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Abstract

We show that the convergence of Mann, Ishikawa iterations are equivalent to the convergence
of a multistep iteration, for various classes of operators.
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1. Introduction

Let X be a Banach space, B a nonempty, convex subset of X, and 7 a selfmap of
B. The two most popular iteration procedures for obtaining fixed points of 7, if they
exist, are Mann iteration [5], defined by

ur €B,  upry = —o)uy + o, Tuy, n=1 (1.1)
and Ishikawa iteration [4], defined by

Z1 €B,  ZzZuq :(1 _O(n)xn'f'anTyn:

o= = B)xy+ Pulzs, n=1 (1.2)
for certain choices of {o,},{f.} C [0,1].
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For X a Hilbert space, B a convex compact subset of X, 7 a Lipschitzian pseudo-
contractive selfmap of B, Ishikawa [4] was able to show that (1.2) converges strongly
to the unique fixed point of T in B, provided that (') 0 < o, < f, <1 forall n > 1,
(ii) lim 8, =0, and (iii) > 2, o8, =00. Previous attempts to establish the same result
for Mann iteration had proved unsuccessful. Finally, in year 2000, in [1] an example
was provided of a Lipschitzian pseudocontraction for which the Mann iteration fails to
converge to the fixed point.

Although condition (i’) was required in order to obtain the result of Ishikawa, it
was noted that one could relax condition (i’) by replacing it with (i) 0 < o, 5, < 1
and still obtain strong convergence for many different maps. Moreover, by proving a
convergence theorem for this modified Ishikawa method, and then setting f, = 0 one
obtained as a corollary the corresponding theorem for Mann iteration. The literature
abounds with such papers.

A reasonable conjecture is that the Ishikawa iteration methods satisfying (i) and the
corresponding Mann iterations are equivalent for all maps for which either method
provides convergence to a fixed point.

In an attempt to verify this conjecture the authors, in a series of papers [9—14] have
shown the equivalence for several classes of maps.

In year 2000, M.A. Noor introduced in [7] the three-step procedure

v €B,  ty =1 —=p)v, + yaTvy,
w,=(1~- ﬂn)vn + ﬁnTtm

Unt1 :(1 - OC,,)Un + oty Ty, nz=l (13)

The presence of (1.3) raises an interesting question.

Is there a map for which (1.3) converges to a fixed point, but for which (1.2), with
(i’) fails to converge?

The answer to that question is unknown, but we shall show in this paper that (1.3),
(1.2) and (1.1) are equivalent for all classes of functions for which (1.3) has been
used in [7,8]. In fact, we prove a more general result, by using a multi-step procedure
of arbitrary fixed order p > 2, defined by

Xp1=(1 _an)xn+“nTy;1p
y;:(l_ﬁ;)xn'*'ﬁLTy;_‘—la i=1,...,p-2,

7= (0= BT+ BT T (1.4)

The sequence {o,} is such that for all ne N
{ow} C(0.1),  lim o, =0, Zlocn:oo (1.5)

and for all ne N
ﬁi c[0,1), 1<i<p-—1, lim ,81 =0. (1.6)
n p n
n—00



Taking p =3 in (1.4) we obtain iteration (1.3). Taking p =2 in (1.4) we obtain
(1.2).

The map J:X — 2X given by Jx := {f €X*: (x,f) = x| |lf] = ||}, Vx € X,
is called the normalized duality mapping. The Hahn—Banach theorem assures that
Jx £, VxeX.

Definition 1.1. A map 7:B — B is called strongly pseudocontractive if there exist
k€(0,1) and j(x — y)€J(x — y) such that
(Tx =Ty, jx =) < = k)x = y|%,  ¥xyeB. (1.7)

A map S:X — X is called strongly accretive if there exist k< (0,1) and
j(x — y)€J(x — y) such that

(Sx =Sy, j(x = ) = klx = y|°. Vx,y €D(S). (1.8)

In (1.7) when k£ =0, then T is called pseudocontractive. In (1.8) when k=1, §
is called accretive.

Lemma 1.2 (Weng [15]). Let {a,} be a nonnegative sequence which satisfies the
following inequality

Apy < (1 - ;“n)an + 0y, (19)

where 2, €(0,1), VneN,> 2, 4, = oo, and 6, = 0(2,). Then lim,_,a, = 0.
The following Lemma is from [6].

Lemma 1.3 (Morales and Jung [6]). If X is a real Banach space, then the following
relation is true:

x4+ y|? < x| + 2000 + ), Vx, y €XVi(x 4+ y) €J(x + ). (1.10)

2. Main results

Theorem 2.1. Let X be a real Banach space with a uniformly convex dual and B a
nonempty, closed, convex, bounded subset of X. Let T :B — B be a continuous and
strongly pseudocontractive operator. If {o,} C (0,1) satisfies (1.5) and {pi} C [0,1),
i=1,...,p—1, satisfy (1.6) and u; =x, € B, then the following are equivalent:

(i) the Mann iteration (1.1) converges to the fixed point of T,

(ii) the iteration (1.4) converges to the fixed point of T.

