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TIKHONOV REGULARIZATION OF A PERTURBED HEAVY BALL SYSTEM WITH
VANISHING DAMPING

CRISTIAN DANIEL ALECSA * AND SZILARD CSABA LASZLO T

Abstract. This paper deals with a perturbed heavy ball system with vanishing damping that contains a Tikhonov
regularization term, in connection to the minimization problem of a convex Fréchet differentiable function. We show that the
value of the objective function in a generated trajectory converges in order o(1/t?) to the global minimum of the objective
function. We also obtain the fast convergence of the velocities towards zero. Moreover, we obtain that a trajectory generated
by the dynamical system converges weakly to a minimizer of the objective function. Finally, we show that the presence of the
Tikhonov regularization term assures the strong convergence of the generated trajectories to an element of minimal norm from
the argmin set of the objective function.

Key words. convex optimization; heavy ball method; continuous second order dynamical system; Tikhonov regularization;
convergence rate; strong convergence.
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1. Introduction. Let H be a real Hilbert space endowed with the scalar product (-,-) and norm || - ||
and let g : H — R be a convex Fréchet differentiable function. Consider the minimization problem

P lnf T
( ) TEH g( )
in connection to the second order dynamical System

i(t) + 2@(t) + Vg (ac(t) + (v + %) :b(t)) + €(t)z(t) = 0,

1.1
(1.1) 2(to) = uo, i(to) = vo,

where tg > 0, (ug,v0) € HXH, a >3,y >0,8€Rorvy=0,82>0and € : [tg,+o0) — R, is a non-
increasing function of class O, such that lim;_, o, €(t) = 0. The starting time ¢, is taken as strictly greater
than zero whenever the coefficients ¢ and % have singularities at 0. This is not a limitation of the generality
of the proposed approach, since we will focus on the asymptotic behaviour of the generated trajectories.

First of all, note that the dynamical system (1.1) is the Tikhonov regularized version of the perturbed
heavy ball system with vanishing damping considered in connection to the optimization problem (P) by
Alecsa-Laszlé-Pinta in [3]. The dynamical system considered in [3] can be seen as an intermediate system
between the heavy ball system with vanishing damping [33] and the heavy ball system with Hessian driven
damping [19] and possesses all the valuable properties of the latter ones. Indeed, according to [3], in case
v>0,8€R, ory=0, 8 >0, the objective function value in a trajectory generated by the perturbed heavy
ball system converges in order O(1/t?) to the global minimum of the objective function and the trajectory
converges weakly to a minimizer of the objective function. Further, according to [3, Remark 2], in case
v =0 and 8 < 0 the perturbed heavy ball system can generate periodical solutions, therefore in this case
the convergence of a generated trajectory to a minimizer of the objective is hopeless.

Throughout the paper we assume that Vg is Lipschitz continuous on bounded sets and argming # 0.
Further, the Tikhonov regularization parameter, €(t), satisfies one of the following assumptions, (see also
Remark 1).

(C1) There exist K > 1 and ¢; > tg such that

K
ét) < —— ‘7 + g €%(t) for every t > t;.

2

(C2) There exists K > 0 and t; > t( such that

K
e(t) < ¥ for every t > t;.
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2 C. D. Alecsa, S. C. Laszl6

Natural candidates for the Tikhonov regularization parameter that satisfy the above conditions are
€(t) = %, a>0,r > 1. In order to give a better perspective of the results obtained in this paper, for this

tro

special case of the Tikhonov regularization parameter, we can conclude the following.

1. According to Theorem 2.1 and Theorem 2.3, if the Tikhonov regularization parameter is €(t) =

i, a > 0, r > 2 the following statements hold. When o > 3, one has g (m(t) + (’y+ g) x(t)) —ming =

O (t7?) as t — +oo. Further, one has the integral estimates ft;roo t2 HVg (x(t) + (’V—i— g) x(t)) H2dt <
400, whenever v > 0, 5 € R and ftjoo t HVg (m(t) + ?m(t)) H2 dt < 400, whenever v =0, 8 > 0. When a >
3 one has g (;v(t) + (’y + ?) m(t)) —ming = o(t2), ||Z(¢)|| = o(t~2) as t — +oc and x(t) converges weakly to
a minimizer of g. Further, [["° t||d:(¢)||2dt < +oo and j::oo t (g (x(t) + (7 + %) x(t)) - ming) dt < +o0.

to

2. According to Theorem 3.2, in the case €(t) = #+, a > 0,1 <r <2,fora>3anda=3,7=0, >0
one has liminf; o ||2(t) —2*|| = 0, where z* is the element of minimum norm of argmin g. In addition, x(t)
converges strongly to «* when either the trajectory {z(t) : ¢ > T’} remains in the ball B(0, ||z*|), or in its

complement, for T" large enough.

3. In the case €(t) = 5, a > 0 and o > 3, according to Theorem 2.2 one has that z is bounded,

g (x(t) + (’y—i— g) x(t)) —ming = O (%) and ||li(t)]| = O(7) as t — +oo. Further, if a > 2a(a — 3),

according to Theorem 3.2 the conclusions stated at 2. hold.

Observe that according to 3. we are able to obtain both fast convergence of the function values and
strong convergence of the trajectories for the same Tikhonov regularization parameter. For a long time this
was an unsolved problem in the literature. However, recently Attouch and Ldaszlé [16] studied a dynamical
system in connection to the optimization problem (P) and succeeded to obtain rapid convergence towards
the infimal value of g, and the strong convergence of the trajectories towards the element of minimum norm
of the set of minimizers of g. In our context, one can observe that the case r = 2 is critical, in the sense
that separates the two cases: the case when we obtain fast convergence of the function values and weak
convergence of the trajectories to a minimizer and the case when the strong convergence of the trajectories
to a minimizer of minimum norm is assured. These results are in concordance with the results obtained in
[10] and [20], since, as will be shown in what follows, the dynamical system studied in this paper can be
thought as an intermediate system between the dynamical system studied in [10] and the dynamical system
considered in [20]. Before we give a more enlightening discussion about the connection of the dynamical
system (1.1) and the Tikhonov regularized dynamical systems studied in [10] and [20] we underline two new
features of our analysis. Firstly, we can show fast convergence of the velocity to zero, a property which is
also obtained for the Tikhonov regularized system studied in [10], but this property is not shown for the
Tikhonov regularized system considered in [20]. Secondly, we obtain some integral estimates for the gradient
of the objective function and these results also appear for the Tikhonov regularized system studied in [20],
but these estimates are not shown for the Tikhonov regularized system studied in [10].

For further insight into the Tikhonov regularization techniques we refer to [10, 12, 13, 16, 20, 22, 25].

1.1. Connection with second order dynamical systems with asymptotically vanishing damp-
ing. The dynamical system (1.1) is strongly related to the second order dynamical systems with an asymp-
totically vanishing damping term, studied by Su-Boyd-Candés in [33] in connection to the optimization
problem (P), that is,

(AVD), () + %ae(t) + Vg (2(t) = 0, 2(to) = o, (to) = vo, uo,v0 € H.

It is obvious that the latter system can be obtained from (1.1) by taking v = 8 = 0 and € = 0. According
to [33], the trajectories generated by (AVD), assure fast minimization property of order O (1 / tz) for the
decay g(z(t)) —min g, provided o > 3. For a > 3, it has been shown by Attouch-Chbani-Peypouquet-Redont
[9] that each trajectory generated by (AVD), converges weakly to a minimizer of the objective function g.
Further, it is shown in [17] and [30] that the asymptotic convergence rate of the values is actually o(1/t?).
An appropriate discretization of (AVD),, with oo = 3 corresponds to Nesterov’s historical algorithm [31].
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Tikhonov regularization of a perturbed heavy ball system with vanishing damping 3

Therefore, as it was emphasized in [33], for & = 3 the system (AVD),, can be seen as a continuous version of
the accelerated gradient method of Nesterov.

However, the case o = 3 is critical, i.e., the convergence of the trajectories generated by (AVD),
remains an open problem. The subcritical case v < 3 has been examined by Apidopoulos-Aujol-Dossal [5]

and Attouch-Chbani-Riahi [11], with the convergence rate of the objective values (’)(t_%a)

When the objective function g is not convex, the convergence of the trajectories generated by (AVD),, is
a largely open question. Recent progress has been made in [21], where the convergence of the trajectories of
a system, which can be considered as a perturbation of (AVD),, has been obtained in a non-convex setting.

The corresponding inertial algorithms obtained from (AVD), via discretization, are in line with the
Nesterov accelerated gradient method and enjoy similar properties to the continuous case, see [24] and
also [4, 7, 9, 27, 28] for further results and the extensions to proximal-gradient algorithms for structured
optimization. For other results concerning the system (AVD), and its extensions in we refer to [11, 23, 26].

