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Abstract. This paper deals with a perturbed heavy ball system with vanishing damping that contains a Tikhonov4
regularization term, in connection to the minimization problem of a convex Fréchet differentiable function. We show that the5
value of the objective function in a generated trajectory converges in order o(1/t2) to the global minimum of the objective6
function. We also obtain the fast convergence of the velocities towards zero. Moreover, we obtain that a trajectory generated7
by the dynamical system converges weakly to a minimizer of the objective function. Finally, we show that the presence of the8
Tikhonov regularization term assures the strong convergence of the generated trajectories to an element of minimal norm from9
the argmin set of the objective function.10
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1. Introduction. Let H be a real Hilbert space endowed with the scalar product 〈·, ·〉 and norm ‖ · ‖
and let g : H −→ R be a convex Fréchet differentiable function. Consider the minimization problem

(P ) inf
x∈H

g(x)

in connection to the second order dynamical system14 {
ẍ(t) + α

t ẋ(t) +∇g
(
x(t) +

(
γ + β

t

)
ẋ(t)

)
+ ε(t)x(t) = 0,

x(t0) = u0, ẋ(t0) = v0,
(1.1)15

16

where t0 > 0, (u0, v0) ∈ H × H, α ≥ 3, γ > 0, β ∈ R or γ = 0, β ≥ 0 and ε : [t0,+∞) −→ R+ is a non-17

increasing function of class C1, such that limt→+∞ ε(t) = 0. The starting time t0 is taken as strictly greater18

than zero whenever the coefficients α
t and β

t have singularities at 0. This is not a limitation of the generality19

of the proposed approach, since we will focus on the asymptotic behaviour of the generated trajectories.20

First of all, note that the dynamical system (1.1) is the Tikhonov regularized version of the perturbed21

heavy ball system with vanishing damping considered in connection to the optimization problem (P) by22

Alecsa-László-Pinţa in [3]. The dynamical system considered in [3] can be seen as an intermediate system23

between the heavy ball system with vanishing damping [33] and the heavy ball system with Hessian driven24

damping [19] and possesses all the valuable properties of the latter ones. Indeed, according to [3], in case25

γ > 0, β ∈ R, or γ = 0, β ≥ 0, the objective function value in a trajectory generated by the perturbed heavy26

ball system converges in order O(1/t2) to the global minimum of the objective function and the trajectory27

converges weakly to a minimizer of the objective function. Further, according to [3, Remark 2], in case28

γ = 0 and β < 0 the perturbed heavy ball system can generate periodical solutions, therefore in this case29

the convergence of a generated trajectory to a minimizer of the objective is hopeless.30

Throughout the paper we assume that ∇g is Lipschitz continuous on bounded sets and argming 6= ∅.31

Further, the Tikhonov regularization parameter, ε(t), satisfies one of the following assumptions, (see also32

Remark 1).33

(C1) There exist K > 1 and t1 ≥ t0 such that

ε̇(t) ≤ −K
2

∣∣∣∣γ +
β

t

∣∣∣∣ ε2(t) for every t ≥ t1.

(C2) There exists K > 0 and t1 ≥ t0 such that

ε(t) ≤ K

t
for every t ≥ t1.
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2 C. D. Alecsa, S. C. László

Natural candidates for the Tikhonov regularization parameter that satisfy the above conditions are34

ε(t) = a
tr , a > 0, r ≥ 1. In order to give a better perspective of the results obtained in this paper, for this35

special case of the Tikhonov regularization parameter, we can conclude the following.36

1. According to Theorem 2.1 and Theorem 2.3, if the Tikhonov regularization parameter is ε(t) =37

a
tr , a > 0, r > 2 the following statements hold. When α ≥ 3, one has g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)
− min g =38

O
(
t−2
)

as t → +∞. Further, one has the integral estimates
∫ +∞
t0

t2
∥∥∥∇g (x(t) +

(
γ + β

t

)
ẋ(t)

)∥∥∥2 dt <39

+∞, whenever γ > 0, β ∈ R and
∫ +∞
t0

t
∥∥∥∇g (x(t) + β

t ẋ(t)
)∥∥∥2 dt < +∞, whenever γ = 0, β > 0. When α >40

3 one has g
(
x(t) +

(
γ + β

t

)
ẋ(t)

)
−min g = o(t−2), ‖ẋ(t)‖ = o(t−2) as t→ +∞ and x(t) converges weakly to41

a minimizer of g. Further,
∫ +∞
t0

t‖ẋ(t)‖2dt < +∞ and
∫ +∞
t0

t
(
g
(
x(t) +

(
γ + β

t

)
ẋ(t)

)
−min g

)
dt < +∞.42

2. According to Theorem 3.2, in the case ε(t) = a
tr , a > 0, 1 < r < 2, for α > 3 and α = 3, γ = 0, β ≥ 043

one has lim inft→∞ ‖x(t)−x∗‖ = 0, where x∗ is the element of minimum norm of argmin g. In addition, x(t)44

converges strongly to x∗ when either the trajectory {x(t) : t ≥ T} remains in the ball B(0, ‖x∗‖), or in its45

complement, for T large enough.46

3. In the case ε(t) = a
t2 , a > 0 and α > 3, according to Theorem 2.2 one has that x is bounded,47

g
(
x(t) +

(
γ + β

t

)
ẋ(t)

)
− min g = O

(
1
t2

)
and ‖ẋ(t)‖ = O

(
1
t

)
as t → +∞. Further, if a > 2

9α(α − 3),48

according to Theorem 3.2 the conclusions stated at 2. hold.49

Observe that according to 3. we are able to obtain both fast convergence of the function values and50

strong convergence of the trajectories for the same Tikhonov regularization parameter. For a long time this51

was an unsolved problem in the literature. However, recently Attouch and László [16] studied a dynamical52

system in connection to the optimization problem (P) and succeeded to obtain rapid convergence towards53

the infimal value of g, and the strong convergence of the trajectories towards the element of minimum norm54

of the set of minimizers of g. In our context, one can observe that the case r = 2 is critical, in the sense55

that separates the two cases: the case when we obtain fast convergence of the function values and weak56

convergence of the trajectories to a minimizer and the case when the strong convergence of the trajectories57

to a minimizer of minimum norm is assured. These results are in concordance with the results obtained in58

[10] and [20], since, as will be shown in what follows, the dynamical system studied in this paper can be59

thought as an intermediate system between the dynamical system studied in [10] and the dynamical system60

considered in [20]. Before we give a more enlightening discussion about the connection of the dynamical61

system (1.1) and the Tikhonov regularized dynamical systems studied in [10] and [20] we underline two new62

features of our analysis. Firstly, we can show fast convergence of the velocity to zero, a property which is63

also obtained for the Tikhonov regularized system studied in [10], but this property is not shown for the64

Tikhonov regularized system considered in [20]. Secondly, we obtain some integral estimates for the gradient65

of the objective function and these results also appear for the Tikhonov regularized system studied in [20],66

but these estimates are not shown for the Tikhonov regularized system studied in [10].67

For further insight into the Tikhonov regularization techniques we refer to [10, 12, 13, 16, 20, 22, 25].68

1.1. Connection with second order dynamical systems with asymptotically vanishing damp-
ing. The dynamical system (1.1) is strongly related to the second order dynamical systems with an asymp-
totically vanishing damping term, studied by Su-Boyd-Candès in [33] in connection to the optimization
problem (P ), that is,

(AVD)α ẍ(t) +
α

t
ẋ(t) +∇g (x(t)) = 0, x(t0) = u0, ẋ(t0) = v0, u0, v0 ∈ H.

It is obvious that the latter system can be obtained from (1.1) by taking γ = β = 0 and ε ≡ 0. According69

to [33], the trajectories generated by (AVD)α assure fast minimization property of order O
(
1/t2

)
for the70

decay g(x(t))−min g, provided α ≥ 3. For α > 3, it has been shown by Attouch-Chbani-Peypouquet-Redont71

[9] that each trajectory generated by (AVD)α converges weakly to a minimizer of the objective function g.72

Further, it is shown in [17] and [30] that the asymptotic convergence rate of the values is actually o(1/t2).73

An appropriate discretization of (AVD)α with α = 3 corresponds to Nesterov’s historical algorithm [31].74
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Therefore, as it was emphasized in [33], for α = 3 the system (AVD)α can be seen as a continuous version of75

the accelerated gradient method of Nesterov.76

However, the case α = 3 is critical, i.e., the convergence of the trajectories generated by (AVD)α77

remains an open problem. The subcritical case α ≤ 3 has been examined by Apidopoulos-Aujol-Dossal [5]78

and Attouch-Chbani-Riahi [11], with the convergence rate of the objective values O
(
t−

2α
3

)
.79

When the objective function g is not convex, the convergence of the trajectories generated by (AVD)α is80

a largely open question. Recent progress has been made in [21], where the convergence of the trajectories of81

a system, which can be considered as a perturbation of (AVD)α has been obtained in a non-convex setting.82

The corresponding inertial algorithms obtained from (AVD)α via discretization, are in line with the83

Nesterov accelerated gradient method and enjoy similar properties to the continuous case, see [24] and84

also [4, 7, 9, 27, 28] for further results and the extensions to proximal-gradient algorithms for structured85

optimization. For other results concerning the system (AVD)α and its extensions in we refer to [11, 23, 26].86

A version of (AVD)α containing a Tikhonov regularization term, strongly related to (1.1), was considered87

by Attouch-Chbani-Riahi in [10]. According to [10] the presence of Tikhonov regularization term ε(t)x(t)88

provides the strong convergence of the trajectories to the element of minimum norm of the set of minimizers89

of g, when ε(t) tends slowly to zero. We emphasize that (1.1), for the case β = γ = 0, reduces to the system90

studied in [10].91

1.2. Connection with second order dynamical systems with Hessian driven damping. The
dynamical system (1.1) is also related to the second order dynamical system with Hessian driven damping
term, studied by Attouch-Peypouquet-Redont in [19], that is,

(DIN −AVD)α,β ẍ(t)+
α

t
ẋ(t)+β∇2g(x(t))ẋ(t)+∇g (x(t)) = 0, x(t0) = u0, ẋ(t0) = v0, u0, v0 ∈ H, β ≥ 0.

In [19], for the case α > 3, β > 0 the authors showed the weak convergence of a generated trajectory92

to a minimizer of g and they obtained convergence rate of order o(1/t2) for the objective function along93

the trajectory. The temporal discretization of this dynamical system provides first-order algorithms which94

beside the extrapolation term contain a correction term which is equal to the difference of the gradients at95

two consecutive steps [8, 2]. Several recent studies have been devoted to this subject, see [6, 14, 15, 29, 32].96

Further, Boţ-Csetnek-László considered in [20] the Tikhonov regularization of (DIN-AVD)α,β . They obtained97

fast convergence results for the function values along the trajectories and strong convergence results of the98

trajectory to the minimizer of the objective function of minimum norm. Now, by using the Taylor expansion99

of ∇g(·) we get100

(1.2) ∇g
(
x(t) +

(
γ +

β

t

)
ẋ(t)

)
≈ ∇g(x(t)) +

(
γ +

β

t

)
∇2g(x(t))ẋ(t),101

which shows that the system (DIN-AVD)α,β with Tikhonov regularization term ε(t)x(t) considered in [20]102

and the dynamical system (1.1) are strongly related. In this paper, we aim to obtain fast convergence103

results for the function values along the trajectories generated by the dynamical system (1.1) and strong104

convergence results of the trajectories to the minimizer of the objective function of minimum norm, under105

some similar assumption as those considered in [20]. However, we emphasize that our objective function g106

is of class C1 meanwhile the objective function considered in [20] is of class C2. Further, as we mentioned107

before, we are also able to show the rate o(1/t) for the velocity. Moreover, according to [3] the dynamical108

system (1.1), (with ε ≡ 0), leads via explicit Euler discretization to inertial algorithms. In particular the109

Nesterov accelerated convex gradient method can be obtained from (1.1) via natural explicit discretization.110

The following numerical experiments reveal that a trajectory generated by (1.1) and the objective func-111

tion value in this trajectory have a better convergence behaviour than a trajectory generated by the system112

(AVD)α with a Tikhonov regularization term studied in [10] and also a similar behaviour as the trajectories113

generated by the dynamical system considered in [20]. At the same time, the perturbation term
(
γ + β

t

)
ẋ(t)114

in the argument of the gradient of the objective function g has a smoothing effect, just as the case of (DIN-115

AVD)α,β . This also confirms our conclusion that (1.1) can be thought as an intermediate system between the116

system (AVD)α with a Tikhonov regularization term considered in [10] and (DIN-AVD)α,β with a Tikhonov117

regularization term studied in [20], which inherits the best properties of the latter systems.118
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1.3. Some numerical experiments. In this section we consider two numerical experiments for the
trajectories generated by the dynamical system (1.1) for a convex but not strongly convex objective function

g : R2 → R, g(x, y) = (ax+ by)2 where a, b ∈ R \ {0}.

