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Abstract

We show that the convergence of Mann, Ishikawa iterations are equivalent to the convergence
of a multistep iteration, for various classes of operators.
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1. Introduction

Let X be a Banach space, B a nonempty, convex subset of X , and T a selfmap of
B. The two most popular iteration procedures for obtaining 6xed points of T , if they
exist, are Mann iteration [5], de6ned by

u1 ∈B; un+1 = (1 − �n)un + �nTun; n¿ 1 (1.1)

and Ishikawa iteration [4], de6ned by

z1 ∈B; zn+1 = (1 − �n)xn + �nTyn;

yn = (1 − �n)xn + �nTzn; n¿ 1 (1.2)

for certain choices of {�n}; {�n} ⊂ [0; 1].
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For X a Hilbert space, B a convex compact subset of X; T a Lipschitzian pseudo-
contractive selfmap of B, Ishikawa [4] was able to show that (1.2) converges strongly
to the unique 6xed point of T in B, provided that (i′) 06 �n6 �n6 1 for all n¿ 1,
(ii) lim �n=0, and (iii)

∑∞
n=1 �n�n=∞. Previous attempts to establish the same result

for Mann iteration had proved unsuccessful. Finally, in year 2000, in [1] an example
was provided of a Lipschitzian pseudocontraction for which the Mann iteration fails to
converge to the 6xed point.
Although condition (i′) was required in order to obtain the result of Ishikawa, it

was noted that one could relax condition (i′) by replacing it with (i) 06 �n; �n6 1
and still obtain strong convergence for many diEerent maps. Moreover, by proving a
convergence theorem for this modi6ed Ishikawa method, and then setting �n = 0 one
obtained as a corollary the corresponding theorem for Mann iteration. The literature
abounds with such papers.
A reasonable conjecture is that the Ishikawa iteration methods satisfying (i) and the

corresponding Mann iterations are equivalent for all maps for which either method
provides convergence to a 6xed point.
In an attempt to verify this conjecture the authors, in a series of papers [9–14] have

shown the equivalence for several classes of maps.
In year 2000, M.A. Noor introduced in [7] the three-step procedure

v1 ∈B; tn = (1 − �n)vn + �nTvn;

wn = (1 − �n)vn + �nTtn;

vn+1 = (1 − �n)vn + �nTwn; n¿ 1: (1.3)

The presence of (1.3) raises an interesting question.
Is there a map for which (1.3) converges to a 6xed point, but for which (1.2), with

(i′) fails to converge?
The answer to that question is unknown, but we shall show in this paper that (1.3),

(1.2) and (1.1) are equivalent for all classes of functions for which (1.3) has been
used in [7,8]. In fact, we prove a more general result, by using a multi-step procedure
of arbitrary 6xed order p¿ 2, de6ned by

xn+1 = (1 − �n)xn + �nTy1
n;

yi
n = (1 − �i

n)xn + �i
nTyi+1

n ; i = 1; : : : ; p − 2;

yp−1
n = (1 − �p−1

n )xn + �p−1
n Txn: (1.4)

The sequence {�n} is such that for all n ∈N

{�n} ⊂ (0; 1); lim
n→∞ �n = 0;

∞∑
n=1

�n = ∞ (1.5)

and for all n ∈N
{�i

n} ⊂ [0; 1); 16 i6p − 1; lim
n→∞ �1

n = 0: (1.6)
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Taking p = 3 in (1.4) we obtain iteration (1.3). Taking p = 2 in (1.4) we obtain
(1.2).
The map J :X → 2X ∗

given by Jx := {f ∈X ∗: 〈x; f〉 = ‖x‖2; ‖f‖ = ‖x‖}; ∀x ∈X ,
is called the normalized duality mapping. The Hahn–Banach theorem assures that
Jx �= ∅; ∀x ∈X .

De�nition 1.1. A map T :B → B is called strongly pseudocontractive if there exist
k ∈ (0; 1) and j(x − y)∈ J (x − y) such that

〈Tx − Ty; j(x − y)〉6 (1 − k)‖x − y‖2; ∀x; y ∈B: (1.7)

A map S :X → X is called strongly accretive if there exist k ∈ (0; 1) and
j(x − y)∈ J (x − y) such that

〈Sx − Sy; j(x − y)〉¿ k‖x − y‖2; ∀x; y ∈D(S): (1.8)

In (1.7) when k = 0, then T is called pseudocontractive. In (1.8) when k = 1, S
is called accretive.