A version of (AVD),, containing a Tikhonov regularization term, strongly related to (1.1), was considered
by Attouch-Chbani-Riahi in [10]. According to [10] the presence of Tikhonov regularization term e(t)x(t)
provides the strong convergence of the trajectories to the element of minimum norm of the set of minimizers
of g, when €(t) tends slowly to zero. We emphasize that (1.1), for the case 5 =~ = 0, reduces to the system
studied in [10].

1.2. Connection with second order dynamical systems with Hessian driven damping. The
dynamical system (1.1) is also related to the second order dynamical system with Hessian driven damping
term, studied by Attouch-Peypouquet-Redont in [19], that is,

(DIN - AVD)Q,B x(t)+%x(t)+ﬁv2g(x(t))x(t)+Vg (x(t)) = 07 ZL’(to) = Ug, i?(to) = Vo, Up, Vo € H7 ﬁ Z 0.

In [19], for the case @ > 3, B8 > 0 the authors showed the weak convergence of a generated trajectory
to a minimizer of g and they obtained convergence rate of order o(1/t?) for the objective function along
the trajectory. The temporal discretization of this dynamical system provides first-order algorithms which
beside the extrapolation term contain a correction term which is equal to the difference of the gradients at
two consecutive steps [8, 2]. Several recent studies have been devoted to this subject, see [6, 14, 15, 29, 32].
Further, Bot-Csetnek-Laszlé considered in [20] the Tikhonov regularization of (DIN-AVD),, 3. They obtained
fast convergence results for the function values along the trajectories and strong convergence results of the
trajectory to the minimizer of the objective function of minimum norm. Now, by using the Taylor expansion
of Vg(-) we get

(12) Vo (a0)+ (v + 5 ) #0) ~ Votet) + (v+ 7 ) Patalnito

which shows that the system (DIN-AVD), g with Tikhonov regularization term e(t)x(t) considered in [20]
and the dynamical system (1.1) are strongly related. In this paper, we aim to obtain fast convergence
results for the function values along the trajectories generated by the dynamical system (1.1) and strong
convergence results of the trajectories to the minimizer of the objective function of minimum norm, under
some similar assumption as those considered in [20]. However, we emphasize that our objective function g
is of class C'' meanwhile the objective function considered in [20] is of class C?. Further, as we mentioned
before, we are also able to show the rate o(1/t) for the velocity. Moreover, according to [3] the dynamical
system (1.1), (with e = 0), leads via explicit Euler discretization to inertial algorithms. In particular the
Nesterov accelerated convex gradient method can be obtained from (1.1) via natural explicit discretization.

The following numerical experiments reveal that a trajectory generated by (1.1) and the objective func-
tion value in this trajectory have a better convergence behaviour than a trajectory generated by the system
(AVD),, with a Tikhonov regularization term studied in [10] and also a similar behaviour as the trajectories
generated by the dynamical system considered in [20]. At the same time, the perturbation term (7 + g) x(t)
in the argument of the gradient of the objective function g has a smoothing effect, just as the case of (DIN-
AVD), g. This also confirms our conclusion that (1.1) can be thought as an intermediate system between the
system (AVD), with a Tikhonov regularization term considered in [10] and (DIN-AVD), g with a Tikhonov
regularization term studied in [20], which inherits the best properties of the latter systems.
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4 C. D. Alecsa, S. C. Laszl6

1.3. Some numerical experiments. In this section we consider two numerical experiments for the
trajectories generated by the dynamical system (1.1) for a convex but not strongly convex objective function

g:R? 5 R, g(x,y) = (ax + by)? where a,b € R\ {0}.

Observe that argming = {(m, —%x) tx € R} and ming = 0. Obviously, the minimizer of minimal norm of

gis z* = (0,0).

Everywhere in the following numerical experiments we consider the continuous time dynamical systems
(1.1) and the dynamical systems (AVD),, and (DIN-AVD),, g with or without the regularization term e(¢)z(t),
solved numerically with the ode45 adaptive method in MATLAB on the interval [1,10]. For the Tikhonov
regularization parameter we take €(t) = 5 and we consider the starting points z(1) = (1,-1), &(1) =
(-1,1).

Further, we take & = 3.1, 8 = —0.5, v = 1 in (1.1), @« = 3.1 in (AVD), and o = 3.1, 8 = 1 in (DIN-
AVD), g. Observe that v in (1.1) is equal with 8 in (DIN-AVD),, 3 hence, according to (1.2) the trajectories
of these systems will share a similar behaviour.

The results are depicted at Figure 1, where the first component of a solution x is depicted with red,
meanwhile the second component is depicted with blue.

Dyn. Sys. (1) - with regularization | __Dyn. Sys. (1) - without regularization | Dyn.Sys.(1)- with izati | __Dyn. Sys. (1) - without regularizatio

2 3 s 5 6 7 8 8 1 T2z 3 4 5 68 7 8 8 1 T2 s 4 5 6 7 8 9 w Tz s s 5 8 7 8 8 1

t t t t
(AVD)_ - with regularization (AVD)_ - without regularization (AVD) - with regularization (AVD)_ - without regularization
p p 2

x(t)
3(
x(t)
i[
x(t)
x(t)

2 3 4 s & 7 8 3 w0 %2 3 4 5 & 7 8 9 w0 T2 3 4 s s 7 8 s w0 Tz s s+ s & 7 8 3 w0

2 3 4 5 68 7 8 3 1w T2z 3 4 5 8 7 8 8 1w Tz 3 4 s s 71 8 9 w0 Tz a3 s 5 8 7 8 3 1w

(a) a = 25 b = 50. (b)a=15b=6.

Fig. 1.1: The behaviour of the dynamical systems (1.1), (AVD), and (DIN-AVD), g with and without
Tikhonov regularization term, for convex, but not strongly convex, objective functions.

Analyzing Figure 1 we observe that indeed the trajectories of the dynamical systems (1.1), (AVD),, and
(DIN-AVD),, g, in the presence of the Tikhonov regularization term e(¢)x (), converge to x* the element
of minimal norm from argmin g. However, when we consider these systems without regularization, that is
€(t) = 0, we observe that we still have convergence of the generated trajectories to a minimizer of g of the
form (zp,—0.5z¢) Figure 1 (a) and (xg, —0.25x¢) Figure 1 (b), for some xzg € R, however these minimizers
are not anymore of minimal norm.

Further, observe that indeed the trajectories of (1.1) and (DIN-AVD), g have a similar behaviour and
both eliminates the oscillates obtained for the trajectories of (AVD),.

In our second experiment we study the evolution of the two errors ||z(¢) — z*|| and g(z(t) — min g, for a
trajectory x(t) generated by the dynamical system (1.1), with respect to different values of 8 and . So we
take a = 0.1 and b = 50, values for which the function g is poorly conditioned. We take o = 3.1, €(t) = t%
and we consider the starting points z(1) = (1,—1), #(1) = (—1,1). Further, since the theoretical expected

79(1(1)22_“1” on the

rate for the decay g(x(t) — ming is O (t%) we also consider the graph of the function
interval [1,10]. The results are depicted on Figure 2.

One can observe, see Figure 2, that the best choice seems to be v = 0, 8 > 0. This case outperforms
both the cases v > 0, 8 < 0 and v > 0, 8 > 0. However, if v > 0 choosing negative 3 leads to better
convergence properties. Further, all these choices of the parameters 3, v outperform the case v = g = 0

which is the case of (AVD), with Tikhonov regularization.

1.4. Organization of the paper. In the next section we carry out the asymptotic analysis of the
trajectories generated by the dynamical system (1.1). We obtain convergence rate of order o(1/t?) for the
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2500 ¢
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Fig. 1.2: Error analysis with different parameters in dynamical system (1.1) for a convex, but not strongly
convex, objective function.

energy error g(x(t) + (v + 8/t)&(t)) — min g, convergence rate of order o(1/t) for the velocity #(t) and weak
convergence of the trajectories to a minimizer of the objective function g. Further, several integral estimates
for the gradient of g will be provided. In section 3 we show that indeed the Tikhonov regularization term in
the dynamical system (1.1) assures the strong convergence of the trajectories to a minimizer of g of minimal
norm. Finally, we conclude our paper by outlining some perspectives.

2. Asymptotic analysis of the regularized dynamical system (1.1). Existence and uniqueness
of a C?([tg, +00),H) global solution of the dynamical system (1.1) can be shown via the classical Cauchy-
Lipschitz-Picard theorem, by rewriting (1.1) as a first order system in the product space H x H, see Theorem
A.1 from the Appendix. In this section we carry out the asymptotic analysis concerning the trajectories
generated by the dynamical system (1.1). We will treat the non-critical case a > 3 and the critical case
a = 3 separately under the assumptions (C1) and (C2).