Observe that argmin g =
{(
x,−abx

)
: x ∈ R

}
and min g = 0. Obviously, the minimizer of minimal norm of119

g is x∗ = (0, 0).120

Everywhere in the following numerical experiments we consider the continuous time dynamical systems121

(1.1) and the dynamical systems (AVD)α and (DIN-AVD)α,β with or without the regularization term ε(t)x(t),122

solved numerically with the ode45 adaptive method in MATLAB on the interval [1, 10]. For the Tikhonov123

regularization parameter we take ε(t) = 1
t1.5 and we consider the starting points x(1) = (1,−1), ẋ(1) =124

(−1, 1).125

Further, we take α = 3.1, β = −0.5, γ = 1 in (1.1), α = 3.1 in (AVD)α and α = 3.1, β = 1 in (DIN-126

AVD)α,β . Observe that γ in (1.1) is equal with β in (DIN-AVD)α,β hence, according to (1.2) the trajectories127

of these systems will share a similar behaviour.128

The results are depicted at Figure 1, where the first component of a solution x is depicted with red,129

meanwhile the second component is depicted with blue.130
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(a) a = 25 b = 50.
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Fig. 1.1: The behaviour of the dynamical systems (1.1), (AVD)α and (DIN-AVD)α,β with and without
Tikhonov regularization term, for convex, but not strongly convex, objective functions.

Analyzing Figure 1 we observe that indeed the trajectories of the dynamical systems (1.1), (AVD)α and131

(DIN-AVD)α,β , in the presence of the Tikhonov regularization term ε(t)x(t), converge to x∗ the element132

of minimal norm from argmin g. However, when we consider these systems without regularization, that is133

ε(t) ≡ 0, we observe that we still have convergence of the generated trajectories to a minimizer of g of the134

form (x0,−0.5x0) Figure 1 (a) and (x0,−0.25x0) Figure 1 (b), for some x0 ∈ R, however these minimizers135

are not anymore of minimal norm.136

Further, observe that indeed the trajectories of (1.1) and (DIN-AVD)α,β have a similar behaviour and137

both eliminates the oscillates obtained for the trajectories of (AVD)α.138

In our second experiment we study the evolution of the two errors ‖x(t)− x∗‖ and g(x(t)−min g, for a139

trajectory x(t) generated by the dynamical system (1.1), with respect to different values of β and γ. So we140

take a = 0.1 and b = 50, values for which the function g is poorly conditioned. We take α = 3.1, ε(t) = 1
t2.5141

and we consider the starting points x(1) = (1,−1), ẋ(1) = (−1, 1). Further, since the theoretical expected142

rate for the decay g(x(t) − min g is O
(

1
t2

)
we also consider the graph of the function g(x(1))−min g

t2 on the143

interval [1, 10]. The results are depicted on Figure 2.144

One can observe, see Figure 2, that the best choice seems to be γ = 0, β > 0. This case outperforms145

both the cases γ > 0, β < 0 and γ > 0, β > 0. However, if γ > 0 choosing negative β leads to better146

convergence properties. Further, all these choices of the parameters β, γ outperform the case γ = β = 0147

which is the case of (AVD)α with Tikhonov regularization.148

1.4. Organization of the paper. In the next section we carry out the asymptotic analysis of the149

trajectories generated by the dynamical system (1.1). We obtain convergence rate of order o(1/t2) for the150
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Fig. 1.2: Error analysis with different parameters in dynamical system (1.1) for a convex, but not strongly
convex, objective function.

energy error g(x(t) + (γ + β/t)ẋ(t))−min g, convergence rate of order o(1/t) for the velocity ẋ(t) and weak151

convergence of the trajectories to a minimizer of the objective function g. Further, several integral estimates152

for the gradient of g will be provided. In section 3 we show that indeed the Tikhonov regularization term in153

the dynamical system (1.1) assures the strong convergence of the trajectories to a minimizer of g of minimal154

norm. Finally, we conclude our paper by outlining some perspectives.155

2. Asymptotic analysis of the regularized dynamical system (1.1). Existence and uniqueness156

of a C2([t0,+∞),H) global solution of the dynamical system (1.1) can be shown via the classical Cauchy-157

Lipschitz-Picard theorem, by rewriting (1.1) as a first order system in the product space H×H, see Theorem158

A.1 from the Appendix. In this section we carry out the asymptotic analysis concerning the trajectories159

generated by the dynamical system (1.1). We will treat the non-critical case α > 3 and the critical case160

α = 3 separately under the assumptions (C1) and (C2).161

Remark 1. Let us discuss the connections between the conditions (C1) and (C2). Obviously, when162

γ = β = 0 condition (C1) is satisfied in virtue of the nonincreasing property of ε. Further, if we assume that163

ε(t′0) = 0 for some t′0 ≥ t0 then ε(t) ≡ 0 for all t ≥ t′0, hence (C1) and (C2) become trivial.164

Assume in what follows that ε(t) > 0 for all t ≥ t0. Now, if γ > 0, β ∈ R or γ = 0, β > 0, then there

exists some t1 ≥ t1 such that
∣∣∣γ + β

t

∣∣∣ = γ + β
t , for all t ≥ t1. Hence, condition (C1) leads to the fact that

there exist K > 1 and t1 ≥ t0 such that

d

dt

(
1

ε(t)

)
≥ K

2
γ +

Kβ

2t
, for all t ≥ t1.

Now, if γ > 0, by integrating the above relation on an interval [t1, t] we obtain that there exists K1 > 0 such
that

ε(t) ≤ 1
Kγ
2 t+ Kβ

2 ln t+ 1
ε(t1)
− Kγ

2 t1 − Kβ
2 ln t1

≤ K1

t
, for all t ≥ t1.

Consequently, if γ > 0 then (C1) implies (C2) and one also has
∫ +∞
t0

ε(t)
t < +∞.165

However, if γ = 0 and β > 0 then by similar arguments as above we obtain that ε(t) ≤ K1

ln t for some166

K1 > 0 and t big enough, and this condition is obviously weaker than condition (C2). Observe that this case167

does not imply that
∫ +∞
t0

ε(t)
t < +∞.168
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As we have mentioned at Introduction, natural candidates for the regularization functions t → ε(t)169

that satisfy the conditions (C1) and (C2) are ε(t) = a
tr , r ≥ 1, a > 0. However, if γ = 0 and β > 0,170

then (C1) is satisfied even with ε(t) = a
tr , r > 0, a > 0. In the latter case, (C1) is also satisfied with171

ε(t) = a
(ln(t))p , p ≥ 1, a > 0.172

2.1. The non critical case α > 3. We show that under some appropriate conditions imposed on ε,173

for α > 3 we have o(1/t2) convergence rate for the decay g
(
x(t) +

(
γ + β

t

)
ẋ(t)

)
−min g, fast convergence174

of the velocity to 0 and weak convergence of x(t). Further, integral estimates are also obtained.175

Theorem 2.1. Let t0 > 0 and for some starting points u0, v0 ∈ H let x : [t0,∞) → H be the unique176

global solution of (1.1). Assume that α > 3 and that one of the conditions (C1) or (C2) is fulfilled. Then,177

the following results hold.178

(i) If ε : [t0,+∞)→ [0,+∞) satisfies
∫ +∞
t0

ε(t)
t dt < +∞ then, limt→+∞ g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)
= min g.179

Further, limt→+∞ ‖ẋ(t)‖ = 0, hence limt→+∞ g (x(t)) = min g.180

(ii) Assume that ε : [t0,+∞) −→ [0,+∞) satisfies
∫ +∞
t0

tε(t)dt < +∞. Then, the following statements181

hold true.182

(convergence) x(t) is bounded and x(t) converges weakly, as t→ +∞, to an element of argmin g.183

(integral estimates)
∫ +∞
t0

t‖ẋ(t)‖2dt < +∞,
∫ +∞
t0

t
(
g
(
x(t) +

(
γ + β

t

)
ẋ(t)

)
−min g

)
dt < +∞, further184 ∫ +∞

t0
t2
∥∥∥∇g (x(t) +

(
γ + β

t

)
ẋ(t)

)∥∥∥2 dt < +∞, whenever γ > 0, β ∈ R and for γ = 0, β > 0 one has185 ∫ +∞
t0

t
∥∥∥∇g (x(t) + β

t ẋ(t)
)∥∥∥2 dt < +∞.186

(pointwise estimates) limt→+∞ ‖ẋ(t)‖ = 0, ‖ẋ(t)‖ = o
(
1
t

)
and g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)
−min g = o

(
1
t2

)
as187

t→ +∞. Further, ‖x(t)‖ = o

(
1

t
√
ε(t)

)
as t→ +∞.188

Proof . Lyapunov analysis. First, let x∗ ∈ argmin g, b ∈ (2, α− 1) and denote g∗ := g(x∗) = min g.189

For simplicity we denote β(t) = γ + β
t and for a positive function a(t), t ≥ t0 we introduce the energy190

functional E : [t0,∞)→ R,191

E(t) = a(t) (g(x(t) + β(t)ẋ(t))− g∗) +
t2ε(t)

2
‖x(t)‖2 +

1

2
‖b(x(t)− x∗) + tẋ(t)‖2 +

b(α− 1− b)
2

‖x(t)− x∗‖2.

(2.1)

192
193

Then,194

Ė(t) = a′(t) (g(x(t) + β(t)ẋ(t))− g∗) + a(t)〈∇g(x(t) + β(t)ẋ(t)), β(t)ẍ(t) + (β′(t) + 1)ẋ(t)〉(2.2)195

+

(
tε(t) +

t2ε̇(t)

2

)
‖x(t)‖2 + t2ε(t)〈ẋ(t), x(t)〉+ 〈(b+ 1)ẋ(t) + tẍ(t), b(x(t)− x∗) + tẋ(t)〉196

+ b(α− 1− b)〈ẋ(t), x(t)− x∗〉.197198

From the dynamical system (1.1), we have that ẍ(t) = −ε(t)x(t)− α
t ẋ(t)−∇g(x(t) + β(t)ẋ(t)). Hence,199

a(t)〈∇g(x(t) + β(t)ẋ(t)), β(t)ẍ(t) + (β′(t) + 1)ẋ(t)〉 =(2.3)200

a(t)
〈
∇g(x(t) + β(t)ẋ(t)),−β(t)ε(t)x(t) +

(
−β(t)

α

t
+ β′(t) + 1

)
ẋ(t))− β(t)∇g(x(t) + β(t)ẋ(t))

〉
=201

− β(t)a(t) ‖∇g(x(t) + β(t)ẋ(t))‖2 +
(
−β(t)

α

t
+ β′(t) + 1

)
a(t)〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉202

− β(t)ε(t)a(t)〈∇g(x(t) + β(t)ẋ(t)), x(t)〉.203204

Further,205

〈(b+ 1)ẋ(t) + tẍ(t), b(x(t)− x∗) + tẋ(t)〉 =(2.4)206

〈(b+ 1− α)ẋ(t)− tε(t)x(t)− t∇g(x(t) + β(t)ẋ(t)), b(x(t)− x∗) + tẋ(t)〉 =207

b(b+ 1− α)〈ẋ(t), x(t)− x∗〉+ (b+ 1− α)t‖ẋ(t)‖2 − btε(t)〈x(t), x(t)− x∗〉 − t2ε(t)〈ẋ(t), x(t)〉208

− bt〈∇g(x(t) + β(t)ẋ(t)), x(t)− x∗〉 − t2〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉.209210
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Combining (2.2), (2.3) and (2.4) we get211

Ė(t) = a′(t) (g(x(t) + β(t)ẋ(t))− g∗)− β(t)a(t) ‖∇g(x(t) + β(t)ẋ(t))‖2 + (b+ 1− α)t‖ẋ(t)‖2(2.5)212

+

(
tε(t) +

t2ε̇(t)

2

)
‖x(t)‖2 +

((
−β(t)

α

t
+ β′(t) + 1

)
a(t)− t2

)
〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉213

− β(t)ε(t)a(t)〈∇g(x(t) + β(t)ẋ(t)), x(t)〉 − bt〈∇g(x(t) + β(t)ẋ(t)) + ε(t)x(t), x(t)− x∗〉.214215

Consider now the strongly convex function gt : H −→ R, gt(x) = g(x) + ε(t)
2 ‖x‖

2. From the gradient216

inequality we have gt(y) − gt(x) ≥ 〈∇gt(x), y − x〉 + ε(t)
2 ‖x − y‖

2, for all x, y ∈ H. Take now y = x∗ and217

x = x(t) + β(t)ẋ(t). We get218

g(x∗) +
ε(t)

