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1. Introduction
Let X be a real Banach space, T : X — X be an operator. The map J : X — 2% givenby Jx == {f € X* : (x,f) =
X1, If Il = lIx]I}, ¥x € X, is called the normalized duality mapping. It is easy to see that
W,J@)) < lxllllyll, Vx,y € X,Vikx) €]). (1)

Definition 1. Amap T : X — X is called hemicontractive if there exist k € (0, 1) and q € X with ¢ = Tq such that for every
x € X there exists j(x — q) € J(x — q) satisfying

(Tx—Tq.j(x — @) <klx—ql*, VxeX. )

Remark 2. The fixed point q in Definition 1 is uniquely determined and, sometimes, will be denoted by x7.
Indeed, if p = Tp is another fixed point of the hemicontractive mapping T, then
lp—ql* = (P —-a.i®—-9)
= (Tp—Ta.j(>— ) < klp—aql?,

implying |lp — qll = 0,ie,p=gq.
It is well known that T is a contraction if there exists k € (0, 1) such that || Tx — Ty|| < k||x —y||, Vx,y € X.

Remark 3. The class of contractions is a subclass of hemicontractions.
Let T be a k-contraction of the Banach space X. Then T has a unique fixed point q and
(Tx — Tq, j(x — @)) < ITx —Tql| llx — ql|
< klx—qll*,

forix—q ejx—q).
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Remark 4. The above inclusion is proper.
Indeed, note that T (x, y) = (=Y, X) is not a contraction while it is hemicontractive with ¢ = (0, 0) and k = 0.5,
TxY), xy) ={(-y.%,xy)=0
< (1/2) (¥ +y*) = 0.5, .

Recently, Kunze et al. (see [1-3]) have considered a class of inverse problems for ordinary differential equations and
provided a mathematical basis for solving them within the framework of Banach spaces and contractions. We shall consider
the same framework of Banach spaces and the larger class of hemicontractive maps.

Notation 5. Denote by HemilLip .= {T,T : X — X, T a hemicontractive map with constant k € (0, 1), Lipschitzian with
constant L > 1and T (X) bounded).

A typical inverse problem is the following:
Problem 6. For given ¢ > 0 and a “target” x, find T, € HemiLip such that ||)_< - x?s H < &, where x?ﬁ =T (xi) is the unique
fixed point of the hemicontractive mapping T.

According to [ 1], randomly selecting various maps in HemiLip, finding their fixed points and computing the distance from
our target is an extremely tedious procedure. Consider now the following problem which we shall fit in our framework and
which is very useful for practitioners.

Problem 7. Let x € X be a target and let § > 0 be given. Find Ts; € HemiLip such that ||x — Tsx|| < 4.

In other words, instead of searching for hemicontractive maps whose fixed points lie close to target X, we search for
hemicontractive maps that send x close to itself.

2. Main results

Theorem 8 (Collage Theorem for Hemicontractive Maps). Let X be a real Banach space and T a hemicontractive map with
contraction factor k € (0, 1) and fixed point x* € X. Then for any x € X,

1
1—k

Hx—x*” < lx — Tx]| .

Proof. The hemicontractive condition assures that the fixed point x* exists and it is unique. If x = x*, the above inequality
holds. If x # x*, Vx € X, then using (1) and (2) one obtains
) £ - *
=2 = = jox = )
= (Tx — Tx*, j(x — x*)) + (x — Tx, j(x — x*))
” + (x = T, jx — x)

k ||x —x* ”2 + |Ix — Tx|| ”x—x*H .

IA

k Hx —x*

A

From which one gets the conclusion. O

The above “Collage Theorem” allows us to reformulate the inverse Problem 6 in the particular and more convenient
Problem 7.

Theorem 9. If Problem 7 has a solution, then Problem 6 has a solution too.

Proof. Let ¢ > 0 and X € X be given. For § := (1 — k) ¢, let T € HemiLip be such that ||x — Tsx|| < 4. [fx?a is the unique
fixed point of the hemicontractive mapping Ts, then, by Theorem 8,

_ 1 _ _ 1
%=, | < S 1% =Tkl < —— 8 =¢. O

—k

Note that shrinking the distance between two operators, one of them from HemilLip, reduces the distance between their
fixed points.