REMARK 1. Let us discuss the connections between the conditions (C1) and (C2). Obviously, when
~v = B = 0 condition (C1) is satisfied in virtue of the nonincreasing property of e. Further, if we assume that
e(ty) = 0 for some t{, > to then e(t) = 0 for all ¢ > ¢, hence (C1) and (C2) become trivial.

Assume in what follows that e(t) > 0 for all t > t5. Now, if v > 0, 8 € R or v = 0, 8 > 0, then there

exists some ¢; > t; such that ‘7 + %‘ =~+ % for all ¢ > t;. Hence, condition (C1) leads to the fact that
there exist K > 1 and ¢; > t¢ such that

d /1 K KB _
=) 2 B2 frale > 7,
dt (e(t)>_ g VT ot =h

Now, if v > 0, by integrating the above relation on an interval [t1,¢] we obtain that there exists K7 > 0 such
that ) K
< —1, for all ¢ > ¢;.

1 K~z KB 7 =
Tt St - S - S

1 <
However, if v = 0 and > 0 then by similar arguments as above we obtain that e(t) < fr% for some
K, > 0 and ¢ big enough, and this condition is obviously weaker than condition (C2). Observe that this case

does not imply that ft;roo E(Tt) < +o00.

Consequently, if v > 0 then (C1) implies (C2) and one also has
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6 C. D. Alecsa, S. C. Lészlé

As we have mentioned at Introduction, natural candidates for the regularization functions ¢t — €(t)
that satisfy the conditions (C1) and (C2) are €(t) = r > 1,a > 0. However, if v+ = 0 and 8 > 0,

t’V"
then (C1) is satisfied even with e(t) = r>0,a >0 In the latter case, (Cl) is also satisfied with
E(t)zm,pzl7a>0.

tr ’

2.1. The non critical case a > 3. We show that under some appropriate conditions imposed on e,
for a > 3 we have o(1/t?) convergence rate for the decay g (x(t) + ("y + %) x(t)) — min g, fast convergence
of the velocity to 0 and weak convergence of z(t). Further, integral estimates are also obtained.

THEOREM 2.1. Let tg > 0 and for some starting points ug,vo € H let x : [tg,00) — H be the unique
global solution of (1.1). Assume that o > 3 and that one of the conditions (C1) or (C2) is fulfilled. Then,
the following results hold.

(i) If € : [to, +00) — [0, +00) satisfies ftjoo @dt < o0 then, limy_, 400 g (w(t) + (7 + g) x(t)) = ming.
Further, lim;_, o || £(t)]| = 0, hence lim;_, 4 o g (z(t)) = ming.

(ii) Assume that € : [tg, +00) — [0, +00) satisfies j; e(t)dt < +o00. Then, the following statements
hold true.
(convergence) x(t) is bounded and x(t) converges weakly, ast — +oo, to an element of argmin g.

(integral estimates) f+°° tl|a(t)|?dt < +oo, f+00 ( ( t) + (’Y + é) (t)) - ming) dt < 400, further

ftjootQHVg (a:(t)—i— (74— ) )H dt < 400, whenevery > 0,8 € R and for v = 0,8 > 0 one has
[t HVg (:E(t) + ;:'r(t))
(pointwise estimates) limy_, oo [|2()|| = 0, |&(t)]| = 0 (1) and g (x(t) + (’y + g) x(t)) ming = o (%) as

dt < +o0.

t — +oo. Further, ||z(t)]| = o < ) as t — +oo0.

1
t\/e(t)

PROOF . Lyapunov analysis. First, let * € argming, b € (2, — 1) and denote g* := g(z*) = min g.
For simplicity we denote B(t) = v + % and for a positive function a(t), t > ¢y we introduce the energy
functional & : [tg, 00) — R,

(2.1)
£(t) = a(t) (9(x(t) + BOKD) — %)+~ ale)|? + Lota(t) — 2) + 202 + LD () 2
Then,
(22) 1) =d () (9(t) + BOit) — g°) + alt)(Va(w(t) + BOD), AE)(E) + (8'(1) + Va(®))
+ <te(t) 4! (t)) lz()]1? + t2e(t)(2(t), z(2)) + (b + 1)i(t) + t&(t), b(z(t) — z*) + ta(t))
+b(a—1-=0b){z(t),z(t) — x™).
From the dynamical system (1.1), we have that Z(t) = —e(t)x(t) — $@(t) — Vg(x(t) + B(t)2(t)). Hence,
(2:3) a(t)(Vg(w(t) + BO(), BB(E) + (8(1) + Vat)) =
a(t) (Vg(a(t) + B(0)E(6). ~BOt)(t) + (=BT + 8'(1) +1) i(t) — B(1)Vg(a(t) + BH(1)) ) =
— B(1)a(t) [Vg(a(t) + SO + (=B(0)F + 8/() +1) alt)(Va((t) + BEa (1)), (1))
— BOe(t)a(t)(Vo((t) + BE)a (1), 2 (1))-
Further,

(24) (b4 Da(t) + ti(t), b(z(t) — 2") + ta(t)) =
((0+1—a)i(t) —te(t)z(t) — tVg(x(t) + B)E(1)), b(x(t) — 27) + ti(t)) =
b(b+1—a)(@(t),z(t) — x*) + (b+ 1 — a)t|(t)||* — bte(t){zx(t), z(t) — z*
= b(Vg(a(t) + B(t)2 (1)), a(t) — 27) — (Vg (x(t) + ()& (1)), 2 (t)).




216
217

218

219

234
235

236

238
239

240

Tikhonov regularization of a perturbed heavy ball system with vanishing damping 7

Combining (2.2), (2.3) and (2.4) we get

(55) £ =00 o)+ AL ~) = AR ITel)  HOHON + 0+ 1= M1
+ (0 + Z50 ) 1ot + (502 + 810+ 1) al) ~ ) (Tala(t) + 50500 10)
BT a0 + SO, (0) ~ HTlelt) + A + ). 06— 7.

Consider now the strongly convex function g; : H — R, g:(z) = g(x) + @Hx”z From the gradient

inequality we have g¢(y) — gi(z) > (Vg (x),y — z) + ?HJC —y||?, for all z,y € H. Take now y = x* and

x = x(t) + B(t)z(t). We get
o) + D2 = g(a(e) + B00) — D e(e) + BOO|? 2
~ (Valalt) + BEHD) + ) a(0) + BEHD). (1) + B =) + D alr) + BBY0) - 2 |
Consequently,
~ (Vaa(t) + B + cDalt).a(t) - ) — BOTaa(t) + HEHD) + cl)a(t). (1) =
— (V1) + B + c(D)alt), (1) + B — 27) < glx) + W o | — g(a(t) + (1)
= Wty 1 8001~ W ae) + B00il) - |2 + AOE) (0). 2(0) + BR(E) — =)
From here we get
26)  — (Talal)+ A0S0 + ()10 =) <

— (9(z(t) + B()(1)) — g(2")) + 7 2|+ BO(Vg(a(t) + B(t)a(t)), &(1))

_ <) €t)

5 ll2(t) + B)E)|* ~ 5 |l (t) + B)a(t) — I + B(t)e(t) (i (t), 2 (t) + B(t)a(t) — ).

Further, an easy computation shows that

- @H%( t) + B(H)a()° ~ (t) l2(t) + B()i(t) — 2*||* + B(t)e(t)(E(t), 22(t) + B()a(t) — ™) =

E(t) ( ) .

- ll= 2(t))* = ==z (t) — 2%

Hence, (2.6) becomes
(2.7) —(Vg(z(t) + B(t)2(t) + e(t)x(t), x(t) — 2%) < —(g(x(t) + B(t)i(t)) — g(z7)) — 6(Tt)llﬂﬁ(lﬁ)llz
= Ot a2 + Wi 4 80) (Vg(at) + BOD), (1),

By multiplying (2.7) with bt and injecting in (2.5) we get

(28) E(t) <(a'(t) = bt) (g(a(t) + BDE(1)) — g7) = B(D)a(t) [Vy(a(t) + BE)EE)” + (b + 1 — a)t|(0)]
t2¢

Qe - ot o2+ (S50 + - 0D ety
B(E)e()alt) (Ta(a(t) + B(E)0). ()

~ Bl
+ (=BT +8® +1) alt) =12 + b3(1)E) (Vg(a(t) + BHa(1)), (1)
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We estimate

(—B(t)a_b +8( )) t(Vg(a(t) + B(t)2 (1)), i(1)) <

t

o —

3|0+ 50| (1l + BO)P + e (0))
Let us take now a(t) = t*. Then, (2.8) becomes
(2.9)
1

) < (2=t a(elt) + 8(0(0) ~ 97) — (807 - |50 277 + o)

) IVg(e(t) + B0

1

+(@+1aﬁ+25m“;b+5@)

) e+ o D2 - W o) - o

2é €
# (5524 - 0 eI = B (T(ate) + 500, 2(0).