2
‖x∗‖2 − g(x(t) + β(t)ẋ(t))− ε(t)

2
‖x(t) + β(t)ẋ(t)‖2 ≥219

− 〈∇g(x(t) + β(t)ẋ(t)) + ε(t)(x(t) + β(t)ẋ(t)), x(t) + β(t)ẋ(t)− x∗〉+
ε(t)

2
‖x(t) + β(t)ẋ(t)− x∗‖2.220

221

Consequently,222

− 〈∇g(x(t) + β(t)ẋ(t)) + ε(t)x(t), x(t)− x∗〉 − β(t)〈∇g(x(t) + β(t)ẋ(t)) + ε(t)x(t), ẋ(t)〉 =223

− 〈∇g(x(t) + β(t)ẋ(t)) + ε(t)x(t), x(t) + β(t)ẋ(t)− x∗〉 ≤ g(x∗) +
ε(t)

2
‖x∗‖2 − g(x(t) + β(t)ẋ(t))224

− ε(t)

2
‖x(t) + β(t)ẋ(t)‖2 − ε(t)

2
‖x(t) + β(t)ẋ(t)− x∗‖2 + β(t)ε(t)〈ẋ(t), x(t) + β(t)ẋ(t)− x∗〉.225

226

From here we get227

− 〈∇g(x(t) + β(t)ẋ(t)) + ε(t)x(t), x(t)− x∗〉 ≤(2.6)228

− (g(x(t) + β(t)ẋ(t))− g(x∗)) +
ε(t)

2
‖x∗‖2 + β(t)〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉229

− ε(t)

2
‖x(t) + β(t)ẋ(t)‖2 − ε(t)

2
‖x(t) + β(t)ẋ(t)− x∗‖2 + β(t)ε(t)〈ẋ(t), 2x(t) + β(t)ẋ(t)− x∗〉.230

231

Further, an easy computation shows that232

− ε(t)

2
‖x(t) + β(t)ẋ(t)‖2 − ε(t)

2
‖x(t) + β(t)ẋ(t)− x∗‖2 + β(t)ε(t)〈ẋ(t), 2x(t) + β(t)ẋ(t)− x∗〉 =233

− ε(t)

2
‖x(t)‖2 − ε(t)

2
‖x(t)− x∗‖2.234

235

Hence, (2.6) becomes236

− 〈∇g(x(t) + β(t)ẋ(t)) + ε(t)x(t), x(t)− x∗〉 ≤ −(g(x(t) + β(t)ẋ(t))− g(x∗))− ε(t)

2
‖x(t)‖2(2.7)237

− ε(t)

2
‖x(t)− x∗‖2 +

ε(t)

2
‖x∗‖2 + β(t)〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉.238

239

By multiplying (2.7) with bt and injecting in (2.5) we get240

Ė(t) ≤(a′(t)− bt) (g(x(t) + β(t)ẋ(t))− g∗)− β(t)a(t) ‖∇g(x(t) + β(t)ẋ(t))‖2 + (b+ 1− α)t‖ẋ(t)‖2(2.8)241

+ bt
ε(t)

2
‖x∗‖2 − btε(t)

2
‖x(t)− x∗‖2 +

(
t2ε̇(t)

2
+ (2− b)t ε(t)

2

)
‖x(t)‖2242

− β(t)ε(t)a(t)〈∇g(x(t) + β(t)ẋ(t)), x(t)〉243

+
((
−β(t)

α

t
+ β′(t) + 1

)
a(t)− t2 + bβ(t)t

)
〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉.244

245
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8 C. D. Alecsa, S. C. László

We estimate246 (
−β(t)

α− b
t

+ β′(t)

)
t2〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉 ≤247

1

2

∣∣∣∣−β(t)
α− b
t

+ β′(t)

∣∣∣∣ (t 5
2 ‖∇g(x(t) + β(t)ẋ(t))‖2 + t

3
2 ‖ẋ(t)‖2

)
.248

249

Let us take now a(t) = t2. Then, (2.8) becomes250

Ė(t) ≤ (2− b)t (g(x(t) + β(t)ẋ(t))− g∗)−
(
β(t)t2 − 1

2

∣∣∣∣−β(t)
α− b
t

+ β′(t)

∣∣∣∣ t 5
2

)
‖∇g(x(t) + β(t)ẋ(t))‖2

(2.9)

251

+

(
(b+ 1− α)t+

1

2

∣∣∣∣−β(t)
α− b
t

+ β′(t)

∣∣∣∣ t 3
2

)
‖ẋ(t)‖2 + bt

ε(t)

2
‖x∗‖2 − btε(t)

2
‖x(t)− x∗‖2252

+

(
t2ε̇(t)

2
+ (2− b)t ε(t)

2

)
‖x(t)‖2 − β(t)ε(t)t2〈∇g(x(t) + β(t)ẋ(t)), x(t)〉.253

254

We will carry out the analysis by addressing the settings provided by the conditions (C1) and (C2)255

separately.256

Condition (C1). Assuming that condition (C1) holds, there exist K > 1 and t1 ≥ t0 such that

ε̇(t) ≤ −K|β(t)|
2

ε2(t) for every t ≥ t1.

Using that257

−β(t)ε(t)t2〈∇g(x(t) + β(t)ẋ(t)), x(t)〉 ≤ |β(t)|t2

K
‖∇g(x(t) + β(t)ẋ(t))‖2 +

K|β(t)|ε2(t)t2

4
‖x(t)‖2,(2.10)258

259

(2.9) leads to the following estimate260

Ė(t) ≤ (2− b)t (g(x(t) + β(t)ẋ(t))− g∗)(2.11)261

−
((

β(t)− |β(t)|
K

)
t2 − 1

2

∣∣∣∣−β(t)
α− b
t

+ β′(t)

∣∣∣∣ t 5
2

)
‖∇g(x(t) + β(t)ẋ(t))‖2262

+

(
(b+ 1− α)t+

1

2

∣∣∣∣−β(t)
α− b
t

+ β′(t)

∣∣∣∣ t 3
2

)
‖ẋ(t)‖2 + bt

ε(t)

2
‖x∗‖2 − btε(t)

2
‖x(t)− x∗‖2263

+

(
t2ε̇(t)

2
+
K|β(t)|ε2(t)t2

4
+ (2− b)t ε(t)

2

)
‖x(t)‖2, for all t ≥ t1.264

265

Now, taking into account that K > 1 and β(t) = γ + β
t we conclude the following.

If γ > 0, β ∈ R then there exists t′1 ≥ t1 and r1 > 0 such that

−
((

β(t)− |β(t)|
K

)
t2 − 1

2

∣∣∣∣−β(t)
α− b
t

+ β′(t)

∣∣∣∣ t 5
2

)
≤ −r1t2, for all t ≥ t′1.

If γ = 0, β ≥ 0 then there exists t′1 ≥ t1 and r1 > 0 such that

−
((

β(t)− |β(t)|
K

)
t2 − 1

2

∣∣∣∣−β(t)
α− b
t

+ β′(t)

∣∣∣∣ t 5
2

)
≤ −r1βt, for all t ≥ t′1.

Further, since b < α− 1 there exists t′′1 ≥ t1 and r2 > 0 such that

(b+ 1− α)t+
1

2

∣∣∣∣−β(t)
α− b
t

+ β′(t)

∣∣∣∣ t 3
2 ≤ −r2t, for all t ≥ t′′1 .

Finally, according to assumption (C1) and the fact that b > 2 we get

t2ε̇(t)

2
+
K|β(t)|ε2(t)t2

4
+ (2− b)t ε(t)

2
≤ (2− b)t ε(t)

2
, for all t ≥ t1.
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Tikhonov regularization of a perturbed heavy ball system with vanishing damping 9

Hence, by considering t2 = max(t′1, t
′′
1) and denoting r1(t) = r1t

2 when γ > 0, β ∈ R and r1(t) = r1βt266

whenever γ = 0, β ≥ 0, the relation (2.11) leads to267

Ė(t) + (b− 2)t (g(x(t) + β(t)ẋ(t))− g∗) + r1(t) ‖∇g(x(t) + β(t)ẋ(t))‖2 + r2t‖ẋ(t)‖2 + bt
ε(t)

2
‖x(t)− x∗‖2

(2.12)

268

+ (b− 2)t
ε(t)

2
‖x(t)‖2 ≤ btε(t)

2
‖x∗‖2, for all t ≥ t2.269

270

Condition (C2). Assume now that (C2) holds, that is, there exists K > 0 and t1 ≥ t0 such that

ε(t) ≤ K

t
for every t ≥ t1.

Now, since β(t) = γ + β
t , where γ > 0, β ∈ R or γ = 0, β ≥ 0 we obtain that there exists t1 ≥ t1 such

that
β(t) ≥ 0, for all t ≥ t1.

Using the monotonicity of ∇g and the fact that ∇g(x∗) = 0 we get for all t ≥ t1 that271

−β(t)ε(t)t2〈∇g(x(t) + β(t)ẋ(t)), x(t)〉 = −β(t)ε(t)t2〈∇g(x(t) + β(t)ẋ(t)), x(t) + β(t)ẋ(t)− x∗〉(2.13)272

+ β(t)ε(t)t2〈∇g(x(t) + β(t)ẋ(t)), β(t)ẋ(t)− x∗〉273

≤ β(t)ε(t)t2〈∇g(x(t) + β(t)ẋ(t)), β(t)ẋ(t)− x∗〉.274275

The right hand side of (2.13) becomes276

β(t)ε(t)t2〈∇g(x(t) + β(t)ẋ(t)), β(t)ẋ(t)− x∗〉 = β2(t)ε(t)t2〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉277

− β(t)ε(t)t2〈∇g(x(t) + β(t)ẋ(t)), x∗〉,278279

further280

β2(t)ε(t)t2〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉 ≤ β(t)ε(t)t3

4K
‖∇g(x(t) + β(t)ẋ(t))‖2 +Kβ3(t)ε(t)t‖ẋ(t)‖2281

≤ β(t)t2

4
‖∇g(x(t) + β(t)ẋ(t))‖2 +K2β3(t)‖ẋ(t)‖2282

283

and284

−β(t)ε(t)t2〈∇g(x(t) + β(t)ẋ(t)), x∗〉 ≤ β(t)ε(t)t3

4K
‖∇g(x(t) + β(t)ẋ(t))‖2 +Kβ(t)ε(t)t‖x∗‖2285

≤ β(t)t2

4
‖∇g(x(t) + β(t)ẋ(t))‖2 +Kβ(t)tε(t)‖x∗‖2,286

287

for all t ≥ t1. Hence, (2.13) becomes288

−β(t)ε(t)t2〈∇g(x(t) + β(t)ẋ(t)), x(t)〉 ≤ β(t)t2

2
‖∇g(x(t) + β(t)ẋ(t))‖2 +K2β3(t)‖ẋ(t)‖2(2.14)289

+Kβ(t)tε(t)‖x∗‖2, for all t ≥ t1.290291

Now, injecting (2.14) in (2.9) we get292

Ė(t) ≤ (2− b)t (g(x(t) + β(t)ẋ(t))− g∗)−
(
β(t)

2
t2 − 1

2

∣∣∣∣−β(t)
α− b
t

+ β′(t)

∣∣∣∣ t 5
2

)
‖∇g(x(t) + β(t)ẋ(t))‖2

(2.15)

293

+

(
(b+ 1− α)t+

1

2

∣∣∣∣−β(t)
α− b
t

+ β′(t)

∣∣∣∣ t 3
2 +K2β3(t)

)
‖ẋ(t)‖2 + (b+ 2Kβ(t))t

ε(t)

2
‖x∗‖2294

− btε(t)
2
‖x(t)− x∗‖2 +

(
t2ε̇(t)

2
+ (2− b)t ε(t)

2

)
‖x(t)‖2, for all t ≥ t1.295

296
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Taking into account that β(t) = γ + β
t we conclude the following.

If γ > 0, β ∈ R then there exists t′1 ≥ t1 and r1 > 0 such that

−
(
β(t)

2
t2 − 1

2

∣∣∣∣−β(t)
α− b
t

+ β′(t)

∣∣∣∣ t 5
2

)
≤ −r1t2, for all t ≥ t′1.

If γ = 0, β ≥ 0 then there exists t′1 ≥ t1 and r1 > 0 such that

−
(
β(t)

2
t2 − 1

2

∣∣∣∣−β(t)
α− b
t

+ β′(t)

∣∣∣∣ t 5
2

)
≤ −r1βt, for all t ≥ t′1.

Further, since b < α− 1 there exists t′′1 ≥ t1 and r2 > 0 such that

(b+ 1− α)t+
1

2

∣∣∣∣−β(t)
α− b
t

+ β′(t)

∣∣∣∣ t 3
2 +K2β3(t) ≤ −r2t, for all t ≥ t′′1 .