Lemma 1.2 (Weng [15]). Let {an} be a nonnegative sequence which satis8es the
following inequality

an+16 (1 − �n)an + �n; (1.9)

where �n ∈ (0; 1); ∀n ∈N;
∑∞

n=1 �n = ∞, and �n = o(�n). Then limn→∞an = 0.

The following Lemma is from [6].

Lemma 1.3 (Morales and Jung [6]): If X is a real Banach space, then the following
relation is true:

‖x + y‖26 ‖x‖2 + 2〈y; j(x + y)〉; ∀x; y ∈X; ∀j(x + y)∈ J (x + y): (1.10)

2. Main results

Theorem 2.1. Let X be a real Banach space with a uniformly convex dual and B a
nonempty, closed, convex, bounded subset of X . Let T :B → B be a continuous and
strongly pseudocontractive operator. If {�n} ⊂ (0; 1) satis8es (1.5) and {�i

n} ⊂ [0; 1),
i = 1; : : : ; p − 1, satisfy (1.6) and u1 = x1 ∈B, then the following are equivalent:
(i) the Mann iteration (1.1) converges to the 8xed point of T ,
(ii) the iteration (1.4) converges to the 8xed point of T .

Proof. Corollary 1 of [2] assures the existence of a 6xed point. The uniqueness of the
6xed point comes from (1.7).
Since B is convex and bounded and T is a selfmap of B, un ∈B for each n, and

hence {un} is bounded. The condition T :B → B and the assumption that B is bounded
and convex lead us to conclusion {‖Tun‖} is bounded.
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Denote

P = sup
n∈N

{‖xn‖}: (2.1)

We will prove that {‖xn‖} is bounded. Supposing now that

xn ∈B (2.2)

we will prove that

xn+1; yi
n(i = 1; : : : ; p − 1)∈B: (2.3)

The fact that B is a convex set, T :B → B and relation (1.4) lead to

yp−1
n = (1 − �p−1

n )xn + �p−1
n Txn ∈B; (2.4)

similarly, we obtain

yp−2
n = (1 − �p−2

n )xn + �p−2
n Typ−1

n ∈B: (2.5)

Recursively, we have

yi
n = (1 − �i

n)xn + �i
nTyi+1

n ∈B; i = 1; : : : ; p − 3: (2.6)

Thus y1
n ∈B. Using the assumption T :B → B we obtain that Ty1

n ∈B. Hence

xn+1 = (1 − �n)xn + �nTy1
n ∈B (2.7)

because already xn ∈B. Thus P ¡ + ∞. Set

M := max
{

P; sup
n∈N

{‖Txn‖}; sup
n∈N

{‖Tyi
n‖: 16 i6p − 1};

sup
n∈N

{‖un‖}; sup
n∈N

{‖Tun‖}
}

(2.8)

to obtain

M ¡ + ∞: (2.9)

Because X ∗ is uniformly convex the duality map is a single-valued map [3]. Using
(1.1), (1.4), (1.7) and (1.10) with

x := (1 − �n) (xn − un);

y := �n(Ty1
n − Tun);

x + y = xn+1 − un+1 (2.10)

we obtain

‖xn+1 − un+1‖2 = ‖(1 − �n)(xn − un) + �n(Ty1
n − Tun)‖2

6 (1 − �n)2‖xn − un‖2 + 2�n〈Ty1
n − Tun; J (xn+1 − un+1)〉

= (1 − �n)2‖xn − un‖2 + 2�n〈Ty1
n − Tun; J (xn+1 − un+1)
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−J (y1
n − un)〉 + 2�n〈Ty1

n − Tun; J (y1
n − un)〉

6 (1 − �n)2‖xn − un‖2 + 2�n(1 − k)‖y1
n − un‖2

+ 2�n〈Ty1
n − Tun; J (xn+1 − un+1) − J (y1

n − un)〉: (2.11)

Set

�n := 2�n〈Ty1
n − Tun; J (xn+1 − un+1) − J (y1

n − un)〉: (2.12)

Proposition 12.3 of [3] assures that, when X ∗ is uniformly convex, then J is single-
valued map and is uniformly continuous on every bounded set of X . Since {Ty1

n −Tun}
is bounded, to have limn→∞ �n = 0 is suJcient to prove that

J (xn+1 − un+1) − J (y1
n − un) → 0; (n → ∞): (2.13)

