
A mixed iteration for nonnegative matrix factorizations

S�tefan M. S�oltuz a,b,⇑, B.E. Rhoades c

a Dawson College, Mathematics Department, 3040 Sherbrooke Street West, Westmount (Montreal), Quebec H3Z 1A4, Canada
b Tiberiu Popoviciu Institute of Numerical Analysis, Cluj-Napoca, Romania
c Indiana University, Mathematics Department, Bloomingtron, IN, USA

a r t i c l e i n f o

Keywords:
Non-negative matrix factorization
Lee–Seung iteration

a b s t r a c t

We show that, under appropriate conditions, one can create a hybrid between two given
iterations which can perform better than either of the original ones. This fact provides a
freedom of choice. We also give numerical examples in which we compare our hybrid with
the dedicated Lee–Seung iteration.
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1. Introduction

1.1. Source separation methods. The non-negative matrix factorization (NMF)

Single-channel source separation problems arise when a number of sources emit signals that are mixed and recorded by a
single sensor and one is interested in estimating the original sources of the signals based on the recorded mixture. This prob-
lem is ill-posed. Several different model channel source separation methods have been used. One method is the autoregres-
sive model (AR). This model captures temporal correlations at the source, as was shown in [2,3]. In these papers it was
proved that, for a single channel mixture of stationary (AR) sources, the (AR) coefficients can be uniquely identified and
the sources separated. For non-stationary (AR) sources an adaptive sliding -window was introduced to update the process.
A complete study of (AR) models can be found in [4,5].

Let M m; nð Þ denote the collection of m� n matrices with nonnegative entries. For a given matrix V 2 M m;nð Þ, the Non-
negative Matrix Factorization procedure NMFð Þ is used to find matrices W 2 M m; rð Þ and H 2 M r;nð Þ such that V ¼WH. Ma-
trix factorization has many applications. For example it is used in source separation and dimensionality reduction or
clustering. In using NMFð Þ it is necessary to compute

arg min
W;H

1
2

V �WHk k2: ð1Þ

An excellent survey on (NMF) and matrix factorization could be found in [15].
Other factorization methods used are Vector Quantization VQð Þ, Principal Component Analysis PCAð Þ and Independent

Component Analysis ICAð Þ. These can be written in the form V �WH. The differences between these methods and NMFð Þ
are due to the different constraints placed on factoring matrices. In the VQð Þ method the columns of H are constrained to
be unary vectors (i.e., all components are zero except for one element equal to 1). In the PCAð Þ procedure the columns of
W and the rows of H must be orthogonal. In the ICAð Þ procedure the rows of H are maximally statistically independent.

A major problem with the ðPCAÞ procedure is that it allows the basis vectors to have both positive and negative compo-
nents and the data are represented by linear combinations of these vectors. In some applications, the presence of negative
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components contradicts the physical reality. For example, the pixels in a gray scale image must have nonnegative entries, so
any image with negative intensities would have no reasonable interpretation. Also STFT magnitude is given by nonnegative
quantities. The NMFð Þ procedure was developed in an attempt to address this problem. (See [1,6,7,11,18,19]).

Two iterative NMFð Þmethods are in use – Alternative Least Squares ALSð Þ and that of Lee–Seung LSð Þ, the reader may con-
sult [8–13].

1.2. Multiplicative rule. The pointwise product

Consider two functions F : RM�N ! R and G : RM�N � RM�N ! R.

Definition 1. [9] One says that GðH;H0Þ is an auxiliary function for FðHÞ if the conditions

GðH;H0ÞP FðHÞ; GðH;HÞ ¼ FðHÞ; ð2Þ

are satisfied.
In [9] the following quantity is considered as the cost function

FðHÞ ¼ 1
2

X
i

V i �
X

a

WiaHa

 !2

; ð3Þ

where 1 6 i 6 m;1 6 a 6 r;Vi is the ‘‘ith’’, ð1;nÞ dimension row from V ;Ha is the ‘‘ath’’, ð1;nÞ row from H and H ¼ Hað Þ16a6r .

