≤ ‖b‖2 .

Proof. As it is also shown in [147], for x0 = 0 the MINPERT algorithm
generates the matrix Q = Im+1, such that the eigenvalue problem from step
MP2 is not generalized. Applying the Rayleigh quotient formula [221] one
obtains

λMP
m+1 = min

z∈Rm+1

ztPz

ztz
≤ et1Pe1

et1e1
= et1Ĥ

t
mĤme1 = β2 = ‖b‖2

2 ,

which, together with (1.10), proves the assertion.

Remarks. a) In proving the above result one may consider directly the
quotient ztPz

ztQz for the generalized eigenvalue problem Pu = λQu, applying

then the Fisher theorem [221, Cor. VI.1.16].
b) The vector e1 cannot be similarly used for bounding the backward

error ∆GB
A,m from GMBACK with x0 = 0, since in this case

et1Qe1 = et1 [0 e2 . . . em+1] e1 = 0

(the vector e1 is an eigenvector corresponding to λGB
1 = +∞). Such a

result could not be expected to hold since, anticipating, this would imply
that there would be enough to use one-dimensional Krylov subspaces in
order to obtain local convergence with q-order 2 for the Newton-GMBACK
method, for any nonlinear system approachable with the Newton method
(see Corollary 2.37).

We obtain the following consequences.



22 Chapter 1. Krylov methods for large linear systems

Corollary 1.7 [66] Consider the linear system (1.1) and the initial ap-
proximation x0 = 0. Then the joint backward errors associated to the MIN-
PERT solutions obey

0 =
∥

∥

[

∆MP
A,N ∆MP

b,N

]∥

∥

F

≤
∥

∥

[

∆MP
A,N−1 ∆MP

b,N−1

]∥

∥

F
≤ . . . ≤

∥

∥

[

∆MP
A,1 ∆MP

b,1

]∥

∥

F
≤ ‖b‖2 .

Proof. The last inequality was shown in the previous result, and the
others are proved in [147].

Remark. The optimization problem (1.8) does not always have a
unique solution, such that the above inequalities may not be strict even
for two different consecutive solutions.

Corollary 1.8 [66] Consider the linear system (1.1) and m̄ ∈ {1, . . . ,
N − 1} fixed. Then in using the restarted version of the MINPERT method
with the initial approximation x0 = 0, the obtained elements verify

. . . ≤
∥

∥

∥

[

∆
MP (l+1)
A,1 ∆

MP (l+1)
b,1

]∥

∥

∥

F

≤
∥

∥

∥

[

∆
MP (l)
A,m̄ ∆

MP (l)
b,m̄

]∥

∥

∥

F
≤ . . . ≤

∥

∥

∥

[

∆
MP (l)
A,1 ∆

MP (l)
b,1

]∥

∥

∥

F

≤
∥

∥

∥

[

∆
MP (l−1)
A,m̄ ∆

MP (l−1)
b,m̄

]∥

∥

∥

F
≤ . . . ≤

∥

∥

∥

[

∆
MP (0)
A,1 ∆

MP (0)
b,1

]∥

∥

∥

F
≤ ‖b‖2 .

The proof is immediately obtained by taking into account the minimum
properties of the MINPERT solutions.

As in the GMRES case, there may appear situations when the MIN-
PERT iterations stagnate. On the other hand, similarly to the GMBACK
method, the MINPERT method may also lead to uncircumventible break-
downs, when all the eigenvectors corresponding to λMP

m+1 have the first com-
ponent equal to zero. We offer some concrete examples in [66].
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Example 1.4. [66] Consider the matrix A ∈ RN×N from the preceding
examples and the linear system Ax = b, where b = he1 ∈ RN , with h ∈ R,
|h| > 1.

Taking x0 = 0, for m ≤ N − 1 we obtain the same matrices H̄m and
Vm, and next

P =











h2

1
. . .

1











, Q = Im+1.

The eigenvalues are λMP
1 = h2 > 1 and λMP

2 = . . . = λMP
m+1 = 1,

with the eigenvectors u1 = e1, u2 = e2, . . . , um+1 = em+1 ∈ Rm+1. For
m ∈ {1, . . . , N − 1}, the vector xMP

m cannot be determined because of the
first component of the eigenvectors corresponding to the eigenvalue 1. For
m = N one obtains the exact solution.

Example 1.5. [66] Consider the same matrix as above, and take b =
he1 ∈ RN , 0 < |h| < 1. In this case, for any value m ∈ {1, . . . , N − 1} the
MINPERT method with x0 = 0 leads to the unique solution xMP

m = 0. For
m = N one obtains the exact solution. The use of the restarted variant for
m̄,m ≤ N − 1 leads to the zero solution too.