Proposition 10. Let X be a real Banach space and T; € Hemilip with contraction factor ky € (0,1) and T, : X — X a map
such that x3, x5 € X are distinct fixed points for T; and T,. Then,

Ix; = x| < sup [ITix — Tox|| .
xeX

1—k



Proof. Using (2) one obtains
i =] = =260 (5 = %5)) = (T} = T (x5 = 53))
= (Tix} — Tixs, j (x] — x3)) + (Tixs — Toxs, j (X} — x3))

k[l — x5 ])° + x5 — x5 | Taxs — Tox3 |

IA

IA

ki [ = x5 + [ = %3] (sup ITx — szn) :
xeX
from which we get the conclusion. O

Theorem 11. Let X be a real Banach space, T : X — X,x = Tx and suppose there exists Ty € HemiLip such that
sup,ex [IT1x — Tx|| < €. Then

_ _ 1+L
X — Thxl| < ——e.
1—k

Proof. Let x* = T;x*, and by use of Proposition 10 we obtain
||)'< —x* H < 1 (sup [IT1x — Tx||> .
1—k \ xex
Thus,
Tl < [%—x'] + |~ 7]

< lIx—x1]l + |Tix* — Tix||
(141 |x—x*

1+L 1+L
1+k sup |[Tix — Tx|| | < + e. O
1—k \ xex 1—k

IA

IA

3. Application

Example 12. let A € (0,1),B,C,D € R be fixed numbers and F : [0,3] x [0,3] — R? be given by F(x,y) =
(Ax + Bxy — Cy, Ay — Bx* + Cx) . Then F is Lipschitzian and hemicontractive with bounded range.

Proof. It is obvious that F is Lipschitzian and has bounded range. In order to prove that it is hemicontractive, note that
<F (X,y) ) (X7Y)> = ((AX + BXy - Cy’Ay - BXZ + CX) ) (X,y))

= Ax> + Bx’y — Cxy + Ay> — Bx’y + Cxy
=AlxIP. O

Set C = 0, to obtain our T, function:

Example13. let A € (0,1),B € R be fixed numbers and H : [0,3] x [0,3] — R? be given by H(x,y) =
(Ax + Bxy, Ay — sz). Then H is Lipschitzian and hemicontractive with bounded range.

Remark 14. Let h be the “target”, in order to find T;. As for fitting, we shall look for an appropriate Ts. Then by using Matlab
(i.e. fminsearch) for min H h — Tsh | by Theorem 11 we find the parameters which minimize the problem. Set in Example 13,
A=03,B=6,T, :=Handleth = (%,j) = H (%, §)) on ([—1, 3] x [—1, 3]) be the target generated by T,. Use the above
algorithm with Ty := F, to obtain the H map, i.e. (A, B, C) = (0.3000, 6.0000, 0.0000) starting from each point between
(0.3000, 2.0000, 2.0000) and (0.9000, 8.0000, 6.0000) .

Remark 15. In Example 13,setA = 0,B=0.5,T, := Hand leth = (%, %) = H ((%, )) on ([—1, 3] x [—1, 3]) be the target
generated by T,. Use again the above algorithm with Ts := F, to obtain the H map, i.e. (A, B, C) = (0.00, 0.50, 0.00) starting
from each point between (0.0000, 0.3000, 0.0000) and (1.0000, 3.0000, 1.0000) .

Remark 16. In Example 13,setA =0,B=1,T, := Hand leth = (%, ¥) = H (%, )) on ([—1, 3] x [—1, 3]) be the target
generated by T,. Use fminsearch with Ts := F, to obtain the H map, i.e. (A, B, C) = (0.00, 1.00, 0.00) starting from each
point between (0.2000, 0.3000, 0.2000) and (0.7000, 0.5000, 0.5000) .
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Remark 17. In Example 13, set A = 1,B = 0,T, := Handleth = (%,j) = H(& ¥)) on ([—1,3] x [—1,3])
be the target generated by T.. Note that T, is not strongly pseudocontractive. Use fminsearch with Ts := F, to

obtain the H map, i.e. (A4,B,C) = (1.00,0.00, 0.00) starting from each point between (0.2000, 0.2000, 0.2000) and
(0.7000, 0.7000, 0.7000) .
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