We will carry out the analysis by addressing the settings provided by the conditions (C1) and (C2)
separately.
Condition (C1). Assuming that condition (C1) holds, there exist K > 1 and ¢; > ¢( such that

K
é(t) < —@ez(t) for every t > t1.

Using that

(210)  ~BOORTg(®) + 800, 2(0) < P 70 + snaen)? + EEATOT e

(2.9) leads to the following estimate

(211) £ <(2- ((()+5() ) —9g")

(( )tQ—;‘—ﬂ(t)at_b+ﬁ’()
(

) [Vg(a(t) + A

a—>b () G(t)

+ b+ 1 —a t+ B 5(t) 7 +p ( ) g) || ( )”2 + e ” H Hx(t) _x*||2
+ (t22t N K|p(t )l 2(t)t2 r(2- b)te(2t)> 2(8)]12, for all ¢ > £,.

Now, taking into account that K > 1 and 8(¢t) =~ + g we conclude the following.
If v > 0, B8 € R then there exists ¢j > t; and 71 > 0 such that

~((s0- B2 e - 302 v 50

If v = 0,8 > 0 then there exists ¢} > t; and r; > 0 such that

_ ((5@) - W}?') 2 — % ‘—B(t)a —by B'(t)

3) < —rit?, for all t > t].

t

tg> < —r1f3t, for all t > t].

Further, since b < a — 1 there exists t{ > t; and 79 > 0 such that

1= ape g |80+ 50

< —rot, for all t > t].

Finally, according to assumption (C1) and the fact that b > 2 we get

Pe(t) | KIBWIe (1)
2 + 4

+(2- b)t? <(2- b)t?, for all t > ¢;.
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Hence, by considering ¢t = max(#},#]) and denoting r1(t) = r1t?> when v > 0, 8 € R and rq(t) = r1 5t
whenever v = 0, 8 > 0, the relation (2.11) leads to

(2.12)
E(t) + (b —2)t (9(x(t) + B(1)E(t) — g) +r1() [ Vgla(t) + BB + ratl|d(#)]| + bt— = ( ) lo(t) — 27|
+(b— 2)75?”:5( )12 < bt et )||x %, for all t > t,.
Condition (C2). Assume now that (C2) holds, that is, there exists K > 0 and t; > ¢ such that

K
e(t) < - for every t > t;.

Now, since S(t) = v + 8 Z, where v > 0, 8 € Ror v =0, f > 0 we obtain that there exists £; > #; such
that
B(t) >0, for all t > ;.

Using the monotonicity of Vg and the fact that Vg(z*) = 0 we get for all ¢ > #; that
(2.13) =Bt} (Vg(z(t) + B(t)a(1)), x(t )) —B(6)e(t)t* (Vg (x(t) + B(1)E(t)), 2(t) + B(t)i(t) — x*)
(t)e(t) 2(Vg(x(t) + B()E (1)), B(t)i(t)
Bt)e(t)t*(Vg(a(t) + B(t)i(t)), B(t)E(t)

m

€T

~ ~—

_I‘*

The right hand side of (2.13) becomes

BB (Vg(a(t) + B(1)a (1), B1)E(t) — 2*) = B (Oe(t)t*(Vg(a(t) + B()a(t)), i(1))
= BO)e®)t*(Vg(a(t) + 1)i(t)), 2*),

) further
FORVg(a(t) + 800, #0) < “OU 190(0) + a(0ya) |+ KB Octtlo)?
< PO 19y a(e) + @0)|2 + K280 0|
and

—B(0e) (Valat) + 80)0).2%) < “OU 190(0) 4 a(0yae) I + Kawewe |2

< %HVg(x(t) + BOE())IP + KB()te(t) 2",

for all t > ¢;. Hence, (2.13) becomes

2
(214)  —BOUDRT(0) + 00, 2(1) < PO Tga) + B0 + K280 (1)

+ KB(t)te(t)||z*||?, for all t > #;.
Now, injecting (2.14) in (2.9) we get
(2.15)
) < (2= Dttt + et - o)~ (20 - J |00

()|t

) IVg(e(t) + B0

a—>b

—A(t) +6'(t)

1
+((b+1—a)t+2’

¢+ K20 [0 + 0+ 2501 Do

el )le( t) — x| + (“Q(t) + (2—b)t€<2t)) |z(2)||?, for all ¢ > 7;.
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Taking into account that 3(t) = v+ g we conclude the following.
If v > 0, 8 € R then there exists #; > #; and r; > 0 such that

- (5;15)252 _ % _B(t)O‘T_b + B'(t) t?) < —rt?, for all t > t].

If v =0, 8 > 0 then there exists ¢} > t; and r; > 0 such that

B (ﬁ;t)tz_; _ﬁ(t)at—b B ti) < —rft, for all t > ¢},

Further, since b < a — 1 there exists t{ > t; and 7o > 0 such that

a—>b

; i3+ K?2B3(t) < —rot, for all t > ¢!/,

+ 6'(t)

(b+1—a)t+ % ‘5@)

Finally, according to the fact that b > 2 and that €(t) is decreasing we get

2t t t

A O Ry P AL O R N

2 2 2
297 Hence, by considering o = max(#},#]) and denoting r1(t) = r1t?> when v > 0, 8 € R and rq(t) = r 3t
298 whenever v =0, 8 > 0, the relation (2.15) leads to

(2.16)
: , * . . et «
200 E(8) + (b= 2)t (g(a(t) + BOZ(D) — g7) + (1) [|Vg(a(t) + BE)N + ratll(t)]* + bt%llm(t) —z*||?
t t _

300 +(b— 2)t¥|\x(t)||2 <(b+ 2K6(t))t#||x*||2, for all t > 1.
302 The estimates. By integrating (2.12) on an interval [ts,t], t5 = t2 in case the condition (C1) holds,

303 and by integrating (2.16) on an interval [t3,t], t3 = 3 in case the condition (C2) holds, further denoting
304 1 =bin case (C1) holds and I = sup;>,, (b + 2K3(t)) in case (C2) holds, we obtain for every ¢ > t3 that

(2.17)
t t t
w80+ (0-2) [ slalals)+ B < g7) ds+ [ (o) [Vg(ats) + S| ds 72 [ sl ds
t3 t3 t3
b ’ *(2 b—2 [ 2 ! ! * (|2
306 + = | se(s)||lx(s) — x|+ —— [ se(s)||xz(s)||ds < = [ se(s)||z*||“ds + E(t3).
307 2 ts 2 t3 2 ts
For proving (i) assume that f;roo @ds < +400. Then, from (2.17) we get that for all ¢ > ¢3 one has
E(t a2 1 [
0 < g(x(t)+ B(t)x(t)) —ming < i;’) + ||x2 | t—Q/ se(s)ds,
to
b P 28(ts) | Uatl? [
< |- — g < o |
0< Ht(x(t) )it < 2200 4 18 /t se(s)ds
and ) .
x(t) —x” 2&(t3) Uz |? /
< ds.
0<% S Ma—1-02 da-1-pe ),
308 Obviously, lim;_, 4 o g(ttj) = 0. Further, Lemma B.1 applied to the functions ¢(s) = s and f(s) = E(SS)

. . ¢
309 provides limy—, o0 75 ftz SQ@dt = 0. Hence,

510 1y oo g(2(t) + B)E(E)) = min g, limgy oo || 2(2(t) — 2*) + &(t)]| = 0 and lim,_, o [ 2272

‘:0.
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Tikhonov regularization of a perturbed heavy ball system with vanishing damping 11

Combining the last two relations we get lim;_, ;. ||#(¢)|| = 0, and from here and the continuity of g we
have lim;—, 1 oo g(z(t)) = limy—, 4 o0 g(x(t) + B(t)2(t)) = ming.

For proving (ii) assume that ft:roo se(s)ds < +oo. Then, Cy = lftjoo t@”x*Hth + E(t3) < +oo and
from (2.17) we immediately deduce that £(t) < Cy for all ¢ > t3, hence

(2.18) glz(t) +B)2(t) —g" =0 (tlz) , as t — +oo,
(2.19) Sup bo(z(t) — %) +ti(t)|* < +oo,
(2.20) ts;p llz(t) — 2*||* < +oo.