Lemma 2. [9] If G is an auxiliary function, then F is nonincreasing under the update

Hnþ1 ¼ arg min
H

G H;Hnð Þ:

The Taylor expansion for F in (3), leads to

F Hð Þ ¼ F Hnð Þ þ H � Hnð ÞrF Hnð Þ þ 1
2

H � Hnð ÞT WT
nWn

� �
H � Hnð Þ:

Leaving both H and Hn as variables one obtains as an auxiliary function for F,

GTaylor H;Hnð Þ ¼ F Hnð Þ þ H � Hnð ÞrF Hnð Þ þ 1
2

H � Hnð ÞT WT
nWn

� �
H � Hnð Þ: ð4Þ

The quantity WT
nWn

� �
is a positive semidefinite matrix. Moreover, as noted in [9], the difference matrix between,

Kn ¼ diag diag WT
nWnHT

n:=HT
n

� �� �
ð5Þ

and

Kn � WT
nWn

� �
;

remains positive semidefinite. (In Matlab, ‘‘:=’’ denotes the pointwise division between matrices and ‘‘diag’’ the diagonal of a
Matrix, seen as vector). Note that we need it twice, in order to keep the dimensionality right. Hence, a similar quantity as the
above Taylor expansion, (4),

G H;Hnð Þ ¼ F Hnð Þ þ H � Hnð ÞrF Hnð Þ þ 1
2

H � Hnð ÞT Knð Þ H � Hnð Þ; ð6Þ

satisfies the conditions of an auxiliary function of the above F, see [9]. In order to make an upgrade each step for Hnþ1, the
arg min is involved. It is know that under appropriate conditions over U; W the quadratic form F, (with U a positive defined
matrix),

F xð Þ ¼ xTUxþWxþH; ð7Þ

attains its minimum at

�x ¼ U�1W:

Thus, by setting (6) into (7),

U :¼ Kn ¼ diag diag WT
nWnHT

n:=HT
n

� �� �� �
;

W :¼ rF Hnð Þ;
H :¼ F Hnð Þ;

we obtain �x ¼ Hnþ1 � Hn and therefore the new Hnþ1 is
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Hnþ1 � Hn ¼ arg min
H

G H;Hnð Þ; ð8Þ

Hnþ1 � Hn ¼ K�1
n rF Hnð Þ;

Hnþ1 ¼ Hn þ K�1
n rF Hnð Þ:

This leads to the Lee–Seung iterative (multiplicative) method.

1.3. The Lee–Seung multiplicative rule (LS)

More specific, for (8), the matrix Hnþ1 is given by

Hnþ1 ¼ Hn �
Hn

WT
nWnHn

� � WT
nWnHn

� �
� WT

nV
� �� �

:

Basically, the rule is to reduce the ‘‘distance’’ (or the cost function) by choosing at each step, appropriate gn, respectively
cn,

Hnþ1 ¼ Hn þ gn WT
nV

� �
� WT

nWnHn

� �� �
; ð9Þ

Wnþ1 ¼Wn þ VHT
nþ1

� �
� WnHnþ1HT

nþ1

� �� �
cn:

The heart of each iterative method consists in the choice of such gn and cn. Specifically, at step n, in [9], each matrix is
given pointwisely by

gab ¼
Hnab

WT
nWnHn

� �
ab

; cab ¼
Wnab

WnHnþ1HT
nþ1

� �
ab

; ð10Þ

where �ð Þab, gives the location, (row and column), within the matrix. In (9) set (10). This leads to Hadamard or pointwise mul-
tiplication, denoted by ‘‘�’’. Eventually, the following iteration method is obtained

Hnþ1 ¼ Hn �
WT

nV
� �

WT
nWnHn

� � ; ð11Þ

Wnþ1 ¼Wn �
VHT

nþ1

� �
WnHnþ1HT

nþ1

� � :
It was reported in [11,13], that the convergence result from [9], actually, does not provide enough conditions for the con-

vergence of (11). A new more stable iteration based on (11)was presented and its convergence was study.