Finally, according to the fact that b > 2 and that ε(t) is decreasing we get

t2ε̇(t)

2
+ (2− b)t ε(t)

2
≤ (2− b)t ε(t)

2
, for all t ≥ t0.

Hence, by considering t2 = max(t′1, t
′′
1) and denoting r1(t) = r1t

2 when γ > 0, β ∈ R and r1(t) = r1βt297

whenever γ = 0, β ≥ 0, the relation (2.15) leads to298

Ė(t) + (b− 2)t (g(x(t) + β(t)ẋ(t))− g∗) + r1(t) ‖∇g(x(t) + β(t)ẋ(t))‖2 + r2t‖ẋ(t)‖2 + bt
ε(t)

2
‖x(t)− x∗‖2

(2.16)

299

+ (b− 2)t
ε(t)

2
‖x(t)‖2 ≤ (b+ 2Kβ(t))t

ε(t)

2
‖x∗‖2, for all t ≥ t2.300

301

The estimates. By integrating (2.12) on an interval [t3, t], t3 = t2 in case the condition (C1) holds,302

and by integrating (2.16) on an interval [t3, t], t3 = t2 in case the condition (C2) holds, further denoting303

l = b in case (C1) holds and l = supt≥t3(b+ 2Kβ(t)) in case (C2) holds, we obtain for every t ≥ t3 that304

E(t) + (b− 2)

∫ t

t3

s (g(x(s) + β(s)ẋ(s))− g∗) ds+

∫ t

t3

r1(s) ‖∇g(x(s) + β(s)ẋ(s))‖2 ds+ r2

∫ t

t3

s‖ẋ(s)‖2ds

(2.17)

305

+
b

2

∫ t

t3

sε(s)‖x(s)− x∗‖2 +
b− 2

2

∫ t

t3

sε(s)‖x(s)‖2ds ≤ l

2

∫ t

t3

sε(s)‖x∗‖2ds+ E(t3).306

307

For proving (i) assume that
∫ +∞
t0

ε(s)
s ds < +∞. Then, from (2.17) we get that for all t ≥ t3 one has

0 ≤ g(x(t) + β(t)ẋ(t))−min g ≤ E(t3)

t2
+
l‖x∗‖2

2

1

t2

∫ t

t2

sε(s)ds,

0 ≤
∥∥∥∥bt (x(t)− x∗) + ẋ(t)

∥∥∥∥2 ≤ 2E(t3)

t2
+
l‖x∗‖2

t2

∫ t

t3

sε(s)ds

and

0 ≤
∥∥∥∥x(t)− x∗

t

∥∥∥∥2 ≤ 2E(t3)

b(α− 1− b)t2
+

l‖x∗‖2

b(α− 1− b)t2

∫ t

t3

sε(s)ds.

Obviously, limt→+∞
E(t3)
t2 = 0. Further, Lemma B.1 applied to the functions ϕ(s) = s2 and f(s) = ε(s)

s308

provides limt→+∞
1
t2

∫ t
t2
s2 ε(s)s dt = 0. Hence,309

limt→+∞ g(x(t) + β(t)ẋ(t)) = min g, limt→+∞
∥∥ b
t (x(t)− x∗) + ẋ(t)

∥∥ = 0 and limt→+∞

∥∥∥x(t)−x∗t

∥∥∥ = 0.310
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Combining the last two relations we get limt→+∞ ‖ẋ(t)‖ = 0, and from here and the continuity of g we311

have limt→+∞ g(x(t)) = limt→+∞ g(x(t) + β(t)ẋ(t)) = min g.312

For proving (ii) assume that
∫ +∞
t0

sε(s)ds < +∞. Then, C0 = l
∫ +∞
t3

t ε(t)2 ‖x
∗‖2dt + E(t3) < +∞ and313

from (2.17) we immediately deduce that E(t) ≤ C0 for all t ≥ t3, hence314

g(x(t) + β(t)ẋ(t))− g∗ = O
(

1

t2

)
, as t→ +∞,(2.18)315

sup
t≥t0
‖b(x(t)− x∗) + tẋ(t)‖2 < +∞,(2.19)316

sup
t≥t0
‖x(t)− x∗‖2 < +∞.(2.20)317

318

Further, (2.17) yields319 ∫ +∞

t0

t (g(x(t) + β(t)ẋ(t))− g∗) dt < +∞,(2.21)320 ∫ +∞

t0

t2 ‖∇g(x(t) + β(t)ẋ(t))‖2 dt < +∞, whenever γ > 0, β ∈ R,(2.22)321

β

∫ +∞

t0

t ‖∇g(x(t) + β(t)ẋ(t))‖2 dt < +∞, whenever γ = 0, β ≥ 0,(2.23)322 ∫ +∞

t0

tε(t)‖x(t)‖2dt < +∞,(2.24)323

324

and325

(2.25)

∫ +∞

t0

t‖ẋ(t)‖2dt < +∞.326

Observe that (2.20) leads to the fact that the trajectory x(t) is bounded, which combined with (2.19)327

shows that ‖tẋ(t)‖2 is bounded, that is328

(2.26) ‖ẋ(t)‖ = O
(

1

t

)
, as t→ +∞.329

Note that (2.26) shows in particular that ẋ(t)→ 0, t→ +∞.330

In order to show that ‖ẋ(t)‖ = o
(
1
t

)
, as t → +∞ assume for now that the limit limt→+∞ ‖x(t) − x∗‖

exists, as will be shown in the sequel. Then, (2.12) in case (C1) and (2.16) in case (C2) provide that

Ė(t) ≤ l‖x∗‖2

2
tε(t), for all t ≥ t3,

where l = b in case (C1) holds and l = supt≥t3(b+ 2Kβ(t)) in case (C2) holds. Obviously, by the hypotheses331

we have l‖x∗‖2
2 tε(t) ∈ L1([t3,+∞)), hence, according to Lemma B.2 there exists the limit limt→+∞ E(t).332

Hence, since limt→+∞ ‖x(t)− x∗‖ exists we get that the limit333

(2.27) lim
t→+∞

t2 (g(x(t) + β(t)ẋ(t))− g∗) +
t2ε(t)

2
‖x(t)‖2 +

1

2
‖tẋ(t)‖2334

also exists.335

Now, (2.21), (2.24) and (2.25) yield336

(2.28)

∫ +∞

t0

1

t

(
t2 (g(x(t) + β(t)ẋ(t))− g∗) +

t2ε(t)

2
‖x(t)‖2 +

1

2
‖tẋ(t)‖2

)
dt < +∞.337

Since the function t� 1
t 6∈ L

1([t0,+∞)), (2.28) and (2.27) lead to338

(2.29) lim
t→+∞

t2 (g(x(t) + β(t)ẋ(t))− g∗) +
t2ε(t)

2
‖x(t)‖2 +

1

2
‖tẋ(t)‖2 = 0.339
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Consequently,

g(x(t) + β(t)ẋ(t))−min g = o

(
1

t2

)
as t→ +∞,

‖x(t)‖ = o

(
1

t
√
ε(t)

)
as t→ +∞,

and

‖ẋ(t)‖ = o

(
1

t

)
as t→ +∞.

The limit. To prove the existence of the weak limit of x(t), we use the Opial lemma, (see Lemma B.4340

at Appendix). For z ∈ argmin g let us introduce the anchor function hz(t) = 1
2‖x(t) − z‖2. The classical341

derivation chain rule gives ḧz(t) + α
t ḣz(t) =

〈
ẍ(t) + α

t ẋ(t), x(t)− z
〉

+ ‖ẋ(t)‖2. Now, using (1.1) we get342

ḧz(t) + α
t ḣz(t) = 〈−ε(t)x(t)−∇g(x(t) + β(t)ẋ(t)), x(t)− z〉+ ‖ẋ(t)‖2. In other words,343

(2.30) tḧz(t) + αḣz(t) + t 〈∇g(x(t) + β(t)ẋ(t)), x(t)− z〉 = t‖ẋ(t)‖2 − 〈tε(t)x(t), x(t)− z〉 .344

We have345

t 〈∇g(x(t) + β(t)ẋ(t)), x(t)− z〉 = t 〈∇g(x(t) + β(t)ẋ(t)), (x(t) + β(t)ẋ(t))− z〉346

− t 〈∇g(x(t) + β(t)ẋ(t)), β(t)ẋ(t)〉 .347348

Consequently, (2.30) becomes349

tḧz(t) + αḣz(t) + t 〈∇g(x(t) + β(t)ẋ(t)), x(t) + β(t)ẋ(t)− z〉 =t‖ẋ(t)‖2 − 〈tε(t)x(t), x(t)− z〉(2.31)350

+ t 〈∇g(x(t) + β(t)ẋ(t)), β(t)ẋ(t)〉 .351352

Now, since x(t) is bounded, there exists K1 > 0 such that

−〈tε(t)x(t), x(t)− z〉 ≤ tε(t)‖x(t)‖‖x(t)− z‖ ≤ K1tε(t).

Further, t 〈∇g(x(t) + β(t)ẋ(t)), β(t)ẋ(t)〉 ≤ 1
2 t|β(t)|‖∇g(x(t) + β(t)ẋ(t))‖2 + 1

2 t|β(t)|‖ẋ(t)‖2.353

The latter two inequalities combined with (2.31) yield354

tḧz(t) + αḣz(t) + t 〈∇g(x(t) + β(t)ẋ(t)), x(t) + β(t)ẋ(t)− z〉 ≤
(

1 +
1

2
|β(t)|

)
t‖ẋ(t)‖2 +K1tε(t)(2.32)355

+
1

2
t|β(t)|‖∇g(x(t) + β(t)ẋ(t))‖2.356

357

Now, by the monotonicity of ∇g we have that the function θ(t) = t 〈∇g(x(t) + β(t)ẋ(t)), x(t) + β(t)ẋ(t)− z〉358

is nonnegative on [t0,+∞).359

Further, (2.25) and (2.22) if γ > 0, β ∈ R and (2.23) if γ = 0, β ≥ 0 and the hypotheses of the theorem360

shows that the function k(t) =
(
1 + 1

2 |β(t)|
)
t‖ẋ(t)‖2 + K1tε(t) + 1

2 t|β(t)|‖∇g(x(t) + β(t)ẋ(t))‖2 belongs to361

L1(t0,+∞).362

Hence, Lemma B.5 can be applied for the function w(t) = hz(t), thus we infer that the following limit
exists

lim
t→+∞

‖x(t)− z‖.

Let x ∈ H be a weak sequential limit point of x(t). This means that there exists a sequence (tn)n∈N ⊆363

[t0,+∞) such that limn→∞ tn = +∞ and x(tn) converges weakly to x as n→∞.364

On one hand the function g is weakly lower semicontinuous, since is convex and continuous, hence we365

have that g(x) ≤ lim infn→+∞ g(x(tn)). On the other hand, according to (i), limt→+∞ g(x(t)) = min g,366

consequently one has g(x) ≤ min g, which shows that x ∈ argmin g.367

According to Opial lemma it follows that

w − lim
t→+∞

x(t) ∈ argmin g.

