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ARTICLE INFO ABSTRACT

Keywords: We show that, under appropriate conditions, one can create a hybrid between two given
Non-negative matrix factorization iterations which can perform better than either of the original ones. This fact provides a
Lee-Seung iteration freedom of choice. We also give numerical examples in which we compare our hybrid with

the dedicated Lee-Seung iteration.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction
1.1. Source separation methods. The non-negative matrix factorization (NMF)

Single-channel source separation problems arise when a number of sources emit signals that are mixed and recorded by a
single sensor and one is interested in estimating the original sources of the signals based on the recorded mixture. This prob-
lem is ill-posed. Several different model channel source separation methods have been used. One method is the autoregres-
sive model (AR). This model captures temporal correlations at the source, as was shown in [2,3]. In these papers it was
proved that, for a single channel mixture of stationary (AR) sources, the (AR) coefficients can be uniquely identified and
the sources separated. For non-stationary (AR) sources an adaptive sliding -window was introduced to update the process.
A complete study of (AR) models can be found in [4,5].

Let M(m,n) denote the collection of m x n matrices with nonnegative entries. For a given matrix V € M(m,n), the Non-
negative Matrix Factorization procedure (NMF) is used to find matrices W € M(m,r) and H € M(r,n) such that V = WH. Ma-
trix factorization has many applications. For example it is used in source separation and dimensionality reduction or
clustering. In using (NMF) it is necessary to compute

.1 2
argmin |V — WH]|". (1)

An excellent survey on (NMF) and matrix factorization could be found in [15].

Other factorization methods used are Vector Quantization (VQ), Principal Component Analysis (PCA) and Independent
Component Analysis (ICA). These can be written in the form V ~ WH. The differences between these methods and (NMF)
are due to the different constraints placed on factoring matrices. In the (VQ) method the columns of H are constrained to
be unary vectors (i.e., all components are zero except for one element equal to 1). In the (PCA) procedure the columns of
W and the rows of H must be orthogonal. In the (ICA) procedure the rows of H are maximally statistically independent.

A major problem with the (PCA) procedure is that it allows the basis vectors to have both positive and negative compo-
nents and the data are represented by linear combinations of these vectors. In some applications, the presence of negative
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components contradicts the physical reality. For example, the pixels in a gray scale image must have nonnegative entries, so
any image with negative intensities would have no reasonable interpretation. Also STFT magnitude is given by nonnegative
quantities. The (NMF) procedure was developed in an attempt to address this problem. (See [1,6,7,11,18,19]).

Two iterative (NMF) methods are in use - Alternative Least Squares (ALS) and that of Lee-Seung (LS), the reader may con-
sult [8-13].

1.2. Multiplicative rule. The pointwise product
Consider two functions F : R™*¥ — R and G : RN x RM*N _, R,

Definition 1. [9] One says that G(H,H’) is an auxiliary function for F(H) if the conditions
G(H.H) > F(H), G(H.H)=F(H), )

are satisfied.
In [9] the following quantity is considered as the cost function

2
1

F(H) = jzi: <Vi - Za:WmHu> ; (3)

where 1 <i<m,1<a<xr,V;is the “ith”, (1,n) dimension row from V,H, is the “ath”, (1,n) row from H and H = (Hq); -

Lemma 2. [9] If G is an auxiliary function, then F is nonincreasing under the update
H, ., = arg mHinG(H,Hn).

The Taylor expansion for F in (3), leads to

F(H) = F(H,) + (H — H,)VF(H,) + % (H-H,)' (wgw,,) (H— H,).