Further, (2.17) yields

“+o00
(2.21) /1t t(g(@(t) + BL)E()) — g*) dt < +o0,
+oo
(2.22) / 2| Vg(z(t) + B()&(t))|? dt < 400, whenever v >0, 8 € R,
to
(2.23) B = t|Vg(x(t) + B(t)i(t))||* dt < 4+o00, whenever v =0, 3> 0,
.
(2.24) / te(t)|[(t)|2dt < +o0,
to
and
—+o00
(2.25) / t)|&(2)]|2dt < +oc.
to

Observe that (2.20) leads to the fact that the trajectory x(¢) is bounded, which combined with (2.19)
shows that ||ti(¢)]|? is bounded, that is

(2.26) lz®)] = O (1) , as t — +o0.

Note that (2.26) shows in particular that ©(t) — 0, t — +o0.
In order to show that [|@(t)|| = o (1), as ¢t — +oo assume for now that the limit lim;_, oo [|2(t) — 2*||
exists, as will be shown in the sequel. Then, (2.12) in case (C1) and (2.16) in case (C2) provide that

*||2
E(t) < Mte

(t), for all t > tg,

where [ = b in case (C1) holds and I = sup,~,, (b+2K3(t)) in case (C2) holds. Obviously, by the hypotheses

* 12
we have Mts(t) € L'([t3, +00)), hence, according to Lemma B.2 there exists the limit lim;_, o, E(%).
Hence, since lim;_, o [|2(t) — 2*|| exists we get that the limit

(2.27) Jim 2 (gla(t) + B0F1) — g°) + L a2 + L)
also exists.
Now, (2.21), (2.24) and (2.25) yield
+oo 26
(2.25) [ (Pt + 80i0) - )+ 521 + 01 ) dr < +oc,

Since the function t — + & L'([to, +00)), (2.28) and (2.27) lead to

(2.29) lim_# (g(a(t) + A0 ~ g°) + 9D a0 + L) = 0.

t— 400 2
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Consequently,
g(z(t) + B(t)z(t)) —ming = o <t12> as t — 400,
lz(@®)] =0 . as t — +o0
/e ’
and

Jat)] = o (1) a5 t = +00.

The limit. To prove the existence of the weak limit of x(¢), we use the Opial lemma, (see Lemma B.4
at Appendix). For z € argming let us introduce the anchor function h.(t) = 1||z(t) — z||%. The classical

derivation chain rule gives h.(t) + O‘h (t) = (&(t) + $a(t), z(t) — z) + [|[#()||*. Now, using (1.1) we get
ha(t) + $ha(t) = (—e(t)a(t) — Vg(a(t) + B()a(t)), x(t) — 2) + [|£(¢)]|*. In other words,
Bt

(2.30) th(t) + ah.(t) + t (Vg(x(t) + B)i(t)), x(t) — 2) = tl|#(1)]|* — (te(t)z(t), 2(t) — 2) -
We have

t(Vg(z(t) + B(1)L(t)), (1) — z) = t(Vg(x(t) + B(1)(1)), (z(t) + B()i(t)) — 2)
—t(Vg(a(t) + B()i(t)), B(t)&(t)) -

Consequently, (2.30) becomes

(231) tha(t) + aha(t) + ¢ (Vg(a(t) + B(1)E(1)), 2(t) + B(t)&(t) — 2) =t|&(@)||* — (te(t)z(t), x(t) — 2)
+t(Vy(z(t) + B)2(1)), B()E(1)) -

Now, since x(t) is bounded, there exists Ky > 0 such that
— (te(t)z(t), x(t) — z) < te@)[x(@®)[[[|=(t) — 2[| < Kite(t).

Further, t (Vg(x(t) + B(t)i(1), B(1)a(t)) < 5B Va(x(t) + BE0))° + 5tIBE) ()]
The latter two inequalities combined with (2.31) yield

(2.32)  tha(t) + aha () £ (Vg(a(t) + B, 2(t) + B0)ilt) - 2) < (1 n §|ﬁ<t>|) Ha (o) + Kate(t)
+ LB(ONIVa(alt) + B

Now, by the monotonicity of Vg we have that the function 0(t) = ¢t (Vg(x(t) + B(t)x(t)), x(t) + B(t)E(t) — 2)
is nonnegative on [tg, +00).

Further, (2.25) and (2.22) if vy > 0, 8 € R and (2.23) if v =0, 8 > 0 and the hypotheses of the theorem
shows that the function k(t) = (1 + |8(t)]) t]|l&(t)||* + Kite(t) + 5¢|8(t)|[[Vg(x(t) + B(t)&(t))||* belongs to
L (tg, +00).

Hence, Lemma B.5 can be applied for the function w(t) = h,(¢), thus we infer that the following limit
exists

Jim e (t) - 2],

Let T € H be a weak sequential limit point of x(¢). This means that there exists a sequence (t,)neny C
[to, +00) such that lim,_, o t, = 400 and z(t,) converges weakly to T as n — oo.

On one hand the function g is weakly lower semicontinuous, since is convex and continuous, hence we
have that ¢() < liminf,_,4. g(x(¢,)). On the other hand, according to (i), lim;— 4o g(z(¢)) = ming,
consequently one has ¢(Z) < min g, which shows that T € argmin g.

According to Opial lemma it follows that

w — t—13-n-[1<>o x(t) € argmin g.
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REMARK 2. In Theorem 2.1 we have shown that under the assumptions that f e(t)dt < +o0, a > 3
andy>0,8€Rory=0,5> Oonehasg(x( )+ (’y—&—?)x( )) —ming = o(3) as t — +oco. However,
under the assumptions v = 0 and 3 > 0 and Vg is globally L,—Lipschitz continuous, we can even show that
g(z(t))—min g is of order o (%) as t — 400, and for this is enough to prove that g(z(t))—g (z(t) + gz(t)) =
0 (t%) , as t — +oo. In order to obtain the latter, we use the well-known descent lemma from [31] and we
obtain that for all ¢ > ¢y one has

oto) ~ g (o) + 74(0)) < (g (ol + T ) . ~Tat)) + 52 | Fa00

< §||¢(t)\| : va (J:(t) + fs‘c(t)) H + % <f)2 ()]

From Theorem 2.1, we have that z and & are bounded and ||&( )|| = 0(%) as t = +oo, hence by using

the continuity of Vg we get ng @\ - HVg (m )H

2

t2 , ast — 4o0o. Moreover, we have

2
% (%) |#(t)]> =0 (%), as t = +oo. By combining the previous relations the result follows.

REMARK 3. Observe that the assumptions of Theorem 2.1 (ii) are satisfied for €(t) = -, 7 > 2, a > 0.

More precisely, in this case the conditions (C1), (C2) and the relation f €(t)dt < 400 hold. The latter
relation was essential in the proof of Theorem 2.1 (ii) in order to show the p01ntw1se and integral estimates
but also the weak convergence of the trajectories. Nevertheless, by deploying the techniques used in [16], we
can show the fast convergence of the function values in the generated trajectories even for €(t) = %, a > 0.
The following result holds.

THEOREM 2.2. Let to > 0, a > 3 and €(t) = 4, a > 0. For some starting points ug,vo € H let
x: [tg,00) = H be the unique global solution of (1.1). Then, x is bounded, g (x(t) + <7 + g) x(t)) —ming =
o (t%) and ||z(t)]| = O (%) as t — +o0.

PROOF . Note that for €(t) = 7, a > 0 both the conditions (C1) and (C2) hold. Now, by using the fact
that 1([b(z(t) — 2*) + ta(t)||? < b?||a(t) — «*||> + 3| (¢)||?, from (2.1) we get that for all ¢ > o it holds

b(a 1+b)

(2.33) E(t) <t (g(a(t) + B(1)E(t) — g7) + gllx(t)ll2 + et + lo(t) — 2*|*

Further, (2.12) gives
(2.34)
£(1) < — (b= 20t (9(a(t) + BUHD) — g°) — ra(8) [ Vg(alt) + BOFNIE ~ rat ) — o (t) — o
(b= 2) eI + o, for all £ > 1,

where to, 71(t) and ro were defined in the proof of Theorem 2.1. More precisely, r1(t) = 71> when v >
0, 8 € R and r1(t) = r1 5t whenever v =0, § > 0 and r,r2 > 0.

Let now 0 < ¢ < min (b -2, Q%Hb,rg) . By multiplying (2.33) with ¢ and adding to (2.34) we get

(2.35)
E(t) + 5() (¢ =b+2)t (g(w(t) + BE)E(1) = g*) = r1(8) [[Vg((t) + BOEE) | + (¢ = r)t|(2)])*
b * 2 2 ab * (|12
+ 2t( c(a=140) —a)x(t) — =7 (C—b+2)*\| O + 5 l2”l
< EH:U*HQ7 for all t > to.
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14 C. D. Alecsa, S. C. Laszl6
We multiply the last relation with ¢ and we get
d b
(2.36) Z(E) < %Hx*H?tH, for all t > t,.