Proof. Corollary 1 of [2] assures the existence of a fixed point. The uniqueness of the
fixed point comes from (1.7).

Since B is convex and bounded and 7 is a selfmap of B, u, € B for each n, and
hence {u,} is bounded. The condition 7 : B — B and the assumption that B is bounded
and convex lead us to conclusion {||7u,||} is bounded.



Denote

P = sup {llxall}- 2.1
We will prove that {||x,||} is bounded. Supposing now that

X, EB (2.2)
we will prove that

YL V(i=1,...,p—1)EB. (2.3)
The fact that B is a convex set, 7:B — B and relation (1.4) lead to

vt == B + B T, € B, 24)
similarly, we obtain

V== B, + BTy B (2.5)
Recursively, we have

V=B, + BTy eB, i=1,...,p—3 (2.6)
Thus y! € B. Using the assumption 7 :B — B we obtain that Ty} € B. Hence

Xnp1 = (1 = o, )x, + %, Ty, €B 2.7)

because already x, € B. Thus P < + oo. Set

M = max {P,sup{||Txn||},sup{||ry:;||: l<i<p-1l.
neN neN

sup{nun},sup{runu} 25)
neN neN

to obtain
M < + 0. (2.9)

Because X* is uniformly convex the duality map is a single-valued map [3]. Using
(1.1), (1.4), (1.7) and (1.10) with

x:=0—o,) (xp—u,),
yi= O‘n(Tyli — Tuy),

X+ Y =Xpp1 — Upyi (2.10)
we obtain
xnst = tnr|F = (1= 00)(xn — 1) + (T, — Tuy)||?
< (1= o)l — wnl|® + 200, (T — Tat,J (ep1 — 1))

=(1- oc,,)2||xn — u,,||2 + 20(,,(Ty,i — Tup, J (X1 — Uny1)



~J (Y — ) + 20, (T — Tuy, J (v, — )
< (1= 2l — a2+ 2,1 — )1} — a2
+ 20, (T = Tty (X1 = 1) = J (v = ). (2.11)
Set
oy = 20(,,<Ty,1, — Ty, J (X1 — i) —J(y,ll —Uy)). (2.12)

Proposition 12.3 of [3] assures that, when X* is uniformly convex, then J is single-
valued map and is uniformly continuous on every bounded set of X. Since {7y} —Tu,}
is bounded, to have lim,_,, 6, = 0 is sufficient to prove that

Tt — ty1) = J(¥) —uy) = 0,(n — 00). (2.13)

H(xn+1 — Upy1) — (J’,lz - un)”
:||(xn+l - )’rl,) — (tps1 — Un)”
=l = axn + 0Ty, + Buxn — BuTys + ottty — 0 Tty
< a([[xall A+ Tl + ltall + 1 Tea 1) + BuClleall + 173721
< (o + pYaM — 0, as n — oco. (2.14)

The uniform continuity of J(-) guarantees that (2.13) is satisfied.
Relations (1.1), (1.4) and (1.10) with

X = (1 - ﬁrll)(xn - un)a
v = Bu(Tyy — un),

X4y =y, — thn, (2.15)
lead to
yn = wnll® = [I(1 = BCen — ) + Bu(Tys — un)|?
< (1= B llen — wall> + 2B, (T — tns I (v — un))

[ “nHZ + 2B::HTJ’5 - ”n”HJ’rl: — uy |

N

< [Pen = wal® + 28, Ty | + Nn DUl + aeall)
< [Jxn — ual|* + Br8M7. (2.16)

We already know that ||7y2|| <M and ||y!|| < M,VneN. Observe that we do not
need further evaluations for y>,..., 7 ~! x,. This is the crucial point in this proof:
starting the computations in (1.4), from x,.; we do not need to evaluate more than
two steps. The other steps are included in (2.4), (2.5), (2.6), and (2.7), to prove
| Ty2|| < M,VneN.