Leaving both H and H, as variables one obtains as an auxiliary function for F,

1
Groytor(H, H) = F(Hy) + (H — Ho) VE(Hy) + 5 (H = Ho)T (W, W, ) (H — Hy). (4)
The quantity (WZWn> is a positive semidefinite matrix. Moreover, as noted in [9], the difference matrix between,
K, = diag(diag(wgwnH; /Hg)) (5)

and
Ky — (wgwn),

remains positive semidefinite. (In Matlab, “./” denotes the pointwise division between matrices and “diag” the diagonal of a
Matrix, seen as vector). Note that we need it twice, in order to keep the dimensionality right. Hence, a similar quantity as the
above Taylor expansion, (4),

G(H,Hyn) = F(Hn) + (H — Ho) VF(Hy) + % (H = Ha) (Ka)(H — Hy), (6)

satisfies the conditions of an auxiliary function of the above F, see [9]. In order to make an upgrade each step for H,.1, the
arg min is involved. It is know that under appropriate conditions over ®, ¥ the quadratic form F, (with ® a positive defined
matrix),

F(x) =x"dx + Px + O, (7)
attains its minimum at
Xx=0"Yy.
Thus, by setting (6) into (7),
® =K, (: diag (diag(wgw,,Hg. /Hz))),

¥ .= VF(H,),
© := F(H,),

we obtain X = H,,,; — H, and therefore the new H,,; is



H,,1 — H, = arg mHinG(H7Hn), (8)
Hypo1 — Hy = K, '"VF(H,),
Hypi1 = Ho + K, 'VF(H,).

This leads to the Lee-Seung iterative (multiplicative) method.
1.3. The Lee-Seung multiplicative rule (LS)
More specific, for (8), the matrix H,, is given by

Hu1 = Ha — m ((WﬁWan> - (wgv)).
Basically, the rule is to reduce the “distance” (or the cost function) by choosing at each step, appropriate #,, respectively
Vo
Ho1 = Ha + 1, ((Wﬁv) - (Wﬁwan>), 9)
Wit = W, + ((VHL]) — (W,,HMHLI))%.

The heart of each iterative method consists in the choice of such #, and y,. Specifically, at step n, in [9], each matrix is
given pointwisely by
Hiap Whap
T = »Yab = = T ) (]0)
WanHn) (WHHMH )
ab

n+1

}’]a:
(W),

where (-),,, gives the location, (row and column), within the matrix. In (9) set (10). This leads to Hadamard or pointwise mul-
tiplication, denoted by “-”. Eventually, the following iteration method is obtained

(W)
Hn+1an‘W7 (1])
Wn+1 =W, 7(VHEH> .
(WaHuiaHy,o )

It was reported in [11,13], that the convergence result from [9], actually, does not provide enough conditions for the con-
vergence of (11). A new more stable iteration based on (11)was presented and its convergence was study.

Remark 3. “Lin’s modification” for (11), from [11], consists in adding a “small” positive quantity (i.e. § = 107°), such that the
Lee-Seung iteration becomes:

T
Ho =Hn-%, (12)
(WaW.H, ) +
(WaHuiaHy ) +0
For this new method, 1, and y,, were set to be:
Nap = #7 Yab = Wn;b o
R (TN IeE

1.4. The Alternative least squares method (ALS)
In (9) set
7];1 = (W.rrlwﬂ)71=

and alternatively,
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Fig. 1. The matrix V is generated by real audio data.
T -1
Yo = (Hn+1Hn+l) )
to obtain,
Hupr = WIW,) 1 (WY 13
n+1 — ( n n) n ) ( )
Wot = VHpii (HoaHyy)

The problem with such iteration is that one or both of (W'W,)™" and (Hn1HL, )~! can be negative. In order to solve this

problem one can consider the projection onto the nonnegative orthant, denoted by P, [-]. The above Alternating Least Squares
iteration becomes

Hn+1 = P+ <(W£Wn)71 <W£V>> (14)
Wit = Py (VHuor (HaaHp) ).

The convergence for such iteration is described in [7]. We remark that a quantity such as (A’A ]A is similar to the pro-
jection operator obtained for the least squares method, (see for example [14]). This method was reported (see also our exper-
iments) to be very fast but unstable, see also [17]. In [17], as well as here, the aim is to obtain a new iteration which has the
speed convergence of (ALS) and the stability of (LS).