‖(xn+1 − un+1) − (y1
n − un)‖

=‖(xn+1 − y1
n) − (un+1 − un)‖

=‖ − �nxn + �nTy1
n + �1

nxn − �1
nTy2

n + �nun − �nTun‖
6 �n(‖xn‖ + ‖Ty1

n‖ + ‖un‖ + ‖Tun‖) + �1
n(‖xn‖ + ‖Ty2

n‖)
6 (�n + �1

n)4M → 0; as n → ∞: (2.14)

The uniform continuity of J (·) guarantees that (2.13) is satis6ed.
Relations (1.1), (1.4) and (1.10) with

x := (1 − �1
n)(xn − un);

y := �1
n(Ty2

n − un);

x + y = y1
n − un; (2.15)

lead to

‖y1
n − un‖2 = ‖(1 − �1

n)(xn − un) + �1
n(Ty2

n − un)‖2

6 (1 − �1
n)

2‖xn − un‖2 + 2�1
n〈Ty2

n − un; J (y1
n − un)〉

6 ‖xn − un‖2 + 2�1
n‖Ty2

n − un‖‖y1
n − un‖

6 ‖xn − un‖2 + 2�1
n(‖Ty2

n‖ + ‖un‖)(‖y1
n‖ + ‖un‖)

6 ‖xn − un‖2 + �1
n8M

2: (2.16)

We already know that ‖Ty2
n‖6M and ‖y1

n‖6M; ∀n ∈N. Observe that we do not
need further evaluations for y3

n; : : : ; y
p−1
n ; xn. This is the crucial point in this proof:

starting the computations in (1.4), from xn+1 we do not need to evaluate more than
two steps. The other steps are included in (2.4), (2.5), (2.6), and (2.7), to prove
‖Ty2

n‖6M; ∀n ∈N.
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Substituting (2.16) and (2.12) in (2.11), we obtain

‖xn+1 − un+1‖26 (1 − �n)2‖xn − un‖2 + 2�n(1 − k)‖xn − un‖2

+ �n + �n�1
n16M

2(1 − k)

= (1 − 2k�n + �2n)‖xn − un‖2 + o(�n): (2.17)

From (1.5) for all n suJciently large we have

�n6 k: (2.18)

Substituting (2.18) into (2.17), we obtain

1 − 2k�n + �2n6 1 − 2k�n + k�n = 1 − k�n: (2.19)

Finally (2.17) becomes

‖xn+1 − un+1‖26 (1 − k�n)‖xn − un‖2 + o(�n) (2.20)

with

an := ‖xn − un‖2;

�n := k�n ∈ (0; 1); (2.21)

and using Lemma 1.2, we obtain limn→∞ an = limn→∞‖xn − un‖2 = 0, i.e.

lim
n→∞ ‖xn − un‖ = 0: (2.22)

Suppose that limn→∞ un = x∗. The inequality

06 ‖x∗ − xn‖6 ‖un − x∗‖ + ‖xn − un‖ (2.23)

and (2.22), imply that limn→∞ xn = x∗. Analogously limn→∞ xn = x∗ implies that
limn→∞ un = x∗.

For p = 2 we get the following result from [10].

Theorem 2.2 (Rhoades and Soltuz [10]). Let X be a real Banach space with a
uniformly convex dual and B a nonempty, closed, convex, bounded subset of X .
Let T :B → B be a continuous and strongly pseudocontractive operator. Then for
u1 = x1 ∈B the following are equivalent:

(i) the Mann iteration (1.1) converges to the 8xed point of T ,
(ii) the Ishikawa iteration (1.2) converges to the 8xed point of T .

Theorems 2.1 and 2.2 lead to the following result.

Corollary 2.3. Let X be a real Banach space with a uniformly convex dual and B
a nonempty, closed, convex, bounded subset of X . Let T :B → B be a continuous
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and strongly pseudocontractive operator. Then for u1=x1 ∈B the following are equiv-
alent:
(i) the Mann iteration (1.1) converges to the 8xed point of T ,
(ii) the Ishikawa iteration (1.2) converges to the 8xed point of T ,
(iii) the iteration (1.4) converges to the 8xed point of T .