Substituting (2.16) and (2.12) in (2.11), we obtain
xni1 = it I < (1= o) — w1 + 200,(1 = &), — w)?
+ 0, + a, fL16M?(1 — k)
= (1 — 2ko, + 02)||x, — up|* + o(aty). (2.17)

From (1.5) for all n sufficiently large we have

o, < k. (2.18)
Substituting (2.18) into (2.17), we obtain

1 — 2ko, + o < 1 — 2kot, + kot = 1 — ket (2.19)

Finally (2.17) becomes

et =t [* < (1= ko)l fen = ua|* + 0(t) (2.20)
with

ay = | — |

A 2= ko, €(0,1), (2.21)

and using Lemma 1.2, we obtain lim, oo @, = lim, oo ||x, — u,[|> =0, i.e.

lim |x, — u,| = 0. (2.22)

n—oo

Suppose that lim,_, ., u, =x*. The inequality
0 < [Ix™ —xull < luw — x| 4 [lxn — uall (2.23)
and (2.22), imply that lim,_, ., x, = x*. Analogously lim,_, ., x, = x* implies that
lim, oo u, =x*. O

For p =2 we get the following result from [10].

Theorem 2.2 (Rhoades and Soltuz [10]). Let X be a real Banach space with a
uniformly convex dual and B a nonempty, closed, convex, bounded subset of X.
Let T:B — B be a continuous and strongly pseudocontractive operator. Then for
uy =x1 € B the following are equivalent:

(1) the Mann iteration (1.1) converges to the fixed point of T,
(i) the Ishikawa iteration (1.2) converges to the fixed point of T.

Theorems 2.1 and 2.2 lead to the following result.

Corollary 2.3. Let X be a real Banach space with a uniformly convex dual and B
a nonempty, closed, convex, bounded subset of X. Let T:B — B be a continuous



and strongly pseudocontractive operator. Then for uy=x, € B the following are equiv-
alent:

(i) the Mann iteration (1.1) converges to the fixed point of T,

(ii) the Ishikawa iteration (1.2) converges to the fixed point of T,

(iii) the iteration (1.4) converges to the fixed point of T.

For p =3, from Theorems 2.1 and 2.2, we have the following result:

Corollary 2.4. Let X be a real Banach space with a uniformly convex dual and B
a nonempty, closed, convex, bounded subset of X. Let T : B — B be a continuous and
strongly pseudocontractive operator. Then for uy=x, € B the following are equivalent:
(i) the Mann iteration (1.1) converges to the fixed point of T,

(ii) the Ishikawa iteration (1.2) converges to the fixed point of T,

(iii) the Noor iteration (1.3) converges to the fixed point of T.

Remark 2.5. (i) If B is not bounded then Theorem 2.1 holds only supposing that {x,}
is bounded.

(ii) If the Mann iteration converges to a point, it is clear that this point is a fixed
point of 7. Thus we can omit the discussion of the existence of a fixed point in the
proof of Theorem 2.1.

(iii) If T(B) is bounded then {x,} is bounded.

Comments (i) and (ii) already been discussed in [10].
Proof. We prove part (iii). Let
M := max {sup 1 7x]], ||x1 ||} . (2.24)
XEB

Then ||x;|| <M and supposing ||x,|| < M, we have
st |l < (1 —ou)|xal] + oM < (1 — o0 )M +0,M =M. [ (2.25)

3. Further equivalences
Let / denote the identity map.

Remark 3.1. Let 7,5 : X — X, f €X given. Then
(i) A fixed point for the map 7x = f + (I — S)x,Vx € X is a solution for Sx = f.
(ii) A fixed point for 7x = f — Sx is a solution for x + Sx = f.

Remark 3.2 (Rhoades and Soltuz [10]). (i) The operator 7 is a (strongly) pseudo-
contractive map if and only if (/ — T) is (strongly) accretive.
(i1) If S is an accretive map then 7 = f — § is strongly pseudocontractive map.

We consider iterations (1.1) and (1.4), with Tx=f+({—S)x and p > 2, {a,},{f:} C
0,1),i=1,..., p— 1 satisfying (1.5) and (1.6)



Up+1 :(1 - O!,,)u,, + OCn(f+ (] —S)u,,), (31)
Xt = (1= s + 0(f + (= S)y,),
yi} :(1 _ﬁ;)xn +ﬁfq(f+(1 _S)yjz+l)’ i= 1”p_23

P == B e BTN U = S)x). (-2)

Theorems 2.1 and 2.2, Remark 2.5(i), Remark 3.1(i), Remark 3.2(i) and Corollary
2.4 lead to the following result.

Corollary 3.3. Let X be a real Banach space with a uniformly convex dual and
S:X — X be a continuous and strongly accretive operator and let {x,} given by
(3.2) be bounded. If {o,} C (0,1) satisfies (1.5) and {B.} C [0,1),i=1,...,p — 1,
satisfy (1.6) and u; =x, € B, then the following are equivalent:

(i) the Mann iteration (3.1) converges to the solution of Sx = f,

(ii) the Ishikawa iteration (1.2) with Tx = f + (I — S)x, converges to the solution of
Sx=f,

(iil) the iteration (3.2) converges to the solution of Sx = f,

(iv) the Noor iteration (1.3) with Tx = f + (I — S)x, converges to the solution of
Sx=f.