Typical convergence and divergence behaviors are indicated in Fig. 1. V is the spectrogram of an audio signal
A3_whistle.wav!, the frame length of the FFT was set to 512. Hence, the dimension of V was m = 512, n = 174. Both W and
H were randomly initialized. The rank r was set to 7 and 50% overlap between the windows was used for generating the spec-
trogram. All the three algorithms were applied to decompose the music notes from the audio signal.

1.5. The hybrid method
In (9) insert = iny(W~'W), to obtain the iteration
Hoor = Hy + (WIW,)™! <(WZV> - (Wgwan)). (15)

A “general” iteration method for such “H,.;"” as in (9) would have the following structure
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Xni1 = Xo + K(Y,) ! ((YﬁV) - (Yﬁynxn)), (16)

Vs = Yo+ N&uit) ™ (VK = YiXuiXi1 )
or,

Hoor = Hy +A(W,) " (ng - wgwan) (17)

Wast = Wa + B(Ho1) ™ (Vo = WaHu )

where K(Xp,) is a surrogate for A(W,) which may be different at each step. We introduce K to be a nonnegative matrix “close
enough” to A(W,,) so as to avoid the errors introduced by using a projection onto the positive orthant. Note that Y, is differ-
ent from W, at each step. But, if Y, is close enough to W,, then X, behaves analogously to H, We introduced within (16 and
(17) two “general” iterations. The study will cover, in this matter, all possible choices for those K, N, A and B within (16 and
(17). Appropriate settings for K and N from (16) will lead to (LS) iteration. Eventually we will compare it with (ALS), if A and B
are well chosen within (17).

-1 -1
Remark 4. Set A(W,) ' = (diag(diag(WEWnHﬁ‘ /HZ))) and B(Hy.q) ' = ((diag(diag(wanHHzﬂ . /wn)))) to obtain
-1
the Lee-Seung iteration (11). As we can see at each step A(W,,) is changing, even within (15); set A(W,,)™! = (wgwn) and
-1
B(Hn1) ! = (HH]HLJ , to obtain the (ALS) iteration.
Our main purposes are the following: first to be able to mix (LS) and (ALS) iterations in order to obtain a better one. Sec-

ond, we show that “structurally” the two algorithms are not very different and we provide the mathematical background for
such hybrid to converge.

2. Main results
2.1. Convergence of the hybrid method
Recall the following Lemma:
Lemma 5. [16] Let{a,} be a nonnegative sequence that satisfies

ap1 < (1 —w)a, + oM,
where w € (0,1) and M > 0 are fixed numbers and {c,}; is a nonnegative sequence which converges to zero. Then lim,_.a, = 0.
The result remains true provided that the coefficient of a, stays within an interval in (0, 1).

Proposition 6. Let {a,} be a nonnegative sequence that satisfies

(i1 < ;Lnan + O-nMv vn > Mo,

where M >0 is fixed number, {i,} and {c,}; are nonnegative sequences such that {i,} C (0,A), for some A <1 and
lim,_. 0, = 0. Then lim,_a, = 0.

Proof. Note that, for each n € N, 4, < A. By defining (1 — w) = max,(1 — 4,), the result follows from Lemma 5. O

Remark 7. If 4, > 1 for each n, the Proposition 6 fails. As an example, choose a, = n,/, = 2 and ¢, = 0 for each n. Then it
follows that n + 1 = a,,1 < Ana, + 0,M = 2n. Proposition 6 remains true if 4, > 1, for only a finite subset of N.

For sake of simplicity, through out this paper, we shall consider the sup —norm for all matrices involved. Within Matlab
one use “max (max (...))” command.

Theorem 8. [fiteration (17) convergesi.e.lim,_..H, = H",lim, .., W, = W* and lim,,_ .Y, = W*, and there exists 2 € (0,1) and
M > 0 such that for each step n, we have the following relations satisfied

I, — K(Y,) 'W'w,

<i<l, (18)
max s . o} <m

then iteration (16) is also convergent; i.e. lim,_ .. X, = H".