Remark 3. ‘‘Lin’s modification’’ for (11), from [11], consists in adding a ‘‘small’’ positive quantity (i.e. d ¼ 10�9Þ, such that the
Lee–Seung iteration becomes:

Hnþ1 ¼ Hn �
WT

nV
� �

WT
nWnHn

� �
þ d

; ð12Þ

Wnþ1 ¼Wn �
VHT

nþ1

� �
WnHnþ1HT

nþ1

� �
þ d

:

For this new method, gn and cn, were set to be:

gab ¼
Hnab

WT
nWnHn

� �
ab
þ d

; cab ¼
Wnab

WnHnþ1HT
nþ1

� �
ab
þ d

;

1.4. The Alternative least squares method (ALS)

In (9) set

gn ¼ ðW
T
nWnÞ�1

;

and alternatively,
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cn ¼ ðHnþ1HT
nþ1Þ

�1
;

to obtain,

Hnþ1 ¼ ðWT
nWnÞ�1 WT

nV
� �

; ð13Þ

Wnþ1 ¼ VHnþ1ðHnþ1HT
nþ1Þ

�1
:

The problem with such iteration is that one or both of ðWT
nWnÞ�1 and ðHnþ1HT

nþ1Þ
�1 can be negative. In order to solve this

problem one can consider the projection onto the nonnegative orthant, denoted by Pþ �½ �. The above Alternating Least Squares
iteration becomes

Hnþ1 ¼ Pþ ðWT
nWnÞ�1 WT

nV
� �� �

ð14Þ

Wnþ1 ¼ Pþ VHnþ1ðHnþ1HT
nþ1Þ

�1
� �

:

The convergence for such iteration is described in [7]. We remark that a quantity such as AT A
� ��1

A is similar to the pro-
jection operator obtained for the least squares method, (see for example [14]). This method was reported (see also our exper-
iments) to be very fast but unstable, see also [17]. In [17], as well as here, the aim is to obtain a new iteration which has the
speed convergence of (ALS) and the stability of (LS).

Typical convergence and divergence behaviors are indicated in Fig. 1. V is the spectrogram of an audio signal
A3_whistle.wav1, the frame length of the FFT was set to 512. Hence, the dimension of V was m ¼ 512; n ¼ 174. Both W and
H were randomly initialized. The rank r was set to 7 and 50% overlap between the windows was used for generating the spec-
trogram. All the three algorithms were applied to decompose the music notes from the audio signal.

1.5. The hybrid method

In (9) insert g ¼ invðW�1WÞ, to obtain the iteration

Hnþ1 ¼ Hn þ ðWT
nWnÞ�1 WT

nV
� �

� WT
nWnHn

� �� �
: ð15Þ

A ‘‘general’’ iteration method for such ‘‘Hnþ1’’ as in (9) would have the following structure

100
101

102

103

104

105

106

107

108

109

Numbers of iterations

N
or

m
(V

−W
H

)

ALS iteration
mixed iteration
Lee−Seung iteration

Fig. 1. The matrix V is generated by real audio data.

1 Available at www.ee.surrey.ac.uk/Personal/W.Wang/demondata.html.
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Xnþ1 ¼ Xn þ K Ynð Þ�1 YT
nV

� �
� YT

nYnXn

� �� �
; ð16Þ

Ynþ1 ¼ Yn þ N Xnþ1ð Þ�1 VXnþ1 � YnXnþ1XT
nþ1

� �
or,

Hnþ1 ¼ Hn þ AðWnÞ�1 WT
nV �WT

nWnHn

� �
ð17Þ

Wnþ1 ¼Wn þ BðHnþ1Þ�1 VHnþ1 �WnHnþ1HT
nþ!

� �
where K Xnð Þ is a surrogate for AðWnÞ which may be different at each step. We introduce K to be a nonnegative matrix ‘‘close
enough’’ to AðWnÞ so as to avoid the errors introduced by using a projection onto the positive orthant. Note that Yn is differ-
ent from Wn at each step. But, if Yn is close enough to Wn, then Xn behaves analogously to Hn: We introduced within (16 and
(17) two ‘‘general’’ iterations. The study will cover, in this matter, all possible choices for those K;N, A and B within (16 and
(17). Appropriate settings for K and N from (16) will lead to (LS) iteration. Eventually we will compare it with (ALS), if A and B
are well chosen within (17).