Consequently, by integrating (2.36) on an interval [t3,t] one has
b t b
o) - t520) < Gl | [ s = 5Nt e~ 8.
to c

Hence, there exists K > 0 such that £(t) < K, for all t > tg, and from here and (2.1) we deduce that z is
bounded, g (x(t) + ('y + %) x(t)) —ming = O (%) and [|&(t)]| = O (1) as t — +oo. O

2.2. The critical case o« = 3. As we mentioned before, just as for the dynamical system (AVD),, the
case a = 3 is critical. In this case we obtain O(1/t?) convergence rate for the decay g (m(t) + ('y + g) :E(t)) —

min g and we also obtain some integral estimates for the gradient of the objective function, meanwhile the
weak convergence of the trajectories to a minimizer of g remains an open question.

THEOREM 2.3. Let tg > 0 and for some starting points ug,vg € H let x : [tg,00) — H be the unique
global solution of (1.1). Assume that o = 3 and that one of the conditions (C1) or (C2) is fulfilled. The
following statements hold.

(i) If f:_oo ﬂolt < +o00, then limy 400 g (;U(t) + (7 + ?) x(t)) = ming.
(i) If f t)dt < +oo, then g< (t) + <’y+ 6) x(t)) —ming = O (;) ast — +oo. Further,
te(t)||z(t) — 2*|? € L'(to, +00),R) and t2 va (2t + (v+2) &) HQ e L'([to, +00),R), for 7 >

7
2
0,3 €R and t va (:zz(t) n %j;(t)) H € L'(Jto, +00),R), for v =0, > 0.

PROOF . We will use the same notations as in the proof of Theorem 2.1. Let a(t) = %, in
t
.. - t2—26(t)t . L.
case condition (C1) holds and a(t) = =380+ (A I case COHdlthzn (C2) holds.
: f b T t2—2B(t)t 7
Since €(t) — 0, t — 400, clearly, there exists ¢y > ¢o such that =I5+ 8 (0 A7 (D<@ > 0 for all ¢t > tg,

hence a(t) > 0 for all ¢ > ¢, in both cases (C1) and (C2).
The energy functional (2.1), for a = 3, b = 2, becomes & : [tg,00) = R

2

(2.37) E(t) = a(t) (g(x(t) + B(H)i(t)) — g") + lz(®)II* + %Iﬂ(w(t) —a”) +ta(t)]*.

The same reasoning as in the proof of Theorem 2.1 holds, hence in this case (2.8) becomes

(2.38) E(1) < (a'(t) — 2¢) (g(a(t) + BOHD) — g°) — AE)a(t) [ Vg(a(t) + B
te(t) 2" ||2 —te®)(t) - o[+ S a2
(( B+ 1) alt) — 1 25<t>t) (Vg(ae(t) + B0, #(1)

- B(t) ()< g(a(t) + (1) (t)), x(t))-

We will carry out the analysis by addressing the settings provided by the conditions (C1) and (C2)
separately.

Condition (C1). Assuming that condition (C1) holds, one has

(—B(t)i + B'(t) + 1) a(t) —t* +2B(t)t = 0, for all t > .
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Tikhonov regularization of a perturbed heavy ball system with vanishing damping 15
Consequently, (2.38) becomes
(239)  E(t) < (a'(t) = 2t) (g((t) + B)i(1) — %) — B(t)a(t) | Vg(z(t) + B(E)(t))[|*
+te(t)]|a*|* — te(t)l|x(t) — | + 1626%IIN)IIQ — B()e)a(t)(Vy(z(t) + B(t)E(1)), 2(1)),

for all t > 1.
Since we are in the setting (C1), we have that there exist K > 1 and ¢; > to such that

K
é(t) < —@62@) for every t > t1.

Let t; = max(to,t1). Using that for every r > 0 one has
(2.40)

Be(t)a(t) (Vo (t) + BE)E(D)), 2(t)) < HpEleBa®

6(t)]a(t)

IVg(a(t) + B(t)E(t))]* + lz(®)11%,

for all ¢t > t;, (2.39) leads to the following estimate

IVg(a(t) + B(t)a (1))

(241)  €(1) < (/1) — 20) (g(a(t) + B(H)(1)) — g°) + (_ﬁ(t)a(t) + W)

+te(t) |2 = te(t)[l2(t) — =*[* + ( 2( ), riptt ”64( Ja (t)) | =(t)]|?, for all t > ;.

Take r such that K > r > 1. Now, taking into account that 8(t) = v + g and a(t) = t2 + 4yt + 3v3 +

7(9v°+108)t+4B(3v>+28)
2ﬁ+ t2—3yt—43

If v > 0, 8 € R then there exists #; > #; and r; > 0 such that —3(t)a(t) + Iﬁ(t)‘ M) < —pi2, forall t > 1.
If v = 0,8 > 0 then there exists t] > ¢; and r; > 0 such that —8(¢)a(t) + 18®a(t) ‘a(t) < —rBt, for all t > 1.

Further, according to assumption (C1) and the fact that r € (1, K) we get that there exists £, > #; such
that £40 4 rBOICWAD < o for all ¢ > 7).

Finally, if v > 0, 3 € R, then there exists 7, > 0 and 7, > ; such that a’(t) — 2t < ry, for all t > 7 ,
and if v =0,8 >0, thena()—2t<0 for all t > 1.

Hence, by considering t, = max(f), 7,1, ) and denoting 1 (¢) = r1¢2 when v > 0, 8 € R and 7 (t) = r1 ¢
whenever v = 0, 8 > 0, the relation (2.41) leads to

we conclude the following.

(242)  E(t) < s (g(a(t) + BH)E(E) — g7) = (@) [IVg(@(t) + B0 + te(t)]|2*|* — te(t)|(t) — 2",

for all t > t5, where s =719 if y >0, € Rand s=0if y=0, 5> 0.
Condition (C2). Assume now that (C2) holds, that is, there exists K > 0 and ¢; > to such that

K
e(t) < - for every t > t;.

Now, since S(t) = v —i— , where v >0, € Rory=0,5 >0 and a(t) = 1_§B(t;j_;,2(ﬁt§2;2(t)e(t) > 0 if

t > tg, we obtain that there exists 1 > max(t1,tg) such that 8(t) > 0 and a(t) > 0 for all ¢t > #;. Using the
monotonicity of Vg and the fact that Vg(z*) = 0 we get for all ¢ > #; that

(243) —B(t)e(t)a(t)(Vg(x(t) + B(t)L(t)), z(t)) = —B()e(t)a(t)(Vg(x(t) + B(t)E(t)), x(t) + B(t)E(t) — =)

Ja(t){(Vg(x(t) + B(t)
() (Vg(z(t) + B(t)i(t)),

—~
~
o
—~
~
~
Q
~
8
—~~
~
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16 C. D. Alecsa, S. C. Lészlé
We estimate the right hand side of (2.43) as follows.

Bt)e(t)a(t)(Vg(x(t) + B(t)E(t)), B(t)E(t) — a*) = B*(t)e(t)a(t)(Vg(x(t) + B(t)2(t)), 4(t))
¥

further,

~BOeaVala) + AL0). ) < "D 5000 1 0yiwn))? + KB Val |

< PONO 1 aft) + S0P + KB/l P

for all ¢ > t;. Hence, (2.43) becomes

(244) —BH)e(®)t*(Vg(x(t) + B1)E (1), (1)) < B (De(t)a(t)(Va(a(t) + Bt)a(t)), i (1))

+ POUOZ 94 a(0) + B0 2 + KB Val) ",
for all ¢t > ¢;.
Now, injecting (2.44) in (2.38) we get
(2.45)
o o ~ B(ta(n)? o
£1) < (/1) 20 (o(e(t) + 00— g") ~ [ B0l ~ ") 19ga) + B0

+ (te(t) + KB(t)e(t) v/ a(t))lla*||* — te(t) |« (t) — =*||* + 5 [l (t)?
+ ((—ﬁ@)‘j +4'(t) +1+ ﬁQ(t)e(t)) a(t) —t* + 2B(t>t> (Vg(z(t) + B(t)i(t)), (t)), for all t > F.

5 According to the assumptions one has (—8(t)2 + /() + 1+ B2(t)e(t)) a(t) — t* + 2B(t)t = 0, hence,

Blt)a(t)?
4t

t2¢(t)
2

(246)  £(t) < (d'(t) - 2t) (g(x(t) + B()&(t) — g") — <B(t)a(t) - ) IVg((t) + B()E(0))]

+ (te(t) + KB(t)e(t)V/a(t))lla™||* — te(t)l|=(t) — 2™[|* + lz(t)[|?, for all ¢ > 7.

Taking into account that 8(t) = v + g we conclude the following.

If vy > 0, 8 € R then there exists #; > ¢; and 71 > 0 such that — (ﬁ(t)a(t) - W) < —rt?, for all
t>t.