Proof. Define M, =Y, — W,. Note that,

Xni1 = Xn + K(Yn) 1(YTV YTYan> (19)
= Xo +K(Y 1((WT+1\/1T) (W§+M§)(wn+Mn)xn)
= Xo +K(Y 1( V- WTWX)
INGAR ( +WIM, + MM, )x)

where W, is obtained from (17). Using (17) and (19) one obtains

Hn+1 - Xn+]
= (Hn — Xn) - AW,) " (ng - WZW,,H,,) —K(Yn)! (ng - WEWHX,,)

=~ K(Ya) " (MV = (MiWa + WM, + MM, )X, )
= (Hn — Xa) +AW,) ! (ng - WZW,,H,,) —K(Yn)! (ng - szan)
+K(Ya) WiV = WiWaH, ) = K(Ya) (WY = W WX,
—K(Yy)" (Mgv - (Mﬁw,, +WIM, + MﬁMn)xn)
= (Hn — Xn) + K(Yy)™' (Wﬁwnxn - Wﬁwan) + (A(Wny1 - K(Yn)’1> (ng - WﬁWan)
—K(Yy)" (Mgv - (Mgwn +WIM, + MﬁMn)xn)
- (1” - I((Yn)’1W£Wn> (Hn — Xa) + (A(Wn)’l - K(Yn)’l) (ng - Wgwan)
—K(Yn) " (MV = (MiWa + WMy + MMq )X, ).

Thus,
[Hns1 = Xnsall
< |[Ir = K(Yo) " WEW, ||| Hy — Xa|
+awny - kv [wiv - wi

+ HK(Y -
+[[revn | |[wh +

We shall consider here the sup — sup-norm such that HI,,,H = 1. Denote by

a, = HHn _XnH7
—K(Yn) "Wy

1},
[ 1%l }-

Note that one has 4, € (0,A) and ¢, — 0, therefore from Proposition 6, we obtain lim,_...a, = lim,_.||H, — X»|| = 0, that s
lim,_..||Xn|| = H". Using the inequality,

O = max{HWTV - WTWan

- sup{HA (W)™ = K(Yn)™

‘K (Ya)™

[1Xn = H|| < [[Hn — H'|| + [[Hn — X,
it follows that lim,_,... X, = H. O
Remark 9. Using Matlab it is easy to verify each step, of the condition of (18) by using (max (max (eye (r,r)-inv (diag (diag

((A”*A*B)./B)))*(A™*A)))), where size (A) = (m,r) and size (B) = (r,n). The second condition of (18), simply demands an upper
bound for those matrices involved in the process.



2.2. Further results

-1 1
In (17), set A(W,) = WﬂWn> , (respectively, B(Hp.1) = (HnHHm]) ) to obtain the (ALS) method. The above Theo-
rem leads to the following result.

Corollary 10. If the iteration (15) converges i.e. (lim,_..H, = H",limp_ W, = W* and lim_...Yn, = W*), and there exists a
A€ (0,1) and an M > O such that for each step n, the following relations are satisfied

1))

then the iteration (16) is also convergent; i.e. lim,_ .. X, = H".

Ly —KXn) "WIW, || < 2 < 1,

max {sup{ k%) | (wiw.)

Remark 11.

(a) In other words, this Corollary claims that a hybrid is allowed, provided that appropriate assumptions are satisfied.
(b) Note that by considering the diagonal matrix

A(W,,) = diag diag (W, W,H;. /Hy) ),

(17) becomes the Lee-Seung iteration (with the Hadamard product).

Proposition 12. In Theorem 8 one can replace

Iy — K(Yn) " WIW,|| < 2,
with
1-—
W < [k

Proof. Note that

|

<1- Hk(yn)”wg

< |y = K(Yn) "W

< s

to obtain the conclusion. [

By duality, one can consider the case in which lim,_..X, = H" to obtain.