Remark 4. Set A Wnð Þ�1 ¼ diag diag WT
nWnHT

n:=HT
n

� �� �� ��1
and B Hnþ1ð Þ�1 ¼ diag diag WnHnþ1HT

nþ1:=Wn

� �� �� �� ��1
to obtain

the Lee–Seung iteration (11). As we can see at each step A Wnð Þ is changing, even within (15); set A Wnð Þ�1 ¼ WT
nWn

� ��1
and

B Hnþ1ð Þ�1 ¼ Hnþ1HT
nþ1

� ��1
, to obtain the (ALS) iteration.

Our main purposes are the following: first to be able to mix (LS) and (ALS) iterations in order to obtain a better one. Sec-
ond, we show that ‘‘structurally’’ the two algorithms are not very different and we provide the mathematical background for
such hybrid to converge.

2. Main results

2.1. Convergence of the hybrid method

Recall the following Lemma:

Lemma 5. [16] Let anf g be a nonnegative sequence that satisfies

anþ1 6 ð1�wÞan þ rnM;

where w 2 ð0;1Þ and M > 0 are fixed numbers and rnf g; is a nonnegative sequence which converges to zero. Then limn!1an ¼ 0.
The result remains true provided that the coefficient of an stays within an interval in 0;1ð Þ.

Proposition 6. Let anf g be a nonnegative sequence that satisfies

anþ1 6 knan þ rnM; 8n P n0;

where M > 0 is fixed number, knf g and rnf g; are nonnegative sequences such that knf g � 0;Kð Þ; for some K < 1 and
limn!1rn ¼ 0. Then limn!1an ¼ 0.

Proof. Note that, for each n 2 N; kn 6 K. By defining 1�wð Þ ¼maxn 1� knð Þ, the result follows from Lemma 5. h

Remark 7. If kn > 1 for each n, the Proposition 6 fails. As an example, choose an ¼ n; kn ¼ 2 and rn ¼ 0 for each n. Then it
follows that nþ 1 ¼ anþ1 6 knan þ rnM ¼ 2n. Proposition 6 remains true if kn > 1, for only a finite subset of N.

For sake of simplicity, through out this paper, we shall consider the sup�norm for all matrices involved. Within Matlab
one use ‘‘max (max (. . .))’’ command.

Theorem 8. If iteration (17) converges i.e. limn!1Hn ¼ H�; limn!1Wn ¼W� and limn!1Yn ¼W�; and there exists k 2 0;1ð Þ and
M > 0 such that for each step n; we have the following relations satisfied

Ir;r � K Ynð Þ�1WT
nWn

��� ��� 6 k < 1; ð18Þ

max sup
n

K Ynð Þ�1
��� ���; AðWnÞ�1

��� ���n o� �
6M;

then iteration (16) is also convergent; i.e. limn!1Xn ¼ H�.
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Proof. Define Mn ¼ Yn �Wn. Note that,

Xnþ1 ¼ Xn þ K Ynð Þ�1 YT
nV � YT

nYnXn

� �
ð19Þ

¼ Xn þ K Ynð Þ�1 WT
n þMT

n

� �
V � WT

n þMT
n

� �
Wn þMnð ÞXn

� �
¼ Xn þ K Ynð Þ�1 WT

nV �WT
nWnXn

� �
þ K Ynð Þ�1 MT

nV � MT
nWn þWT

nMn þMT
nMn

� �
Xn

� �
;