�368
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Remark 2. In Theorem 2.1 we have shown that under the assumptions that
∫ +∞
t0

tε(t)dt < +∞, α > 3369

and γ > 0, β ∈ R or γ = 0, β ≥ 0 one has g
(
x(t) +

(
γ + β

t

)
ẋ(t)

)
−min g = o

(
1
t2

)
as t → +∞. However,370

under the assumptions γ = 0 and β > 0 and ∇g is globally Lg−Lipschitz continuous, we can even show that371

g(x(t))−min g is of order o
(

1
t2

)
as t→ +∞, and for this is enough to prove that g(x(t))−g

(
x(t) + β

t ẋ(t)
)

=372

o
(

1
t2

)
, as t → +∞. In order to obtain the latter, we use the well-known descent lemma from [31] and we373

obtain that for all t ≥ t0 one has374

g(x(t))− g
(
x(t) +

β

t
ẋ(t)

)
≤
〈
∇g
(
x(t) +

β

t
ẋ(t)

)
,−β

t
ẋ(t)

〉
+
Lg
2

∥∥∥∥βt ẋ(t)

∥∥∥∥2375

≤ β

t
‖ẋ(t)‖ ·

∥∥∥∥∇g(x(t) +
β

t
ẋ(t)

)∥∥∥∥+
Lg
2

(
β

t

)2

‖ẋ(t)‖2.376
377

From Theorem 2.1, we have that x and ẋ are bounded and ‖ẋ(t)‖ = o
(
1
t

)
as t → +∞, hence by using378

the continuity of ∇g we get β
t ‖ẋ(t)‖ ·

∥∥∥∇g (x(t) + β
t ẋ(t)

)∥∥∥ = o
(

1
t2

)
, as t → +∞. Moreover, we have379

Lg
2

(
β
t

)2
‖ẋ(t)‖2 = o

(
1
t4

)
, as t→ +∞. By combining the previous relations the result follows.380

Remark 3. Observe that the assumptions of Theorem 2.1 (ii) are satisfied for ε(t) = a
tr , r > 2, a > 0.381

More precisely, in this case the conditions (C1), (C2) and the relation
∫ +∞
t0

tε(t)dt < +∞ hold. The latter382

relation was essential in the proof of Theorem 2.1 (ii) in order to show the pointwise and integral estimates383

but also the weak convergence of the trajectories. Nevertheless, by deploying the techniques used in [16], we384

can show the fast convergence of the function values in the generated trajectories even for ε(t) = a
t2 , a > 0.385

The following result holds.386

Theorem 2.2. Let t0 > 0, α > 3 and ε(t) = a
t2 , a > 0. For some starting points u0, v0 ∈ H let387

x : [t0,∞)→ H be the unique global solution of (1.1). Then, x is bounded, g
(
x(t) +

(
γ + β

t

)
ẋ(t)

)
−min g =388

O
(

1
t2

)
and ‖ẋ(t)‖ = O

(
1
t

)
as t→ +∞.389

Proof . Note that for ε(t) = a
t2 , a > 0 both the conditions (C1) and (C2) hold. Now, by using the fact390

that 1
2‖b(x(t)− x∗) + tẋ(t)‖2 ≤ b2‖x(t)− x∗‖2 + t2‖ẋ(t)‖2, from (2.1) we get that for all t ≥ t0 it holds391

E(t) ≤ t2 (g(x(t) + β(t)ẋ(t))− g∗) +
a

2
‖x(t)‖2 + t2‖ẋ(t)‖2 +

b(α− 1 + b)

2
‖x(t)− x∗‖2(2.33)392

393

Further, (2.12) gives394

Ė(t) ≤− (b− 2)t (g(x(t) + β(t)ẋ(t))− g∗)− r1(t) ‖∇g(x(t) + β(t)ẋ(t))‖2 − r2t‖ẋ(t)‖2 − ab

2t
‖x(t)− x∗‖2

(2.34)

395

− (b− 2)
a

2t
‖x(t)‖2 +

ab

2t
‖x∗‖2, for all t ≥ t2,396

397

where t2, r1(t) and r2 were defined in the proof of Theorem 2.1. More precisely, r1(t) = r1t
2 when γ >398

0, β ∈ R and r1(t) = r1βt whenever γ = 0, β ≥ 0 and r1, r2 > 0.399

Let now 0 < c ≤ min
(
b− 2, a

α−1+b , r2

)
. By multiplying (2.33) with c

t and adding to (2.34) we get400

Ė(t) +
c

t
E(t) ≤ (c− b+ 2)t (g(x(t) + β(t)ẋ(t))− g∗)− r1(t) ‖∇g(x(t) + β(t)ẋ(t))‖2 + (c− r2)t‖ẋ(t)‖2

(2.35)

401

+
b

2t
(c(α− 1 + b)− a)‖x(t)− x∗‖2 + (c− b+ 2)

a

2t
‖x(t)‖2 +

ab

2t
‖x∗‖2402

≤ ab

2t
‖x∗‖2, for all t ≥ t2.403

404
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We multiply the last relation with tc and we get405

(2.36)
d

dt
(tcE(t)) ≤ ab

2
‖x∗‖2tc−1, for all t ≥ t2.406

Consequently, by integrating (2.36) on an interval [t2, t] one has

tcE(t)− tc2E(t2) ≤ ab

2
‖x∗‖2

∫ t

t2

sc−1ds =
ab

2c
‖x∗‖2(tc − tc2).

Hence, there exists K > 0 such that E(t) ≤ K, for all t ≥ t0, and from here and (2.1) we deduce that x is407

bounded, g
(
x(t) +

(
γ + β

t

)
ẋ(t)

)
−min g = O

(
1
t2

)
and ‖ẋ(t)‖ = O

(
1
t

)
as t→ +∞. �408

2.2. The critical case α = 3. As we mentioned before, just as for the dynamical system (AVD)α, the409

case α = 3 is critical. In this case we obtain O(1/t2) convergence rate for the decay g
(
x(t) +

(
γ + β

t

)
ẋ(t)

)
−410

min g and we also obtain some integral estimates for the gradient of the objective function, meanwhile the411

weak convergence of the trajectories to a minimizer of g remains an open question.412

Theorem 2.3. Let t0 > 0 and for some starting points u0, v0 ∈ H let x : [t0,∞) −→ H be the unique413

global solution of (1.1). Assume that α = 3 and that one of the conditions (C1) or (C2) is fulfilled. The414

following statements hold.415

(i) If
∫ +∞
t0

ε(t)
t dt < +∞, then limt→+∞ g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)
= min g.416

(ii) If
∫ +∞
t0

tε(t)dt < +∞, then g

(
x(t) +

(
γ +

β

t

)
ẋ(t)

)
− min g = O

(
1

t2

)
as t → +∞. Further,417

tε(t)‖x(t)− x∗‖2 ∈ L1([t0,+∞),R) and t2
∥∥∥∇g (x(t) +

(
γ + β

t

)
ẋ(t)

)∥∥∥2 ∈ L1([t0,+∞),R), for γ >418

0, β ∈ R and t
∥∥∥∇g (x(t) + β

t ẋ(t)
)∥∥∥2 ∈ L1([t0,+∞),R), for γ = 0, β > 0.419

Proof . We will use the same notations as in the proof of Theorem 2.1. Let a(t) = t2−2β(t)t
1− 3

t β(t)+β
′(t)

, in420

case condition (C1) holds and a(t) = t2−2β(t)t
1− 3

t β(t)+β
′(t)+β2(t)ε(t)

, in case condition (C2) holds.421

Since ε(t) → 0, t → +∞, clearly, there exists t0 ≥ t0 such that t2−2β(t)t
1− 3

t β(t)+β
′(t)+β2(t)ε(t)

> 0 for all t ≥ t0,422

hence a(t) > 0 for all t ≥ t0 in both cases (C1) and (C2).423

The energy functional (2.1), for α = 3, b = 2, becomes E : [t0,∞)→ R424

E(t) = a(t) (g(x(t) + β(t)ẋ(t))− g∗) +
t2ε(t)

2
‖x(t)‖2 +

1

2
‖2(x(t)− x∗) + tẋ(t)‖2.(2.37)425

426

The same reasoning as in the proof of Theorem 2.1 holds, hence in this case (2.8) becomes427

Ė(t) ≤ (a′(t)− 2t) (g(x(t) + β(t)ẋ(t))− g∗)− β(t)a(t) ‖∇g(x(t) + β(t)ẋ(t))‖2(2.38)428

+ tε(t)‖x∗‖2 − tε(t)‖x(t)− x∗‖2 +
t2ε̇(t)

2
‖x(t)‖2429

+

((
−β(t)

3

t
+ β′(t) + 1

)
a(t)− t2 + 2β(t)t

)
〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉430

− β(t)ε(t)a(t)〈∇g(x(t) + β(t)ẋ(t)), x(t)〉.431432

We will carry out the analysis by addressing the settings provided by the conditions (C1) and (C2)433

separately.434

Condition (C1). Assuming that condition (C1) holds, one has(
−β(t)

3

t
+ β′(t) + 1

)
a(t)− t2 + 2β(t)t = 0, for all t ≥ t0.
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Consequently, (2.38) becomes435

Ė(t) ≤ (a′(t)− 2t) (g(x(t) + β(t)ẋ(t))− g∗)− β(t)a(t) ‖∇g(x(t) + β(t)ẋ(t))‖2(2.39)436

+ tε(t)‖x∗‖2 − tε(t)‖x(t)− x∗‖2 +
t2ε̇(t)

2
‖x(t)‖2 − β(t)ε(t)a(t)〈∇g(x(t) + β(t)ẋ(t)), x(t)〉,437

438

for all t ≥ t0.439

Since we are in the setting (C1), we have that there exist K > 1 and t1 ≥ t0 such that

ε̇(t) ≤ −K|β(t)|
2

ε2(t) for every t ≥ t1.

Let t1 = max(t0, t1). Using that for every r > 0 one has440

−β(t)ε(t)a(t)〈∇g(x(t) + β(t)ẋ(t)), x(t)〉 ≤ |β(t)|a(t)

r
‖∇g(x(t) + β(t)ẋ(t))‖2 +

r|β(t)|ε2(t)a(t)

4
‖x(t)‖2,

(2.40)

441
442

for all t ≥ t1, (2.39) leads to the following estimate443

Ė(t) ≤ (a′(t)− 2t) (g(x(t) + β(t)ẋ(t))− g∗) +

(
−β(t)a(t) +

|β(t)|a(t)

r

)
‖∇g(x(t) + β(t)ẋ(t))‖2(2.41)444

+ tε(t)‖x∗‖2 − tε(t)‖x(t)− x∗‖2 +

(
t2ε̇(t)

2
+
r|β(t)|ε2(t)a(t)

4

)
‖x(t)‖2, for all t ≥ t1.445

446

Take r such that K > r > 1. Now, taking into account that β(t) = γ + β
t and a(t) = t2 + γt + 3γ3 +447

2β + γ(9γ2+10β)t+4β(3γ2+2β)
t2−3γt−4β we conclude the following.448

If γ > 0, β ∈ R then there exists t
′
1 ≥ t1 and r1 > 0 such that −β(t)a(t) + |β(t)|a(t)

r ≤ −r1t2, for all t ≥ t
′
1.449

If γ = 0, β ≥ 0 then there exists t′1 ≥ t1 and r1 > 0 such that −β(t)a(t) + |β(t)|a(t)
r ≤ −r1βt, for all t ≥ t′1.450

Further, according to assumption (C1) and the fact that r ∈ (1,K) we get that there exists t
′′
1 ≥ t1 such451

that t2ε̇(t)
2 + r|β(t)|ε2(t)a(t)

4 ≤ 0, for all t ≥ t′′1 .452

Finally, if γ > 0, β ∈ R, then there exists r2 > 0 and t
′′′
1 ≥ t1 such that a′(t) − 2t ≤ r2, for all t ≥ t

′′′
1 ,453

and if γ = 0, β ≥ 0, then a′(t)− 2t ≤ 0, for all t ≥ t1.454

Hence, by considering t2 = max(t
′
1, t
′′
1 , t
′′′
1 ) and denoting r1(t) = r1t

2 when γ > 0, β ∈ R and r1(t) = r1βt455

whenever γ = 0, β ≥ 0, the relation (2.41) leads to456

Ė(t) ≤ s (g(x(t) + β(t)ẋ(t))− g∗)− r1(t) ‖∇g(x(t) + β(t)ẋ(t))‖2 + tε(t)‖x∗‖2 − tε(t)‖x(t)− x∗‖2,(2.42)457458

for all t ≥ t2, where s = r2 if γ > 0, β ∈ R and s = 0 if γ = 0, β ≥ 0.459

Condition (C2). Assume now that (C2) holds, that is, there exists K > 0 and t1 ≥ t0 such that

ε(t) ≤ K

t
for every t ≥ t1.