For p = 3, from Theorems 2.1 and 2.2, we have the following result:

Corollary 2.4. Let X be a real Banach space with a uniformly convex dual and B
a nonempty, closed, convex, bounded subset of X . Let T :B → B be a continuous and
strongly pseudocontractive operator. Then for u1=x1 ∈B the following are equivalent:
(i) the Mann iteration (1.1) converges to the 8xed point of T ,
(ii) the Ishikawa iteration (1.2) converges to the 8xed point of T ,
(iii) the Noor iteration (1.3) converges to the 8xed point of T .

Remark 2.5. (i) If B is not bounded then Theorem 2.1 holds only supposing that {xn}
is bounded.
(ii) If the Mann iteration converges to a point, it is clear that this point is a 6xed

point of T . Thus we can omit the discussion of the existence of a 6xed point in the
proof of Theorem 2.1.
(iii) If T (B) is bounded then {xn} is bounded.

Comments (i) and (ii) already been discussed in [10].

Proof. We prove part (iii). Let

M := max
{
sup
x∈B

‖Tx‖; ‖x1‖
}

: (2.24)

Then ‖x1‖6M and supposing ‖xn‖6M , we have

‖xn+1‖6 (1 − �n)‖xn‖ + �nM 6 (1 − �n)M + �nM = M: (2.25)

3. Further equivalences

Let I denote the identity map.

Remark 3.1. Let T; S :X → X , f ∈X given. Then
(i) A 6xed point for the map Tx = f + (I − S)x; ∀x ∈X is a solution for Sx = f.
(ii) A 6xed point for Tx = f − Sx is a solution for x + Sx = f.

Remark 3.2 (Rhoades and Soltuz [10]). (i) The operator T is a (strongly) pseudo-
contractive map if and only if (I − T ) is (strongly) accretive.
(ii) If S is an accretive map then T = f − S is strongly pseudocontractive map.

We consider iterations (1.1) and (1.4), with Tx=f+(I−S)x and p¿ 2; {�n}; {�i
n} ⊂

(0; 1); i = 1; : : : ; p − 1 satisfying (1.5) and (1.6)
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un+1 = (1 − �n)un + �n(f + (I − S)un); (3.1)

xn+1 = (1 − �n)xn + �n(f + (I − S)y1
n);

yi
n = (1 − �i

n)xn + �i
n(f + (I − S)yi+1

n ); i = 1; : : : ; p − 2;

yp−1
n = (1 − �p−1

n )xn + �p−1
n (f + (I − S)xn): (3.2)

Theorems 2.1 and 2.2, Remark 2.5(i), Remark 3.1(i), Remark 3.2(i) and Corollary
2.4 lead to the following result.

Corollary 3.3. Let X be a real Banach space with a uniformly convex dual and
S :X → X be a continuous and strongly accretive operator and let {xn} given by
(3.2) be bounded. If {�n} ⊂ (0; 1) satis8es (1.5) and {�i

n} ⊂ [0; 1), i = 1; : : : ; p − 1,
satisfy (1.6) and u1 = x1 ∈B, then the following are equivalent:
(i) the Mann iteration (3.1) converges to the solution of Sx = f,
(ii) the Ishikawa iteration (1.2) with Tx = f + (I − S)x, converges to the solution of
Sx = f,
(iii) the iteration (3.2) converges to the solution of Sx = f,
(iv) the Noor iteration (1.3) with Tx = f + (I − S)x, converges to the solution of
Sx = f.

We consider iterations (1.1) and (1.4), with Tx = f − Sx and p¿ 2; {�n}; {�i
n} ⊂

(0; 1), i = 1; : : : ; p − 1 satisfying (1.5) and (1.6)

un+1 = (1 − �n)un + �n(f − Sun); (3.3)

xn+1 = (1 − �n)xn + �n(f − Sy1
n);

yi
n = (1 − �i

n)xn + �i
n(f − Syi+1

n ); i = 1; : : : ; p − 2;

yp−1
n = (1 − �p−1

n )xn + �p−1
n (f − Sxn): (3.4)

Theorems 2.1 and 2.2, Remark 2.5(i), Remark 3.1(ii), Remark 3.2(ii), and Corollary
2.4 lead to the following result.