If v = 0,8 > 0 then there exists t{ > ¢; and r; > 0 such that — (ﬁ(t)a(t) - W) < —r18t, for all

t> .
Further, there exists t/ > #; and ro > 0 such that te(t) + KB(¢)e(t)\/a(t) < raote(t), for all ¢ > tf.
Finally, there exists r3 > 0 and ¢{” > ¢; such that a'(t) — 2t < r3, for all ¢t > ¢/’
Hence, by considering £y = max(t},t/,t/") and denoting r1(¢) = r1t*> when v > 0, 3 € R and r1(t) = r1 3t
whenever v = 0, 8 > 0, the relation (2.46) leads to

(2.47)
E(t) < g (gla(t) + B)E(E) — g7) —r1(1) | Vg(a(t) + B + rate(t) 2 ||* — te(t) () — 2*||?,

for all t > t,.
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Tikhonov regularization of a perturbed heavy ball system with vanishing damping 17

Hence, from (2.42) and (2.47) we conclude that whenever condition (C1) or (C2) holds, there exists
to > tg and s; > 0, so > 0 such that

(2.48) E(t) < s1 (g(x(t) + B()i(t)) — g*) + sate(t)||z*||?, for all t > t,.
Since g(z(t) + B(t)(t)) —g* < géi and taking into account that a(t) = t? 4+ O(t) we deduce that there exists

M > 0 and t3 > t9 such that a(t) > M,henceg( z(t) + B()&(t)) — g* < HE(L), for all t > t.
Consequently, (2.48) becomes

(2.49) gty < SM

< E(t) + sate(t)||z*||?, for all t > t3.

Now, we apply Gronwall’s lemma on an interval [t3,T], T > t3 and we get

t
E(t) < eA(t)E(tg) + SQHSC*HQSA(t)/ TE(T)EiA(T)dT,

t3
where A(t ftt S;é”d #—i—sltiw. Obviously e4® is bounded on [t3, +00), hence there exists C;, Cy > 0
such that eA(t) < C; and e~ A < Oy for all t € [tz, +00).
We have
t
(2.50) E(t) < CL&(ts) + C1Casa|* || / re(r)dr,
t3

for all t € [t3,T).
Now, if (i) holds, then we have erOO <0 dr < +00. Now, E(t) > %(g(x(t)Jrﬂ(t)x(t)) —min g) and (2.50)
leads to

g(:c(t) + 5(t)fl'(t)) —ming < M

for all t € [t5,T).
According to Lemma B.1 from Appendix we have % f:g

lim g( (t) + <7+6)¢(t)> —ming = 0.

t— 400 t

1
+010252M||1’*||2 / TQ@dT,

t3

ZG(T dr — 0 as t = 400, hence

Now, if (ii) holds, then j; (T)dT < 400, hence the right hand side of (2.50) is bounded. In other
words, there exists C' > 0 such that

(2.51) E(t) < C, forall t > ts.

Hence, by the form of £(t) and the fact that a(t) = O(t?), as t — +oo, we get that

g (z(t) + <’y+ f) i:(t)) —ming =0 <t12) , as t — +o0.

Hence, combining the latter result with (2.42) and (2.47) we get that there exist N1, No > 0 and t4 > tg
such that

(2.52) E(t) + (1) | Vg(a(t) + B + te(t)|(t) — 2> < % + Note(t)||z*|%,

for all ¢ > t4. Integrating (2.52) on an interval [t4,T], T > t4 and then letting T — +oo we get

+o0 9 +o0
/ r (1) [Vg(a(t) + Bt ()| dt < +o00 and /t te(®)|2(t) — 2*||2dt < +oo.

ty
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18 C. D. Alecsa, S. C. Lészlé

3. Strong convergence results. Our first contribution of the present section is a result that assures
the boundedness of the derivative of the unique global solution of the dynamical system (1.1).

LEMMA 3.1. Let = be the unique global solution of the dynamical system (1.1). Suppose that o > 0 and
further v > 0 and B € R orv =0 and B8 > 0. Then, the first order derivative of the solution is bounded,
i.e., there exists M > 0 such that ||&(t)|| < M, for all t > to. Further, 1||&(t)||* € L'([to, +00), R).

PROOF . We consider the energy functional W : [tg, +00) — R,

T e

(3.1) W(t) = gle(t) +

The time derivative of (3.1) reads as

W (t) = (Vg(a(t)), &()) + (@(t), #(t)) + ?Hx(lﬁ)l\2 + e(t)(2(t), 2(1))-

From (1.1) we have &(t) = —2&(t) — e(t)z(t) — Vg(x(t) + B(t)£(t)), and we obtain

t

(0%

— el

W (t) = (Vg(a(t)) — Vg(a(t) + B(1)E (1)), & (1)) + ?III(@H2 3

Now, if B(t) = 0 then obviously W (t) < —<|[a(t)[|%.
On the other hand, if 3(¢) # 0, by using the fact that Vg is monotone and é(¢) < 0 we get

W) = 305 (Vala(0) = Valat) + BOH0).(0) ~ (ol6) + B00)) + T

.
< -2,

«

—la@®]?

) - 2

Consequently,
(3.2) W@+%M@Wgommuzm

Therefore, W is non-increasing on [tg, oo]. Using that g is bounded from below, it follows that ||Z(¢)|| < +oo
for all ¢ > ty. Now, by integrating (3.2) on an interval [tg,t] we get W (t) + ft S1|&(0)]?d6 < W (to) and
implicitly 1(/@(t)[|? € L*([to, +00), R). O

We continue the present section by emphasizing the main idea behind the Tikhonov regularization,
which will generate strong convergence results for our dynamical system (1.1) to a minimizer of the objective

function of minimal norm. By considering € > 0, by z. we denote the unique solution of the strongly convex
minimization problem

. €
ze = argmin,eyy (9(a) + 5 ll2l1?)

We know that the Tikhonov approximation curve € — x. satisfies * = liH(l) z., where z* is the element of
€E—>

minimal norm from argming. At the same time, for each € > 0, we have the inequality ||z.|| < ||z*| (see
[20]), which will be used further. Now, in order to show the strong convergence of the dynamical system
(1.1) to an element of minimum norm of the nonempty, convex and closed set argmin g, we state our main
result of the present section.

THEOREM 3.2. Let a > 3, let « be the unique global solution of (1.1) and assume that f dt < +o0.

(i) Assume that for o =3 one has v =0, 8 >0, lim;_,, t?¢(t) = +o0, hm,gHOO T t2 ft sds =0 and the
condition (C1) holds.

(ii) In case o > 3 assume that t*e(t) > 2 (% — 1), for t large enough and lim;_, 2(5)s5tlds =

1 t
e(t)t s+ fto e (
0. Further, assume that v = 0 or (Cl) or (C2) hold, where the constant K in condition (C2) satisfies
K7< 2(a 3)

Let x* = argmln |z||. Then, it follows that

rEargmin g |

htrgérolf ||z(t) —2*| = 0.
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Further, if there exists T > tq, such that the trajectory {z(t) : t > T} stays either in the open ball B(0, ||z*||)
or in its complement, then

lim ||z(t) — «*|| = 0.

t—o00

Proor . For simplicity we denote S(t) = v+ g In our forthcoming analysis we consider three different
cases that are related to the relationship between the trajectories of the dynamical system (1.1) and the
open ball B(0, [|z*|]).

Case I: We assume that there exists T' > to, such that {z(t) : ¢ > T'} stays in the complement of B(0, ||z*||).
This is equivalent to the fact that for each ¢ > T', one has ||z(¢)|| > ||z*|]. We consider p > 0 and we define,
for every t > tg, the following energy functional

(3.3)  E(t) =772 (g(x(t) + B(t)i(t)) — ming) + t”“% (@11 = ll=*11%) + gllb(x(t) —a*) + ti ().
Obviously, for each t > ¢ty we obtain that

(3.4) £t) > L g(at) + A00) — ming) + 2 XD (a2 — o 2.

Now, we define the strongly convex function g, : H — R, g(z) = 3g(z) + %wa and we denote x.;) =
argming .4, g¢+(x). Using the same argument as in the proof of Theorem 4.4 [20], we have that

0u(@) = 9u(2) = Ll — 2o P + lfro |2 = 127 1), for all & € H.