Now, since β(t) = γ + β
t , where γ > 0, β ∈ R or γ = 0, β ≥ 0 and a(t) = t2−2β(t)t

1− 3
t β(t)+β

′(t)+β2(t)ε(t)
> 0 if460

t ≥ t0, we obtain that there exists t1 ≥ max(t1, t0) such that β(t) ≥ 0 and a(t) > 0 for all t ≥ t1. Using the461

monotonicity of ∇g and the fact that ∇g(x∗) = 0 we get for all t ≥ t1 that462

−β(t)ε(t)a(t)〈∇g(x(t) + β(t)ẋ(t)), x(t)〉 = −β(t)ε(t)a(t)〈∇g(x(t) + β(t)ẋ(t)), x(t) + β(t)ẋ(t)− x∗〉(2.43)463

+ β(t)ε(t)a(t)〈∇g(x(t) + β(t)ẋ(t)), β(t)ẋ(t)− x∗〉464

≤ β(t)ε(t)a(t)〈∇g(x(t) + β(t)ẋ(t)), β(t)ẋ(t)− x∗〉.465466
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We estimate the right hand side of (2.43) as follows.467

β(t)ε(t)a(t)〈∇g(x(t) + β(t)ẋ(t)), β(t)ẋ(t)− x∗〉 = β2(t)ε(t)a(t)〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉468

− β(t)ε(t)a(t)〈∇g(x(t) + β(t)ẋ(t)), x∗〉,469470

further,471

−β(t)ε(t)a(t)〈∇g(x(t) + β(t)ẋ(t)), x∗〉 ≤ β(t)ε(t)a(t)
3
2

4K
‖∇g(x(t) + β(t)ẋ(t))‖2 +Kβ(t)ε(t)

√
a(t)‖x∗‖2472

≤ β(t)a(t)
3
2

4t
‖∇g(x(t) + β(t)ẋ(t))‖2 +Kβ(t)ε(t)

√
a(t)‖x∗‖2,473

474

for all t ≥ t1. Hence, (2.43) becomes475

−β(t)ε(t)t2〈∇g(x(t) + β(t)ẋ(t)), x(t)〉 ≤ β2(t)ε(t)a(t)〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉(2.44)476

+
β(t)a(t)

3
2

4t
‖∇g(x(t) + β(t)ẋ(t))‖2 +Kβ(t)ε(t)

√
a(t)‖x∗‖2,477

478

for all t ≥ t1.479

Now, injecting (2.44) in (2.38) we get480

Ė(t) ≤ (a′(t)− 2t) (g(x(t) + β(t)ẋ(t))− g∗)−

(
β(t)a(t)− β(t)a(t)

3
2

4t

)
‖∇g(x(t) + β(t)ẋ(t))‖2

(2.45)

481

+ (tε(t) +Kβ(t)ε(t)
√
a(t))‖x∗‖2 − tε(t)‖x(t)− x∗‖2 +

t2ε̇(t)

2
‖x(t)‖2482

+

((
−β(t)

3

t
+ β′(t) + 1 + β2(t)ε(t)

)
a(t)− t2 + 2β(t)t

)
〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉, for all t ≥ t1.483

484

According to the assumptions one has
(
−β(t) 3

t + β′(t) + 1 + β2(t)ε(t)
)
a(t)− t2 + 2β(t)t = 0, hence,485

Ė(t) ≤ (a′(t)− 2t) (g(x(t) + β(t)ẋ(t))− g∗)−

(
β(t)a(t)− β(t)a(t)

3
2

4t

)
‖∇g(x(t) + β(t)ẋ(t))‖2(2.46)486

+ (tε(t) +Kβ(t)ε(t)
√
a(t))‖x∗‖2 − tε(t)‖x(t)− x∗‖2 +

t2ε̇(t)

2
‖x(t)‖2, for all t ≥ t1.487

488

Taking into account that β(t) = γ + β
t we conclude the following.489

If γ > 0, β ∈ R then there exists t′1 ≥ t1 and r1 > 0 such that −
(
β(t)a(t)− β(t)a(t)

3
2

4t

)
≤ −r1t2, for all490

t ≥ t′1.491

If γ = 0, β ≥ 0 then there exists t′1 ≥ t1 and r1 > 0 such that −
(
β(t)a(t)− β(t)a(t)

3
2

4t

)
≤ −r1βt, for all492

t ≥ t′1.493

Further, there exists t′′1 ≥ t1 and r2 > 0 such that tε(t) +Kβ(t)ε(t)
√
a(t) ≤ r2tε(t), for all t ≥ t′′1 .494

Finally, there exists r3 ≥ 0 and t′′′1 > t1 such that a′(t)− 2t ≤ r3, for all t ≥ t′′′1 .495

Hence, by considering t2 = max(t′1, t
′′
1 , t
′′′
1 ) and denoting r1(t) = r1t

2 when γ > 0, β ∈ R and r1(t) = r1βt496

whenever γ = 0, β ≥ 0, the relation (2.46) leads to497

Ė(t) ≤ r3 (g(x(t) + β(t)ẋ(t))− g∗)− r1(t) ‖∇g(x(t) + β(t)ẋ(t))‖2 + r2tε(t)‖x∗‖2 − tε(t)‖x(t)− x∗‖2,
(2.47)

498499

for all t ≥ t2.500
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Hence, from (2.42) and (2.47) we conclude that whenever condition (C1) or (C2) holds, there exists501

t2 > t0 and s1 > 0, s2 > 0 such that502

Ė(t) ≤ s1 (g(x(t) + β(t)ẋ(t))− g∗) + s2tε(t)‖x∗‖2, for all t ≥ t2.(2.48)503504

Since g(x(t)+β(t)ẋ(t))−g∗ ≤ E(t)a(t) and taking into account that a(t) = t2 +O(t) we deduce that there exists505

M > 0 and t3 ≥ t2 such that a(t) ≥ t2

M , hence g(x(t) + β(t)ẋ(t))− g∗ ≤ M
t2 E(t), for all t ≥ t3.506

Consequently, (2.48) becomes507

Ė(t) ≤ s1M

t2
E(t) + s2tε(t)‖x∗‖2, for all t ≥ t3.(2.49)508

509

Now, we apply Gronwall’s lemma on an interval [t3, T ], T > t3 and we get

E(t) ≤ eA(t)E(t3) + s2‖x∗‖2eA(t)

∫ t

t3

τε(τ)e−A(τ)dτ,

whereA(t) =
∫ t
t3
s1M
τ2 dτ = − s1Mt + s1M

t3
.Obviously eA(t) is bounded on [t3,+∞), hence there exists C1, C2 > 0510

such that eA(t) ≤ C1 and e−A(t) ≤ C2 for all t ∈ [t3,+∞).511

We have512

(2.50) E(t) ≤ C1E(t3) + C1C2s2‖x∗‖2
∫ t

t3

τε(τ)dτ,513

for all t ∈ [t3, T ).514

Now, if (i) holds, then we have
∫ +∞
t3

ε(τ)
τ dτ < +∞. Now, E(t) ≥ t2

M (g(x(t)+β(t)ẋ(t))−min g) and (2.50)
leads to

g(x(t) + β(t)ẋ(t))−min g ≤ C1ME(t3)

t2
+ C1C2s2M‖x∗‖2

1

t2

∫ t

t3

τ2
ε(τ)

τ
dτ,

for all t ∈ [t3, T ).515

According to Lemma B.1 from Appendix we have 1
t2

∫ t
t3
τ2 ε(τ)τ dτ → 0 as t→ +∞, hence

lim
t→+∞

g

(
x(t) +

(
γ +

β

t

)
ẋ(t)

)
−min g = 0.

Now, if (ii) holds, then
∫ +∞
t3

τε(τ)dτ < +∞, hence the right hand side of (2.50) is bounded. In other516

words, there exists C > 0 such that517

E(t) ≤ C, for all t ≥ t3.(2.51)518519

Hence, by the form of E(t) and the fact that a(t) = O(t2), as t→ +∞, we get that520

g

(
x(t) +

(
γ +

β

t

)
ẋ(t)

)
−min g = O

(
1

t2

)
, as t→ +∞.

Hence, combining the latter result with (2.42) and (2.47) we get that there exist N1, N2 > 0 and t4 ≥ t0521

such that522

Ė(t) + r1(t) ‖∇g(x(t) + β(t)ẋ(t))‖2 + tε(t)‖x(t)− x∗‖2 ≤ N1

t2
+N2tε(t)‖x∗‖2,(2.52)523

524

for all t ≥ t4. Integrating (2.52) on an interval [t4, T ], T ≥ t4 and then letting T → +∞ we get525 ∫ +∞

t4

r1(t) ‖∇g(x(t) + β(t)ẋ(t))‖2 dt < +∞ and

∫ +∞

t4

tε(t)‖x(t)− x∗‖2dt < +∞.

�526
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3. Strong convergence results. Our first contribution of the present section is a result that assures527

the boundedness of the derivative of the unique global solution of the dynamical system (1.1).528

Lemma 3.1. Let x be the unique global solution of the dynamical system (1.1). Suppose that α > 0 and529

further γ > 0 and β ∈ R or γ = 0 and β ≥ 0. Then, the first order derivative of the solution is bounded,530

i.e., there exists M > 0 such that ‖ẋ(t)‖ ≤M , for all t ≥ t0. Further, 1
t ‖ẋ(t)‖2 ∈ L1([t0,+∞),R).531

Proof . We consider the energy functional W : [t0,+∞)→ R,532

W (t) = g(x(t)) +
1

2
‖ẋ(t)‖2 +

ε(t)

2
‖x(t)‖2.(3.1)533

534

The time derivative of (3.1) reads as535

Ẇ (t) = 〈∇g(x(t)), ẋ(t)〉+ 〈ẋ(t), ẍ(t)〉+
ε̇(t)

2
‖x(t)‖2 + ε(t)〈x(t), ẋ(t)〉.536

537

From (1.1) we have ẍ(t) = −αt ẋ(t)− ε(t)x(t)−∇g(x(t) + β(t)ẋ(t)), and we obtain538

Ẇ (t) = 〈∇g(x(t))−∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉+
ε̇(t)

2
‖x(t)‖2 − α

t
‖ẋ(t)‖2.539

540

Now, if β(t) = 0 then obviously Ẇ (t) ≤ −αt ‖ẋ(t)‖2.541

On the other hand, if β(t) 6= 0, by using the fact that ∇g is monotone and ε̇(t) ≤ 0 we get542

Ẇ (t) = − 1

β(t)
〈∇g(x(t))−∇g(x(t) + β(t)ẋ(t)), x(t)− (x(t) + β(t)ẋ(t))〉+

ε̇(t)

2
‖x(t)‖2 − α

t
‖ẋ(t)‖2543

≤ −α
t
‖ẋ(t)‖2.544

545

Consequently,546

(3.2) Ẇ (t) +
α

t
‖ẋ(t)‖2 ≤ 0 for all t ≥ t0.547

Therefore, W is non-increasing on [t0,∞]. Using that g is bounded from below, it follows that ‖ẋ(t)‖ < +∞548

for all t ≥ t0. Now, by integrating (3.2) on an interval [t0, t] we get W (t) +
∫ t
t0
α
θ ‖ẋ(θ)‖2dθ ≤ W (t0) and549

implicitly 1
t ‖ẋ(t)‖2 ∈ L1([t0,+∞),R). �550

We continue the present section by emphasizing the main idea behind the Tikhonov regularization,551

which will generate strong convergence results for our dynamical system (1.1) to a minimizer of the objective552

function of minimal norm. By considering ε > 0, by xε we denote the unique solution of the strongly convex553

minimization problem554

xε = argminx∈H

(
g(x) +

ε

2
‖x‖2

)
.555

556

We know that the Tikhonov approximation curve ε → xε satisfies x∗ = lim
ε→0

xε, where x∗ is the element of557

minimal norm from argmin g. At the same time, for each ε > 0, we have the inequality ‖xε‖ ≤ ‖x∗‖ (see558

[20]), which will be used further. Now, in order to show the strong convergence of the dynamical system559

(1.1) to an element of minimum norm of the nonempty, convex and closed set argmin g, we state our main560

result of the present section.561

Theorem 3.2. Let α ≥ 3, let x be the unique global solution of (1.1) and assume that
∫∞
t0

ε(t)
t dt < +∞.562

(i) Assume that for α = 3 one has γ = 0, β ≥ 0, limt→∞ t2ε(t) = +∞, limt→∞
1

ε(t)t2

∫ t
t0
ε2(s)sds = 0 and the563

condition (C1) holds.564

(ii) In case α > 3 assume that t2ε(t) ≥ 2α
3

(
α
3 − 1

)
, for t large enough and limt→∞

1

ε(t)t
α
3

+1

∫ t
t0
ε2(s)s

α
3 +1ds =

0. Further, assume that γ = 0 or (C1) or (C2) hold, where the constant K in condition (C2) satisfies

Kγ < 2(α−3)
3 .

Let x∗ = argminx∈argmin g ‖x‖. Then, it follows that

lim inf
t→∞

‖x(t)− x∗‖ = 0.

This manuscript is for review purposes only.



Tikhonov regularization of a perturbed heavy ball system with vanishing damping 19

Further, if there exists T ≥ t0, such that the trajectory {x(t) : t ≥ T} stays either in the open ball B(0, ‖x∗‖)
or in its complement, then

lim
t→∞

‖x(t)− x∗‖ = 0.

Proof . For simplicity we denote β(t) = γ+ β
t . In our forthcoming analysis we consider three different565

cases that are related to the relationship between the trajectories of the dynamical system (1.1) and the566

open ball B(0, ‖x∗‖).567

Case I: We assume that there exists T ≥ t0, such that {x(t) : t ≥ T} stays in the complement of B(0, ‖x∗‖).568

This is equivalent to the fact that for each t ≥ T , one has ‖x(t)‖ ≥ ‖x∗‖. We consider p ≥ 0 and we define,569

for every t ≥ t0, the following energy functional570

E(t) = tp+2 (g(x(t) + β(t)ẋ(t))−min g) + tp+2 ε(t)

2

(
‖x(t)‖2 − ‖x∗‖2

)
+
tp

2
‖b(x(t)− x∗) + tẋ(t)‖2.(3.3)571

572

Obviously, for each t ≥ t0 we obtain that573

E(t) ≥ tp+2

2
(g(x(t) + β(t)ẋ(t))−min g) + tp+2 ε(t)

2
(‖x(t)‖2 − ‖x∗‖2) .(3.4)574

575

Now, we define the strongly convex function gt : H → R, gt(x) = 1
2g(x) + ε(t)

2 ‖x‖
2 and we denote xε(t) =

argminx∈H gt(x). Using the same argument as in the proof of Theorem 4.4 [20], we have that

gt(x)− gt(x∗) ≥
ε(t)

2
(‖x− xε(t)‖2 + ‖xε(t)‖2 − ‖x∗‖2), for all x ∈ H.