Corollary 3.4. Let X be a real Banach space with a uniformly convex dual and
S :X → X be a continuous and accretive operator and let {xn} given by (3.4) be
bounded. If {�n} ⊂ (0; 1) satis8es (1.5) and {�i

n} ⊂ [0; 1); i = 1; : : : ; p − 1, satisfy
(1.6) and u1 = x1 ∈B, then the following are equivalent:

(i) the Mann iteration (3.3) converges to the solution of x + Sx = f,
(ii) the Ishikawa iteration (1.2) with Tx = f − Sx, converges to the solution of

x + Sx = f,
(iii) the iteration (3.4) converges to the solution of x + Sx = f,
(iv) the Noor iteration (1.3) with Tx=f−Sx, converges to the solution of x+Sx=f.
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4. The equivalence between T-stabilities

All the arguments for the equivalence between T -stabilities of Mann, Ishikawa,
Multistep and Noor iterations are similar to those from [13]. Let us denote by
F(T ) = {x∗ ∈B: x∗ = T (x∗)}. Suppose that x∗ ∈F(T ). The following nonnegative
sequences are well-de6ned for all n ∈N:

"n := ‖xn+1 − (1 − �n)xn − �nTy1
n‖; (4.1)

#n := ‖un+1 − (1 − �n)un − �nTun‖: (4.2)

De�nition 4.1. If limn→∞ "n=0, (respectively limn→∞ #n=0) implies that limn→∞ xn=
x∗, (respectively limn→∞ un=x∗), then (1.1) (respectively (1.4)) is said to be T -stable.

Remark 4.2 (Rhoades and Soltuz [13]). Let X be a normed space, B ⊂ X be a
nonempty, convex, closed subset and T :B → B be continuous map. If the Mann (re-
spectively (1.4)) iteration converges, then limn→∞ #n=0 (respectively limn→∞ "n=0).

Theorem 4.3. Let X be a real Banach space with a uniformly convex dual and B a
nonempty, closed, convex, bounded subset of X . Let T :B → B be a continuous and
strongly pseudocontractive operator. If {�n} ⊂ (0; 1) satis8es (1.6) and {�i

n} ⊂ [0; 1),
i = 1; : : : ; p − 1, satisfy (1.5) and u1 = x1 ∈B, then the following are equivalent:

(i) the Mann iteration (1.1) is T -stable,
(ii) the iteration (1.4) is T -stable.

Proof. The equivalence (i) ⇔ (ii) means that limn→∞ "n = 0 ⇔ limn→∞ #n = 0. The
implication limn→∞ "n=0 ⇒ limn→∞ #n=0 is obvious by setting �i

n=0; i ∈ {1; : : : ; p−
1}; ∀n ∈N, in (1.4) and using (4.2). Conversely, suppose that (1.1) is T -stable. Using
De6nition 4.1 we obtain

lim
n→∞ #n = 0 ⇒ lim

n→∞ un = x∗: (4.3)

Theorem 2.1 assures that limn→∞ un = x∗ leads us to limn→∞ xn = x∗. Using Remark
4.2 we have limn→∞ "n = 0. Thus we get limn→∞ #n = 0 ⇒ limn→∞ "n = 0.

Analogously, we can prove the equivalence between T -stabilities for the strongly
accretive and accretive cases with Tx = f + (I − S)x, respectively Tx = f − Sx.

Corollary 4.4. Let X be a real Banach space with a uniformly convex dual and
S :X → X be a continuous and strongly accretive operator and let {xn} given by
(3.2) be bounded. If {�n} ⊂ (0; 1) satis8es (1.5) and {�i

n} ⊂ [0; 1), i = 1; : : : ; p − 1,
satisfy (1.6) and u1 = x1 ∈B, then the following are equivalent:

(i) the Mann iteration (3.1) is T -stable,
(ii) the iteration (3.2) is T -stable.
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Corollary 4.5. Let X be a real Banach space with a uniformly convex dual and
S :X → X be a continuous and accretive operator and let {xn} given by (3.4) be
bounded. If {�n} ⊂ (0; 1) satis8es (1.5) and {�i

n} ⊂ [0; 1), i = 1; : : : ; p − 1, satisfy
(1.6) and u1 = x1 ∈B, then the following are equivalent:

(i) the Mann iteration (3.3) is T -stable,
(ii) the iteration (3.4) is T -stable.

The authors are indebted to referee for carefully reading the paper and for making
useful suggestions.
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