where Wn is obtained from (17). Using (17) and (19) one obtains

Hnþ1 � Xnþ1

¼ Hn � Xnð Þ þ AðWnÞ�1 WT
nV �WT

nWnHn

� �
� K Ynð Þ�1 WT

nV �WT
nWnXn

� �
� K Ynð Þ�1 MT

nV � MT
nWn þWT

nMn þMT
nMn

� �
Xn

� �
¼ Hn � Xnð Þ þ AðWnÞ�1 WT

nV �WT
nWnHn

� �
� K Ynð Þ�1 WT

nV �WT
nWnHn

� �
þ K Ynð Þ�1 WT

nV �WT
nWnHn

� �
� K Ynð Þ�1 WT

nV �WT
nWnXn

� �
� K Ynð Þ�1 MT

nV � MT
nWn þWT

nMn þMT
nMn

� �
Xn

� �
¼ Hn � Xnð Þ þ K Ynð Þ�1 WT

nWnXn �WT
nWnHn

� �
þ AðWnÞ�1 � K Ynð Þ�1
� �

WT
nV �WT

nWnHn

� �
� K Ynð Þ�1 MT

nV � MT
nWn þWT

nMn þMT
nMn

� �
Xn

� �
¼ Ir;r � K Ynð Þ�1WT

nWn

� �
Hn � Xnð Þ þ AðWnÞ�1 � K Ynð Þ�1

� �
WT

nV �WT
nWnHn

� �
� K Ynð Þ�1 MT

nV � MT
nWn þWT

nMn þMT
nMn

� �
Xn

� �
:

Thus,

Hnþ1 � Xnþ1k k

6 Ir;r � K Ynð Þ�1WT
nWn

��� ��� Hn � Xnk k

þ AðWnÞ�1 � K Ynð Þ�1
��� ��� WT

nV �WT
nWnHn

��� ���
þ K Ynð Þ�1
��� ��� V �WnXnk k MT

n

��� ���
þ K Ynð Þ�1
��� ��� WT

n þMT
n

��� ��� Mnk k Xnk k:

We shall consider here the sup� sup-norm such that Ir;r

�� �� ¼ 1. Denote by

an ¼ Hn � Xnk k;

kn ¼ Ir;r � K Ynð Þ�1WT
nWn

��� ���;
rn ¼max WT

nV �WT
nWnHn

��� ���; MT
n

��� ���; Mnk k
n o

;

M ¼ sup
n

AðWnÞ�1 � K Ynð Þ�1
��� ���; K Ynð Þ�1

��� ���; Xnk k
n o

:

Note that one has kn 2 0;Kð Þ and rn ! 0, therefore from Proposition 6, we obtain limn!1an ¼ limn!1 Hn � Xnk k ¼ 0, that is
limn!1 Xnk k ¼ H�. Using the inequality,

Xn � H�k k 6 Hn � H�k k þ Hn � Xnk k;

it follows that limn!1Xn ¼ H�. h

Remark 9. Using Matlab it is easy to verify each step, of the condition of (18) by using (max (max (eye (r,r)-inv (diag (diag
((A’*A*B)./B)))*(A’*A)))), where size (A) = (m,r) and size (B) = (r,n). The second condition of (18), simply demands an upper
bound for those matrices involved in the process.
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2.2. Further results

In (17), set AðWnÞ ¼ WT
nWn

� ��1
, (respectively, B Hnþ1ð Þ ¼ Hnþ1HT

nþ1

� ��1
) to obtain the (ALS) method. The above Theo-

rem leads to the following result.

Corollary 10. If the iteration (15) converges i.e. (limn!1Hn ¼ H�; limn!1Wn ¼W� and limn!1Yn ¼W�Þ; and there exists a
k 2 0;1ð Þ and an M > 0 such that for each step n; the following relations are satisfied

Ir;r � K Xnð Þ�1WT
nWn

��� ��� 6 k < 1;

max sup
n

K Xnð Þ�1
��� ���; WT

nWn

� ��1
����

����
� �� �

6M;

then the iteration (16) is also convergent; i.e. limn!1Xn ¼ H�.

Remark 11.

(a) In other words, this Corollary claims that a hybrid is allowed, provided that appropriate assumptions are satisfied.

(b) Note that by considering the diagonal matrix

A Wnð Þ ¼ diag diag WT
nWnHT

n:=HT
n

� �� �
;

(17) becomes the Lee–Seung iteration (with the Hadamard product).