Hence,

gt(x(t) + β(t)ẋ(t))− gt(x∗) ≥
ε(t)

2
(‖x(t) + β(t)ẋ(t)− xε(t)‖2 + ‖xε(t)‖2 − ‖x∗‖2).

Now, by employing (3.4), we obtain that576

E(t) ≥ tp+2 ε(t)

2

(
‖xε(t)‖2 − ‖x∗‖2 + ‖x(t) + β(t)ẋ(t)− xε(t)‖2 + ‖x(t)‖2 − ‖x(t) + β(t)ẋ(t)‖2

)
.577

578

We have
‖x(t) + β(t)ẋ(t)‖2 = ‖x(t)‖2 + β2(t)‖ẋ(t)‖2 + 2β(t)〈x(t), ẋ(t)〉

and
‖x(t) + β(t)ẋ(t)− xε(t)‖2 = ‖x(t)− xε(t)‖2 + β2(t)‖ẋ(t)‖2 + 2β(t)〈ẋ(t), x(t)− xε(t)〉,

hence, for all t ≥ t0 we get579

E(t) ≥ tp+2 ε(t)

2
(‖xε(t)‖2 − ‖x∗‖2 + ‖x(t)− xε(t)‖2)− tp+2β(t)ε(t)〈ẋ(t), xε(t)〉.(3.5)580

581

Now, the next step is to get an upper bound for E(·). In order to do this, for each t ≥ t0, we consider the582

time derivative of the energy function as follows:583

Ė(t) = (p+ 2)tp+1(g(x(t) + β(t)ẋ(t))−min g) + tp+2〈∇g(x(t) + β(t)ẋ(t)), (1 + β̇(t))ẋ(t) + β(t)ẍ(t)〉(3.6)584

+

(
tp+2 ε̇(t)

2
+ (p+ 2)tp+1 ε(t)

2

)
· (‖x(t)‖2 − ‖x∗‖2) + tp+2ε(t)〈x(t), ẋ(t)〉585

+ p
tp−1

2
‖b(x(t)− x∗) + tẋ(t)‖2 + tp〈b(x(t)− x∗) + tẋ(t), (1 + b)ẋ(t) + tẍ(t)〉.586

587

On the other hand, from the dynamical system (1.1) we have tẍ(t) = −αẋ(t)−tε(t)x(t)−t∇g(x(t)+β(t)ẋ(t)),588

hence for all t ≥ t0 one has589

tp〈b(x(t)− x∗) + tẋ(t), (1 + b)ẋ(t) + tẍ(t)〉 = (1 + b− α)btp〈x(t)− x∗, ẋ(t)〉 − bε(t)tp+1〈x(t)− x∗, x(t)〉
(3.7)

590

− btp+1〈x(t)− x∗,∇g(x(t) + β(t)ẋ(t))〉591

+ (1 + b− α)tp+1‖ẋ(t)‖2 − ε(t)tp+2〈ẋ(t), x(t)〉592

− tp+2〈ẋ(t),∇g(x(t) + β(t)ẋ(t))〉593594
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and595

tp+2〈∇g(x(t) + β(t)ẋ(t)), (1 + β̇(t))ẋ(t) + β(t)ẍ(t)〉 =
(

1 + β̇(t)− α

t
β(t)

)
tp+2〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉

(3.8)

596

− ε(t)β(t)tp+2〈∇g(x(t) + β(t)ẋ(t)), x(t)〉597

− β(t)tp+2‖∇g(x(t) + β(t)ẋ(t))‖2.598599

Further,600

p
tp−1

2
‖b(x(t)− x∗) + tẋ(t)‖2 = pb2

tp−1

2
‖x(t)− x∗‖2 + p

tp+1

2
‖ẋ(t)‖2 + pbtp〈x(t)− x∗, ẋ(t)〉 for all t ≥ t0.

(3.9)

601
602

By combining (3.6), (3.7), (3.8) and (3.9), it follows that603

Ė(t) = (p+ 2)tp+1(g(x(t) + β(t)ẋ(t))−min g) +

(
tp+2 ε̇(t)

2
+ (p+ 2)tp+1 ε(t)

2

)
(‖x(t)‖2 − ‖x∗‖2)(3.10)604

− β(t)tp+2‖∇g(x(t) + β(t)ẋ(t))‖2 − ε(t)β(t)tp+2〈∇g(x(t) + β(t)ẋ(t)), x(t)〉605

+
(
β̇(t)− α

t
β(t)

)
tp+2〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉+

(
1 + b− α+

p

2

)
tp+1‖ẋ(t)‖2606

+ pb2
tp−1

2
‖x(t)− x∗‖2 + b (1 + b− α+ p) tp〈x(t)− x∗, ẋ(t)〉607

− btp+1〈x(t)− x∗,∇g(x(t) + β(t)ẋ(t)) + ε(t)x(t)〉 for all t ≥ t0.608609

By using (2.7), we obtain that610

− btp+1〈∇g(x(t) + β(t)ẋ(t)) + ε(t)x(t), x(t)− x∗〉 ≤ −btp+1(g(x(t) + β(t)ẋ(t))−min g)

(3.11)

611

+ β(t)btp+1〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉+ btp+1 ε(t)

2
‖x∗‖2 − btp+1 ε(t)

2
‖x(t)‖2 − btp+1 ε(t)

2
‖x(t)− x∗‖2,612

613

for all t ≥ t0.614

From (3.10) and (3.11), it follows that615

Ė(t) ≤ (p+ 2− b)tp+1(g(x(t) + β(t)ẋ(t))−min g) +

(
t
ε̇(t)

2
+ (p+ 2− b)ε(t)

2

)
tp+1(‖x(t)‖2 − ‖x∗‖2)

(3.12)

616

− β(t)tp+2‖∇g(x(t) + β(t)ẋ(t))‖2 − ε(t)β(t)tp+2〈∇g(x(t) + β(t)ẋ(t)), x(t)〉617

+

(
β̇(t) +

b− α
t

β(t)

)
tp+2〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉+

(
1 + b− α+

p

2

)
tp+1‖ẋ(t)‖2618

+

(
pb2

tp−1

2
− bε(t)

2
tp+1

)
‖x(t)− x∗‖2 + b (1 + b− α+ p) tp〈x(t)− x∗, ẋ(t)〉, for all t ≥ t0.619

620

From now on, we choose b := 2α
3 and p := α−3

3 . Then, since α ≥ 3, we obtain that p + 2 − b = 3−α
3 ≤ 0,621

further 1 + b− α+ p
2 = 3−α

6 ≤ 0 and 1 + b− α+ p = 0.622

For every r, s > 0 and for each t ≥ t0 we obviously have that623

−β(t)ε(t)tp+2〈∇g(x(t) + β(t)ẋ(t)), x(t)〉 ≤ |β(t)|
r

tp+2‖∇g(x(t) + β(t)ẋ(t))‖2 +
r|β(t)|ε2(t)

4
tp+2‖x(t)‖2

(3.13)

624
625

and626

(
β̇(t) +

b− α
t

β(t)

)
tp+2〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉 ≤ |tβ̇(t) + (b− α)β(t)|

s
tp+2‖∇g(x(t) + β(t)ẋ(t))‖2

(3.14)

627

+
|tβ̇(t) + (b− α)β(t)|s

4
tp‖ẋ(t))‖2.628

629
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Injecting (3.13) and (3.14) in (3.12) we obtain that for each t ≥ t0 one has630

Ė(t) ≤ 3− α
3

tp+1(g(x(t) + β(t)ẋ(t))−min g) +
r|β(t)|ε2(t)tp+2

4
‖x∗‖2(3.15)631

+

(
t
ε̇(t)

2
+

3− α
3

ε(t)

2
+
r|β(t)|ε2(t)t

4

)
tp+1(‖x(t)‖2 − ‖x∗‖2)632

+

 |β(t)|
r
− β(t) +

∣∣∣tβ̇(t)− α
3 β(t)

∣∣∣
s

 tp+2‖∇g(x(t) + β(t)ẋ(t))‖2633

+

3− α
6

+

∣∣∣tβ̇(t)− α
3 β(t)

∣∣∣ s
4t

 tp+1‖ẋ(t)‖2634

+
α

3

(
2α(α− 3)

9
tp−1 − ε(t)tp+1

)
‖x(t)− x∗‖2.635

636

Now, if (C1) holds we take 1 < r < K, (K is defined at the condition (C1)), and we obtain that(
t
ε̇(t)

2
+
r|β(t)|ε2(t)t

4

)
≤ 0, for all t ≥ t1.

Assume now that α > 3. If γ = 0, then by using the fact that ε is non-increasing, we get that for every r > 0
there exists t1 ≥ t0 such that

r|β(t)|ε2(t)t

4
≤ α− 3

3

ε(t)

2
, for all t ≥ t1.

Further, if (C2) holds, we have that there exists K > 0 and t1 ≥ t0 such that ε(t) ≤ K
t for all t ≥ t1,

where according to the hypotheses one has Kγ < 2(α−3)
3 . Consequently, there exists γ1 > γ such that

Kγ < Kγ1 <
2(α−3)

3 . Hence, for all t ≥ t1 one has

r|β(t)|ε2(t)t

4
≤ r|β(t)|ε(t)K

4
<
r|β(t)|
γ1

α− 3

3

ε(t)

2
.

The latter relation leads to the existence of t1 ≥ t1 and 1 < r < γ1
γ , (if γ = 0 we take γ1

γ = +∞), such that637

3− α
3

ε(t)

2
+
r|β(t)|ε2(t)t

4
≤
(
r|β(t)|
γ1

− 1

)
α− 3

3

ε(t)

2
≤ 0, for all t ≥ t1.638

Hence, due to the assumption that ‖x(t)‖ ≥ ‖x∗‖ for t ≥ T, we conclude that under the hypotheses of the639

theorem, there exist r > 1 and t2 ≥ T , such that640

(3.16)

(
t
ε̇(t)

2
+

3− α
3

ε(t)

2
+
r|β(t)|ε2(t)t

4

)
tp+1(‖x(t)‖2 − ‖x∗‖2) ≤ 0, for all t ≥ t2.641

Further, if we take r > 1 we conclude that there exist s > 0 and t2 ≥ t0 such that642

(3.17)
|β(t)|
r
− β(t) +

∣∣∣tβ̇(t)− α
3 β(t)

∣∣∣
s

≤ 0, for all t ≥ t2.643

Finally, due to the hypotheses of the theorem, for t big enough644

(3.18)
2α(α− 3)

9
tp−1 − ε(t)tp+1 ≤ 0.645

Hence, there exists t3 big enough such that (3.16), (3.17), (3.18)and (3.15) yield646

Ė(t) ≤ r|β(t)|ε2(t)tp+2

4
‖x∗‖2 +

3− α
6

+

∣∣∣tβ̇(t)− α
3 β(t)

∣∣∣ s
4t

 tp+1‖ẋ(t)‖2, for all t ≥ t3.(3.19)647

648
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Now if α = 3 then by assumption γ = 0, β ≥ 0 and p = 0. Hence, (3.19) becomes649

Ė(t) ≤ rβε2(t)t

4
‖x∗‖2 +

βs

2t
‖ẋ(t)‖2, for all t ≥ t3.(3.20)650

651

By integrating (3.20) on [t3, t] for an arbitrary t ≥ t3, we obtain that652

E(t) ≤ E(t3) +
rβ

4
‖x∗‖2

∫ t

t3

ε2(θ)θdθ +
βs

2

∫ t

t3

1

θ
‖ẋ(θ)‖2dθ.(3.21)653

654

From (3.5), we have that655

E(t) ≥ t2 ε(t)
2

(‖xε(t)‖2 − ‖x∗‖2 + ‖x(t)− xε(t)‖2)− βtε(t)〈ẋ(t), xε(t)〉,656
657

which combined with (3.21) gives658

‖x(t)− xε(t)‖2 ≤ ‖x∗‖2 − ‖xε(t)‖2 +
2E(t3)

ε(t)t2
+ 2

β

t
〈ẋ(t), xε(t)〉+

rβ

2
‖x∗‖2 1

ε(t)t2

∫ t

t3

ε2(θ)θdθ(3.22)659

+
βs

ε(t)t2

∫ t

t3

1

θ
‖ẋ(θ)‖2dθ.660

661

According to Lemma 3.1, ẋ(t) is bounded. Further xε(t) → x∗, t→ +∞, hence limt→+∞ 2βt 〈ẋ(t), xε(t)〉 = 0.662

According to the hypotheses of the theorem one has limt→+∞
1

ε(t)t2

∫ t
t3
ε2(θ)θdθ = 0.663

Finally, from Lemma 3.1 we have 1
θ‖ẋ(θ)‖2 ∈ L1([t0,+∞),R), hence limt→+∞

βs
ε(t)t2

∫ t
t3

1
θ‖ẋ(θ)‖2dθ = 0.664

Consequently, the right hand side of (3.22) goes to 0 as t→ +∞, hence limt→+∞ ‖x(t)−xε(t)‖ = 0, that
is,

lim
t→+∞

x(t) = x∗.