Corollary 13. If the iteration (17) converges (i.e. limp_H, = H",lim,_ ., W, = W* and lim,_ . X, = H"), and there exists a
A€ (0,1) and an M > 0 such that for each step n, we have the following relations satisfied

Ly — HnﬂHZ;HN(XHY1 H <A<,

B(Hn+1)7] H}} < M»

then the iteration (16) is also convergent; i.e. lim,_..Y, = W".
As in [9], the next step is to consider the second part of (9) with B(H,,1) = (Hn+1Hn+1)

Wi =Wp+(V-W Hn+1)Hn+1(Hn+1Hn+1) s

max {sup{HN(Xn)’]

and the following quantity from (16),
yn+1 = Yn + (V - Yan+1 )Xn+1N(Xn)_1>

to obtain a similar result to Corollary 10.

Corollary 14. If the iteration (15) converges (i.e. limp_..H, = H",limp_..W, = W* and lim,_..X, = H") and there exists a
A€ (0,1) and an M > 0 such that for each step n, we have the following relations satisfied



Iy — HotHY N H <<,

n+1

max {sgp{HN(Xn)’1 H H (HMHL)’]

N

M7

f

then the iteration (16) is also convergent; i.e. lim,_.. Y, = W".
A result similar to Proposition 12 also holds. For practitioners the changed condition may be more useful.

15
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Remark 15. Analogously, one can replace at each step

Iy = HuaHyp NG | <2,

n+1
by
1-2 _
W< o

3. Numerical examples. Convergence and divergence behaviors

In the first experiment we let V denote the spectrogram of the audio signal C6_frenchhorn.wav?, where the frame length of
the FFT was set at 512. Thus the dimension of V was m = 512 and p = 174. Both W and H were randomly initialized. The rank r
was set to 7 and 50% overlap between the windows for generating the spectrogram. All three algorithms were applied to decom-
pose the music notes from the audio signal. The convergence curves were averaged over 20 independent tests. The results are
shown in Fig. 2.

In our second experiment, we generated V synthetically as the absolute value of a zero-mean Gaussian distributed ran-
dom variable and initialized W and H in the same way. The dimensions of these matrices were set as m = 500,n = 300 and
r = 7. The Matlab Program performed 20 independent random tests in which both W and H were kept the same for all the
three algorithms. The evolution of the cost function averaged over the 20 tests. In Fig. 3 are shown the behaviors of the pro-
posed algorithm, as well as the (LS) and (ALS) algorithms. When r is increased to 13 or higher, the (ALS) algorithm becomes
unstable, while the proposed algorithm still converges, even though its rate of convergence becomes slower than that of the
(LS) algorithm.

Acknowledgement

The first author is indebted to Ioana C. Soltuz, Maria Soltuz for their constant support throughout this journey we made
together. Also, the authors are indebted to a referee for carefully reading the paper and for making useful suggestions.