Proposition 12. In Theorem 8 one can replace

Ir;r � K Ynð Þ�1WT
nWn

��� ��� 6 k;

with

1� k

WT
nWn

��� ��� 6 K Ynð Þ�1
��� ���:

Proof. Note that

1� K Ynð Þ�1
��� ��� WT

nWn

��� ��� 6 1� K Ynð Þ�1WT
nWn

��� ���
6 Ir;r � K Ynð Þ�1WT

nWn

��� ��� 6 k;

to obtain the conclusion. h

By duality, one can consider the case in which limn!1Xn ¼ H� to obtain.

Corollary 13. If the iteration (17) converges (i.e. limn!1Hn ¼ H�; limn!1Wn ¼W� and limn!1Xn ¼ H�Þ; and there exists a
k 2 0;1ð Þ and an M > 0 such that for each step n; we have the following relations satisfied

Ir;r � Hnþ1HT
nþ1N Xnð Þ�1

��� ��� 6 k < 1;

max sup
n

N Xnð Þ�1
��� ���; B Hnþ1ð Þ�1

��� ���n o� �
6M;

then the iteration (16) is also convergent; i.e. limn!1Yn ¼W�.
As in [9], the next step is to consider the second part of (9) with B Hnþ1ð Þ ¼ ðHnþ1HT

nþ1Þ; i.e.

Wnþ1 ¼Wn þ V �WnHnþ1ð ÞHT
nþ1ðHnþ1HT

nþ1Þ
�1
;

and the following quantity from (16),

Ynþ1 ¼ Yn þ V � YnXnþ1ð ÞXnþ1N Xnð Þ�1
;

to obtain a similar result to Corollary 10.

Corollary 14. If the iteration (15) converges (i.e. limn!1Hn ¼ H�; limn!1Wn ¼W� and limn!1Xn ¼ H�Þ and there exists a
k 2 0;1ð Þ and an M > 0 such that for each step n; we have the following relations satisfied
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Ir;r � Hnþ1HT
nþ1N Xnð Þ�1

��� ��� 6 k < 1;

max sup
n

N Xnð Þ�1
��� ���; Hnþ1HT

nþ1

� ��1
����

����
� �� �

6M;

then the iteration (16) is also convergent; i.e. limn!1Yn ¼W�.
A result similar to Proposition 12 also holds. For practitioners the changed condition may be more useful.

10 0
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Numbers of iterations

N
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m
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H
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ALS iteration
mixed iteration
Lee−Seung iteration

Fig. 2. The matrix V is generated by real audio data.
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Fig. 3. The matrix V is generated by real audio data.
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Remark 15. Analogously, one can replace at each step

Ir;r � Hnþ1HT
nþ1N Xnð Þ�1

��� ��� 6 k;

by

1� k

Hnþ1HT
nþ1

��� ��� 6 N Xnð Þ�1
��� ���:

3. Numerical examples. Convergence and divergence behaviors

In the first experiment we let V denote the spectrogram of the audio signal C6_frenchhorn.wav2, where the frame length of
the FFT was set at 512. Thus the dimension of V was m ¼ 512 and p ¼ 174. Both W and H were randomly initialized. The rank r
was set to 7 and 50% overlap between the windows for generating the spectrogram. All three algorithms were applied to decom-
pose the music notes from the audio signal. The convergence curves were averaged over 20 independent tests. The results are
shown in Fig. 2.

In our second experiment, we generated V synthetically as the absolute value of a zero-mean Gaussian distributed ran-
dom variable and initialized W and H in the same way. The dimensions of these matrices were set as m ¼ 500;n ¼ 300 and
r ¼ 7. The Matlab Program performed 20 independent random tests in which both W and H were kept the same for all the
three algorithms. The evolution of the cost function averaged over the 20 tests. In Fig. 3 are shown the behaviors of the pro-
posed algorithm, as well as the (LS) and (ALS) algorithms. When r is increased to 13 or higher, the (ALS) algorithm becomes
unstable, while the proposed algorithm still converges, even though its rate of convergence becomes slower than that of the
(LS) algorithm.
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