We consider iterations (1.1) and (1.4), with Tx = f — Sx and p > 2, {o,},{B} C
(0,1), i=1,..., p— 1 satisfying (1.5) and (1.6)

Upr1 = (1 — o)uy + o, (f — Suy), (3.3)
Xpa1 = (1 —oty)x, + Ofn(f _Sy;l)a
y;:(lfﬁ;)xYl‘Fﬁfq(f*Sy:rl)’ izl!"'sp*z’

== B + BTN Sxa). (3.4)

Theorems 2.1 and 2.2, Remark 2.5(i), Remark 3.1(ii), Remark 3.2(ii), and Corollary
2.4 lead to the following result.

Corollary 3.4. Let X be a real Banach space with a uniformly convex dual and
S:X — X be a continuous and accretive operator and let {x,} given by (3.4) be
bounded. If {o,} C (0,1) satisfies (1.5) and {fi} C [0,1), i=1,..., p — 1, satisfy
(1.6) and u, = x| € B, then the following are equivalent:

(i) the Mann iteration (3.3) converges to the solution of x + Sx = f,
(ii) the Ishikawa iteration (1.2) with Tx = f — Sx, converges to the solution of
x+8x=f,
(iii) the iteration (3.4) converges to the solution of x + Sx = f,
(iv) the Noor iteration (1.3) with Tx= f —Sx, converges to the solution of x+Sx=f.



4. The equivalence between T-stabilities

All the arguments for the equivalence between T7'-stabilities of Mann, Ishikawa,
Multistep and Noor iterations are similar to those from [13]. Let us denote by
F(T)={x*€B: x* = T(x*)}. Suppose that x* € F(T). The following nonnegative
sequences are well-defined for all n € N:

&y 1= ||xn+1 _(1 _an)xn_fanyrltH’ (41)
(3’,! = ||un+1 — (1 — o(,,)un — OC,,Tu,,H. (42)

Definition 4.1. If lim,_, ., &,=0, (respectively lim,_, ., 6,=0) implies that lim,_, . x,=
x*, (respectively lim,_,~ u, =x"), then (1.1) (respectively (1.4)) is said to be T-stable.

Remark 4.2 (Rhoades and Soltuz [13]). Let X be a normed space, B C X be a
nonempty, convex, closed subset and 7': B — B be continuous map. If the Mann (re-
spectively (1.4)) iteration converges, then lim,_, ., §, =0 (respectively lim,_,, &, =0).

Theorem 4.3. Let X be a real Banach space with a uniformly convex dual and B a
nonempty, closed, convex, bounded subset of X. Let T :B — B be a continuous and
strongly pseudocontractive operator. If {o,} C (0,1) satisfies (1.6) and {f} C [0,1),
i=1,...,p—1, satisfy (1.5) and u; = x| € B, then the following are equivalent:

(1) the Mann iteration (1.1) is T-stable,
(i) the iteration (1.4) is T-stable.

Proof. The equivalence (i) < (ii) means that lim, ,. &, =0 < lim,_, o, 6, = 0. The
implication lim,_, &, =0 = lim,_,, J,=0 is obvious by setting /=0, i€ {1,..., p—
1},VneN, in (1.4) and using (4.2). Conversely, suppose that (1.1) is T-stable. Using
Definition 4.1 we obtain
lim §,=0= lim u, =x". (4.3)
n—o0 n—oo
Theorem 2.1 assures that lim,_, o, u, = x* leads us to lim,_,, x, = x*. Using Remark
4.2 we have lim,_,, & = 0. Thus we get lim,_,,, 6, =0 = lim,_,,¢,=0. O

Analogously, we can prove the equivalence between T-stabilities for the strongly
accretive and accretive cases with Tx = f + (I — S)x, respectively Tx = f — Sx.

Corollary 4.4. Let X be a real Banach space with a uniformly convex dual and
S:X — X be a continuous and strongly accretive operator and let {x,} given by
(3.2) be bounded. If {o,} C (0,1) satisfies (1.5) and {fi} C [0,1), i=1,....,p—1,
satisfy (1.6) and uy = x| € B, then the following are equivalent:

(1) the Mann iteration (3.1) is T-stable,
(i) the iteration (3.2) is T-stable.



Corollary 4.5. Let X be a real Banach space with a uniformly convex dual and
S:X — X be a continuous and accretive operator and let {x,} given by (3.4) be
bounded. If {o,} C (0,1) satisfies (1.5) and {B.} C [0,1), i=1,..., p — 1, satisfy
(1.6) and uy = x| € B, then the following are equivalent:

(i) the Mann iteration (3.3) is T-stable,
(ii) the iteration (3.4) is T-stable.

The authors are indebted to referee for carefully reading the paper and for making
useful suggestions.
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