References

[1] R. Albright, J. Cox, D. Duling, A. Langville, C. Meyer, Algorithms, initializations and convergence for the nonnegative matrix factorization, NCSU
Technical Report Math 81706, 2006, submitted for publication, URL <http://meyer.math.ncsu.edu/Meyer/Abstracts/Publications.html>.
[2] R. Balan, J. Rosca, A spectral power factorization, Siemens Corporate Research. Princeton, NJ, Tech. Rep. SCR-01-TR-703, Sep 2001.
[3] R. Balan, A. Jourjine, J. Rosca, AR process and sources can be reconstructed from degenerate mixtures, in Independent Component Analysis and Blind
Signal Separation, International Conference on (ICA), Jan 1999, pp. 467-472.
[4] PJ. Brockwell, R. Davis, Time Series: Theory and Methods, Springer, 1991.
[5] P.J. Brockwell, R. Davis, Introduction to Time Series and Forecasting, Springer, 1996.
[6] A. Ben Hamza, D.J. Brady, Reconstructin of reflectance spectra using robust NMF, IEEE Trans. Signal Process. 54 (2006) 9. de unde am ciatt.
[7] M. Berry, M. Browne, A. Langville, P. Pauca, RJ. Plemmons, Algorithms and appliactions for approximation nonnegative matrix factorization,
Computational Statistics and Data Analysis, 2006.
[8] D. Donoho, V. Stodden, When does non-negative matrix factorization give a correct decomposition into parts?, in: Advances in Neural Information
Processing Systems (NIPS), vol. 17.
[9] D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, Adv. Neural Inf. Process. Syst. 13 (2) (2005) 556-562.
[10] Daniel D. Lee, H. Sebastian Seung, Learning the parts of objects by non-negative matrix factorization, Nature 401 (6755) (1999) 788-791.
[11] CJ. Lin, On the convergence of multiplicative update algorithms for nonnegative matrix factorization, IEEE Trans. Neutral Networks 18 (6) (2007)
1589-1596.
[12] CJ. Lin, Projected gradient methods for non-negative matrix factorization, Neural Comput. (2007). to be published.
[13] E.F. Gonzales, Y. Zhang, Accelerating the Lee-Seung algorithm for non-negative matrix factorization, Dept. Comput. Appl. Math. Rice Univ. Houston TX,
Tech. Rep. 2005.
[14] G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press, 1986.
[15] M.N. Schmidt, Single-channel source separation using non-negative matrix factorization, Ph. D. Thesis, Technical University of Denmark, 2008.
[16] Stefan M. Soltuz, Sequences supplied by inequalities and applications, Revue d’analyse numerique et de theorie de I'approximation 29 (2) (2001) 207-
212.
[17] Stefan M. Soltuz, W.Wang, P. Jackson, A hybrid iterative algorithm for nonnegative matrix factorization, Workshop 15th on Statistical Signal
Processing, 2009. SSP '09. IEEE/SP Cardiff.
[18] W. Wang, X. Zou, Nonnegative matrix factorization based on projected nonlinear conjugate gradient algorithm, ICARN 2008.
[19] R. Zdenuk, A. Cichocki, Nonneagtive matrix factorization with quadratic programming, Neurocomputing 71 (2007) 2309-2320.

LAVALIGUIC GL VY VY VYL LWL I Y cOUa U 1 WL OULIG] VY . VV G5 UL L IULIU G O AL AL


http://meyer.math.ncsu.edu/Meyer/Abstracts/Publications.html
http://refhub.elsevier.com/S0096-3003(13)00385-8/h0005
http://refhub.elsevier.com/S0096-3003(13)00385-8/h0005
http://refhub.elsevier.com/S0096-3003(13)00385-8/h0010
http://refhub.elsevier.com/S0096-3003(13)00385-8/h0010
http://refhub.elsevier.com/S0096-3003(13)00385-8/h0015
http://refhub.elsevier.com/S0096-3003(13)00385-8/h0020
http://refhub.elsevier.com/S0096-3003(13)00385-8/h0025
http://refhub.elsevier.com/S0096-3003(13)00385-8/h0030
http://refhub.elsevier.com/S0096-3003(13)00385-8/h0030
http://refhub.elsevier.com/S0096-3003(13)00385-8/h0035
http://refhub.elsevier.com/S0096-3003(13)00385-8/h0040
http://refhub.elsevier.com/S0096-3003(13)00385-8/h0040
http://refhub.elsevier.com/S0096-3003(13)00385-8/h0045
http://refhub.elsevier.com/S0096-3003(13)00385-8/h0045
http://refhub.elsevier.com/S0096-3003(13)00385-8/h0045
http://refhub.elsevier.com/S0096-3003(13)00385-8/h0050

	A mixed iteration for nonnegative matrix factorizations
	1 Introduction
	1.1 Source separation methods. The non-negative matrix factorization (NMF)
	1.2 Multiplicative rule. The pointwise product
	1.3 The Lee–Seung multiplicative rule (LS)
	1.4 The Alternative least squares method (ALS)
	1.5 The hybrid method

	2 Main results
	2.1 Convergence of the hybrid method
	2.2 Further results

	3 Numerical examples. Convergence and divergence behaviors
	Acknowledgement
	References