The following inequalities are immediately obtained by taking into ac-
count the optimum properties of the GMRES, GMBACK and MINPERT
solutions.

Proposition 1.9 Consider the linear system (1.1) and the arbitrary ele-
ments x0 ∈ RN and m ∈ {1, . . . , N}. Then

max
{

∥

∥∆MP
A,m

∥

∥

F
,
∥

∥∆MP
b,m

∥

∥

2

}

≤
∥

∥

[

∆MP
A,m ∆MP

b,m

]∥

∥

F
≤
∥

∥∆GM
b,m

∥

∥

2
,(1.13)

max
{

∥

∥∆MP
A,m

∥

∥

F
,
∥

∥∆MP
b,m

∥

∥

2

}

≤
∥

∥

[

∆MP
A,m ∆MP

b,m

]∥

∥

F
≤
∥

∥∆GB
A,m

∥

∥

F
,(1.14)

where the solutions xGM
m , xGB

m and xMP
m are determined by the same ele-

ments m and x0.
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The inequalities from the right in relations (1.13) and (1.14) have been
obtained by Kasenally and Simoncini in [147]. In [66] we notice that the
inequalities from the left are obvious. In our opinion, the following inequal-
ities stated in [147, Th.4.4]

∥

∥

[

∆MP
A,m ∆MP

b,m

]∥

∥

F
≤
∥

∥∆GB
A,m

∥

∥

2
≤
∥

∥∆MP
A,m

∥

∥

F
.

are not true in general.
The sequence in relation (1.13) may be completed by another inequality:

Proposition 1.10 [147], [66] Under the hypothesis of the above proposi-
tion, the following inequalities hold:

max
{

∥

∥∆MP
A,m

∥

∥

F
,
∥

∥∆MP
b,m

∥

∥

2

}

≤
∥

∥

[

∆MP
A,m ∆MP

b,m

]∥

∥

F
≤
∥

∥∆GM
b,m

∥

∥

2
≤
∥

∥rMP
m

∥

∥

2
.

Proof. [66] When the backward error ∆A is assumed to be zero for a
certain approximate solution x̃ of the system Ax = b, the backward error
∆b coincides with the residual x̃, both the quantities being (apart of their
sign) uniquely determined by the expression b − Ax̃. This consideration,
together with the optimum property of the GMRES solution, justifies the
stated affirmation.

The inequality from the above proposition has been obtained first in
[147]. Its proof has been reconsidered by us in [66].

The connection between the three Krylov solutions is given by the fol-
lowing results. The first two relate the MINPERT and GMRES solutions.

Theorem 1.11 [147] Consider the linear system (1.1) and the arbitrary
elements x0 ∈ RN and m ∈ {1, . . . , N}. Let σ2

1 ≥ σ2
2 ≥ . . . ≥ σ2

m denote the
eigenvalues of H̄t

mH̄m (i.e., the squared singular values of H̄m) and assume
that σ2

m 6= λMP
m+1. Then

∥

∥xMP
m − xGM

m

∥

∥

2
≤ λMP

m+1

σ2
m−λMP

m+1

∥

∥xGM
m

∥

∥

2
,

∥

∥rMP
m − rGM

m

∥

∥

2
≤ λMP

m+1

σ2
m−λMP

m+1
σ1

∥

∥V t
mx

GM
m

∥

∥

2
.
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Remark. [147] An auxiliary result (also proved by Kasenally and Si-
moncini) shows that the eigenvalues determined at the m-th step interlace
in the following way: λMP

i ≥ σ2
i ≥ λMP

i+1 , i = 1, . . . ,m. So, the bounds from
the above inequalities are large when σ2

m is close to λMP
m+1, and the result

does not hold when the two values are identic (such a situation arises for
example when λMP

m+1 is a multiple eigenvalue).

Corollary 1.12 [147] Under the assumptions of the above proposition, if
x0 = 0 then

∥

∥xMP
m − xGM

m

∥

∥

2
≤ λMP

m+1β

σm(σ2
m−λMP

m+1)
.

The third result refers to the connection between the MINPERT and
GMBACK solutions.

Theorem 1.13 [147] Consider the linear system (1.1) and the arbitrary
elements x0 ∈ RN and m ∈ {1, . . . , N}. Then the following inequality is
true:

∥

∥xMP
m − xGB

m

∥

∥

2
≤ |λGB

m+1−λMP
m+1|

σ2
m−λGB

m+1

∥

∥V t
mx

MP
m

∥

∥

2
.