Now if α > 3 then obviously there exists t4 ≥ t3 such that

3− α
6

+

∣∣∣tβ̇(t)− α
3 β(t)

∣∣∣ s
4t

≤ 0, for all t ≥ t4.

Hence, (3.19) leads to665

Ė(t) ≤ r|β(t)|ε2(t)

4
tp+2‖x∗‖2, for all t ≥ t4.(3.23)666

667

By integrating (3.23) on [t4, t] for an arbitrary t ≥ t4, and taking into account that β(t) = γ + β
t is bounded668

and p = α−3
3 , we obtain that there exists an R > 0 such that669

E(t) ≤ E(t4) +R‖x∗‖2
∫ t

t4

ε2(s)s
α
3 +1ds.(3.24)670

671

From (3.5), we have that672

E(t) ≥ tp+2 ε(t)

2
(‖xε(t)‖2 − ‖x∗‖2 + ‖x(t)− xε(t)‖2)− tp+2β(t)ε(t)〈ẋ(t), xε(t)〉,673

674

hence we obtain that675

‖x(t)− xε(t)‖2 ≤ ‖x∗‖2 − ‖xε(t)‖2 +
2E(t4)

ε(t)t
α
3 +1

+ 2β(t)〈ẋ(t), xε(t)〉+
2R

ε(t)t
α
3 +1
‖x∗‖2

∫ t

t4

ε2(s)s
α
3 +1ds.(3.25)676

677
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From Theorem 2.1, we have that ẋ(t)→ 0 as t→∞. Since xε(t) → x∗we get that 2β(t)〈ẋ(t), xε(t)〉 → 0
as t→∞. Now by the hypotheses of the theorem we have that

ε(t)t
α
3 +1 → +∞ and

q

ε(t)t
α
3 +1

∫ t

t4

ε2(s)s
α
3 +1ds→ 0 as t→ +∞

hence, we get that the limit of the right hand side in (3.25) goes to 0 as t→ +∞.678

Consequently, ‖x(t)− xε(t)‖ → 0, t→ +∞, that is,

lim
t→+∞

x(t) = x∗.

Now, we analyze the second case as follows.
Case II: Assume that there exists T ≥ t0 such that the trajectory {x(t) : t ≥ T} stays in the open ball
B (0, ‖x∗‖) Equivalently, we have that ‖x(t)‖ < ‖x∗‖ for every t ≥ T . By the fact that∫ +∞

t0

ε(t)

t
dt < +∞

and with respect to Theorem 2.3 and Theorem 2.1, we have that

lim
t→+∞

g(x(t)) = min g.

Now, we take x̄ ∈ H a weak sequential cluster point of the trajectory x, which exists since the trajectory
is bounded. This means that there exists a sequence (tn)n∈N ⊆ [T,+∞) such that tn → +∞ and x (tn)
converges weakly to x̄ as n→ +∞. We know that g is weakly lower semicontinuous, so one has

g(x̄) ≤ lim inf
n→+∞

g (x (tn)) = min g ,

hence x̄ ∈ argmin g. Now, since the norm is weakly lower semicontinuous one has that

‖x̄‖ ≤ lim infn→+∞ ‖x (tn)‖ ≤ ‖x∗‖ ,

which, from the definition of x∗, implies that x̄ = x∗. This shows that the trajectory x(·) converges weakly
to x∗. So

‖x∗‖ ≤ lim inf
t→+∞

‖x(t)‖ ≤ lim sup
t→+∞

‖x(t)‖ ≤ ‖x∗‖ ,

hence we have
lim

t→+∞
‖x(t)‖ = ‖x∗‖ .

From the previous relation and the fact that x(t) ⇀ x∗ as t→ +∞, we obtain the strong convergence, i.e.

lim
t→+∞

x(t) = x∗.

Finally, the last case reads as follows.
Case III: We suppose that for every T ≥ t0 there exists t ≥ T such that ‖x∗‖ > ‖x(t)‖ and also there exists
s ≥ T such that ‖x∗‖ ≤ ‖x(s)‖. From the continuity of the unique strong global solution x(·), we find that
there exists a sequence (tn)n∈N ⊆ [t0,+∞) such that tn → +∞ as n→ +∞ and, for all n ∈ N we have

‖x (tn)‖ = ‖x∗‖ .

In order to show that x (tn) → x∗ as n → +∞, we let x̄ ∈ H to be a weak sequential cluster point of
(x (tn))n∈N. By using that the sequence is bounded and by employing arguments similar to the previous
case, we eventually find that (x (tn))n∈N converges weakly to x∗ as n→ +∞. Obviously ‖x (tn)‖ → ‖x∗‖ as
n→ +∞. So, it follows that ‖x (tn)− x∗‖ → 0 as n→ +∞. This leads to

lim inf
t→+∞

‖x(t)− x∗‖ = 0,

and the proof is over. �679

Remark 4. Observe that according to (3.23), in case α > 3, γ = 0 it is enough to assume that

lim
t→∞

1

ε(t)t
α
3 +1

∫ t

t0

ε2(s)s
α
3 ds = 0.
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4. Conclusion, perspectives. The dynamical system (1.1) studied in this paper can be seen as a680

second order system with implicit Hessian driven damping, therefore it is in strong connection with the681

dynamical system studied in [20]. At the same time, (1.1) is a perturbed version of the dynamical system682

with asymptotically vanishing damping considered in [10]. We have shown that (1.1) possess all the valuable683

properties of the two related systems, as we obtained fast convergence of velocities to zero, integral estimates684

for the gradient of the objective function and fast convergence of the objective function values to the minimum685

of the objective function. Further, depending the Tikhonov regularization parameter ε(t) goes fast or slow686

to zero, we obtained weak convergence of the trajectories to a minimizer of the objective function and strong687

convergence of the trajectories to a minimizer of minimum norm, respectively. Even more, by using the688

techniques from [16], we were able to obtain both strong convergence of the trajectories to a minimizer of689

minimum norm and fast convergence of the function values for the same dynamics.690

The article presents the basic analysis of the dynamical system (1.1), many aspects of which have691

yet to be developed. We ought to enlarge the framework by considering optimization problems with non-692

smooth convex objective function and in the corresponding dynamical system, with or without Tikhonov693

regularization term, to replace the function by its Moreau envelope, (see [15]). Further, we intend to study694

the inertial algorithms obtained from (1.1) via explicit discretization and by taking advantage by the fact that695

these algorithms may have different inertial terms (see [3]), to obtain convergence of the generated sequences696

to a minimizer of the objective function. The Tikhonov regularization of these algorithms may allow to obtain697

strong convergence of the generated sequences to a minimizer of minimal norm of the objective function,698

(see [16]). Some recent results show that for non-convex objective, considering different inertial terms in the699

corresponding algorithms, bring some improvements (see [28]). It would be interesting to show that similar700

results hold also in convex case. However, if we discretize the dynamical system (1.1) by making use the701

Taylor expansion of the gradient we obtain inertial algorithms similar to the algorithms considered in [8]702

and [2]. Further, in case the objective function is non-smooth, the above described discretization techniques703

lead to algorithms which are related to the celebrated algorithms (RIPA) [18] and (PRINAM) [14].704

Acknowledgements The authors are thankful to three anonymous reviewers for their comments and sug-705

gestions which improved the quality of the paper.706

Appendix A. Existence and uniqueness of the trajectories generated by the dynamical707

system (1.1). In what follows we show the existence and uniqueness of a classical C2 solution x of the708

dynamical system (1.1). To this purpose we rewrite (1.1) as a first order system relevant for the Cauchy-709

Lipschitz-Picard theorem.710

Theorem A.1. Let (u0, v0) ∈ H × H. Then, the dynamical system (1.1) admits a unique global711

C2((t0,+∞),H) solution.712

Proof . Indeed, by using the notation X(t) := (x(t), ẋ(t)), the dynamical system (1.1) can be put in713

the form714 {
Ẋ(t) = F (t,X(t))

X(t0) = (u0, v0),
(A.1)715

716

where F : [t0,∞)×H×H −→ H×H, F (t, u, v) =
(
v,−αt v − ε(t)u−∇g

(
u+

(
γ + β

t

)
v
))

.717

Our proof is inspired from [12]. Since ∇g is Lipschitz on bounded sets, it is obvious that for (A.1) the718

classical Cauchy-Picard theorem can be applied, hence, there exist a unique C1 local solution X. Conse-719

quently, (1.1) has a unique C2 local solution. Let x be a maximal solution of (1.1), defined on an interval720

[t0, Tmax), Tmax ≤ +∞. In order to prove that ẋ is bounded on [t0, Tmax) one can use the same arguments721

as in the proof of Lemma 3.1.722

Let ‖ẋ∞‖ = supt∈[t0,Tmax) ‖ẋ(t)‖ and assume that Tmax < +∞. Since ‖x(t) − x(t′)‖ ≤ ‖ẋ∞‖|t − t′|, we723

get that limt→Tmax
x(t) := x∞ ∈ H. By (1.1) the map ẍ is also bounded on the interval [t0, Tmax) and under724

the same argument as before limt→Tmax
ẋ(t) := x∞ exists. Applying the local existence theorem with initial725

data (x∞, ẋ∞), we can extend the maximal solution to a strictly larger interval, a clear contradiction. Hence726

Tmax = +∞, which completes the proof. �727

Appendix B. Auxiliary results. In this appendix, we collect some lemmas and technical results728

which we will use in the analysis of the dynamical system (1.1). The following lemma was stated for instance729
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in [10, Lemma A.3] and is used to prove the convergence of the objective function along the trajectory to its730

minimal value.731

Lemma B.1. Let δ > 0 and f ∈ L1((δ,+∞),R) be a nonnegative and continuous function. Let ϕ :
[δ,+∞) −→ [0,+∞) be a nondecreasing function such that limt→+∞ ϕ(t) = +∞. Then it holds

lim
t→+∞

1

ϕ(t)

∫ t

δ

ϕ(s)f(s)ds = 0.

The following statement is the continuous counterpart of a convergence result of quasi-Fejér monotone732

sequences. For its proofs we refer to [1, Lemma 5.1].733

Lemma B.2. Suppose that F : [t0,+∞) −→ R is locally absolutely continuous and bounded from below
and that there exists G ∈ L1([t0,+∞),R) such that

d

dt
F (t) ≤ G(t)

for almost every t ∈ [t0,+∞). Then there exists limt→+∞ F (t) ∈ R.734

The following technical result is [19, Lemma 2].735

Lemma B.3. Let u : [t0,+∞) −→ H be a continuously differentiable function satisfying u(t) + t
α u̇(t)→736

u ∈ H as t→ +∞, where α > 0. Then u(t)→ u as t→ +∞.737

The continuous version of the Opial Lemma (see [9]) is the main tool for proving weak convergence for738

the generated trajectory.739

Lemma B.4. Let S ⊆ H be a nonempty set and x : [t0,+∞) −→ H a given map such that:740

(i) for every z ∈ S the limit lim
t→+∞

‖x(t)− z‖ exists;741

(ii) every weak sequential limit point of x(t) belongs to the set S.742743

Then the trajectory x(t) converges weakly to an element in S as t→ +∞.744

Lemma B.5. (Lemma A.6 [18]) Let t0 > 0 and let w : [t0,+∞) −→ R be a continuously differentiable
function which is bounded from below. Given a nonnegative function θ, let us assume that

tẅ(t) + αẇ(t) + θ(t) ≤ k(t),

for some α > 1, almost every t > t0, and some nonnegative function k ∈ L1((t0,+∞),R).745

Then, the positive part [ẇ]+ of ẇ belongs to L1((t0,+∞),R) and limt→+∞ w(t) exists. Moreover, we
have ∫ +∞

t0

θ(t)dt < +∞.
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[14] H. Attouch, S.C. László, Newton-like Inertial Dynamics and Proximal Algorithms Governed by Maximally Monotone773
Operators, SIAM Journal on Optimization, 30(4) (2020), 3252–3283774
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