2

Hence,
ge(x(t) + B(t)i(t)) — ge(2™) > 6(Tt)(llﬂf(t) +B)E(E) = ey ll* + [[zen® — 2*]%)-
Now, by employing (3.4), we obtain that
E(t) > 7+ % (e I = ™| + () + BO)E(t) = zer I + N2@)]* = 2(t) + BBZ()]?) -
We have
l(t) + B O)* = =) + B2 O l|l2 (O + 26(t) (1), & (t))

and

lz(t) + B(1)E(t) — 2 I* = 2(t) — zeol* + BAONEO N + 28(1) (5 (8), 2(t) = zew)),

hence, for all t > ty we get

(3-5) E(t) > tp+26(27t)(”me(t)H2 = a1 + llo(t) = ze[1?) = 772 BE)e(®) (@ (1), ver))-

Now, the next step is to get an upper bound for £(-). In order to do this, for each t > t;, we consider the
time derivative of the energy function as follows:

(36) () = (p+ 2 (g(a(t) + ADD) — ming) + 2 (Va(a(t) + ADD). (1+ B + HE)ED)
(D e ) (O - o) + e o). 000

tp—1
+p—

lo(z(t) — %) + ti(t)||* + P (b(x(t) — z*) + ti(t), (1 4 b)i(t) + ti(t)).
On the other hand, from the dynamical system (1.1) we have ti(t) = —az(t) —te(t)z(t) —tVg(x(t)+B(t)L(t)),
hence for all ¢ > ty one has
(3.7)
tP(b(2(t) — x*) + ta(t), (1 + b)a(t) + ti(t)) = (1 + b — a)bt? (x(t) — x*, 2(t)) — be()tPTH{x(t) — x*, 2(t))
= bt a(t) — a*, Vg(a(t) + B(1)E(t)))
+ (L +b—a)tP @ @)* — ()t (@), x(t))
— 772(@(t), Vg(a(t) + B(t)i(t)))
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595 and
(3.8)

506 tPPE(Vg(a(t) + B(1)E()), (1+ B(1)E(t) + B()E(t)) = (1+ﬁ —%B(t (Vg (a(t) + B()i(t)), i(t)
597 — e(t)BOTT(Vg(a(t) + B(1)E (1)), z(t))
598 = B2 Vg(a(t) + A1) ()]
600 Further,
(3.9) ) )
o Pt — o)+ )1 = pb T e(e) — a2 4 p TP b (at) — (8 for al 2

603 By combining (3.6), (3.7), (3.8) and ( .9), it follows that

i B10) €0 = (20 a0+ 500~ ming) + (2 1+ 20 ) () - P

605 — B2 Vg(a(t) + B)E(t))]|* — e(t) B() P (Vg(a(t) + B(1)E(t)), x(t))
606 + () = ZB®) P2 (Vg(w(t) + B, #(0) + (1+b—a+ 2 ) 7 a()]
607 —i—pb2 v ||9(; t)—2*[2+b(1+b—a+p)th{z(t) —z*,i(t))
608 - btpH( (t) — 2™, Vg(x(t) + B(t)x(t)) + e(t)x(t)) for all t > tg.
610 By using (2.7), we obtain that
(3.11)
G0 b (Vg(a(t) + BE)E()) + e(t)a(t), at) — a*) < bt (g(a(t) + B(1)i(t)) — ming)
G2 BT (Vg (t) + W), a0) + o W a2 et Wyt Dy e
614 for all t > tg.
615 From (3.10) and (3.11), it follows that
(3.12)
8= (2= D g(ele) + 0d0) ~ming) + (1) + 29 ) (a0 - o7 )
617 — B2 Vg(a(t) + B(H)E(t))||* — e(t) B> (Vg(a(t) + B(t)E(t)), x(t))
618 + <B(t) L - aﬁ(t)) T2V g(x(t) + BH)i(t)), £(1)) + (1 th—at g) 7L (8)]|2
619 + <pb2tp21 ()t“l) |2(t) — 2*||2 + b (1 +b— o+ p)tP{x(t) — %, @(t)), for all t > to.
620
621  From now on, we choose b := %‘l and p := O‘T_?’ Then, since @ > 3, we obtain that p+2 —b = ?’_Ta <0,
622 further 1+b—a+2=322<0and1+b—a+p=0.
623 For every r,s > 0 and for each t > ¢y we obviously have that
(3.13)
o B (Tola) + BO0). 2(1) < L2 g + snaw))2 + P )2
626 and
(3.14)

P20 Ve(alt) + B(0)(0).4(0) <

[t5(t) + (b~ a)B(1)]

. <B(t) + 12| Vg(a(t) + B(t)i(t))])?

fiéfﬁ + ‘tﬁ(t) + (b4_ a>6(t>|stp||l‘(t))||2
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Injecting (3.13) and (3.14) in (3.12) we obtain that for each ¢t > ¢, one has
T|/B(t)|€2(t)tp+2 ”x* H2

(3.15)

—ming) +

4

W“ﬂ())w“<ﬂmﬁ—ww%

a (2a(a - 3)

80)

2| Vg(x(t) + B1)E(1))||

| (1)

Pt — e(t)tp“) llz(t) — z*||*.

Now, if (C1) holds we take 1 < r < K, (K is defined at the condition (C1)), and we obtain that

(1

ét)
2

4

REOIS0!

> <0, for all t > t;.

Assume now that a > 3. If v = 0, then by using the fact that € is non-increasing, we get that for every r > 0
there exists t; > tg such that

Further, if (C2) holds, we have that there exists K > 0 and ¢; > o such that e(t) <

r|B()|e* ()t

~3e(t)

4

3

where according to the hypotheses one has Kvy <
Ky < Km < (

3)

r|B()le* ()t

. Hence, for all ¢ > t; one has

_ Btk

2(a—3)
3

2

, for all t > #;.

K for all t > ty,

. Consequently, there exists v; > = such that

_ Bl a—3e)

4

4

71

3

5

The latter relation leads to the existence of t; > t; and 1 < r < 771, (if v = 0 we take ﬁ = +00), such that

3—aelt)  rlBl

e (1)t

r18()]

3 2

4

Y

Al

_1)043

3

et)
2

<0, for all t > #;.

Hence, due to the assumption that ||z (¢)|| > ||z*|| for ¢ > T, we conclude that under the hypotheses of the
theorem, there exist r > 1 and 5 > T, such that

(3.16)

(3.17)

()  3—aed)

r|B(t)le* (1)t

40
2 3 2

Further, if we take » > 1 we conclude that there exist s > 0 and t5 > tg such that

|80 - 3600

18O

+

B(t)

4

) 1 (|[z(t)]2 — |lz*|2) < 0, for all t > %.

Finally, due to the hypotheses of the theorem, for ¢ big enough

(3.18)

9

2a(a — 3)

tp*1 —

e(t)tPt <.

<0, for all t > ts.

Hence, there exists t3 big enough such that (3.16), (3.17), (3.18)and (3.15) yield

(3.19)

Et) <

r|B(t)le* (#)tr

4

(1> +

3 —

(07

+

tA(t) —

$8(1)] s

6

4t

tPTY|&()||2, for all ¢ > ts.
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Now if a = 3 then by assumption v =0, 8 > 0 and p = 0. Hence, (3.19) becomes

rBe(t)t

(3.20) £t < DX o 4. 22

H (t)||?, for all t > ts.

By integrating (3.20) on [ts,t] for an arbitrary ¢ > t3, we obtain that

¢

(3.21) E(t) < E&(ts) + %||x*||2/ 6)0do + —/ —[|&(0)*d6.
ts

From (3.5), we have that

e(t)

E®) = = (lzenl* = 12717 + () = e I1*) = Bte(t){@(®), zew)),

which combined with (3.21) gives

28(t I
32) a0 -l <101 = o P+ 28 + 22 (60} + e Pz [ e(0)0as
Bs ti 2
+ o | glHOd

According to Lemma 3.1, &(t) is bounded. Further x ;) — 2*, t — +00, hence lim;_, 4 2%(3’:(15), Tepy) = 0.

According to the hypotheses of the theorem one has lim;_, 4 o ﬁ fttg €2(0)0df = 0.

Finally, from Lemma 3.1 we have ||&(6)||> € L*([to, +o0),R), hence lim;_, 4 oo E(t t2 f £[1&(0)]12d6 = 0.
Consequently, the right hand side of (3.22) goes to 0 as t — +00, hence lim;_, 4 o0 ||ac( ) =Tyl = 0, that

is,

lim z(t) = 2*.
t—+o0o

Now if o > 3 then obviously there exists t4 > t3 such that
3_q |tB()—5B()|s

<0, f 1Nt>t,.
6 + o <0, forallt >ty

Hence, (3.19) leads to

(3.23) Et) < %lg(t)

tPT2|| 2|2, for all t > t,.

By integrating (3.23) on [t4,t] for an arbitrary ¢ > t4, and taking into account that 5(t) = v+ % is bounded
and p = %‘3, we obtain that there exists an R > 0 such that

(3.24) 0 gg(t4)+R||x*H2/ €2(s)s3+1ds.

ty

From (3.5), we have that

e(t)

E@) 2 7= (llwen P = 127117 + [l2(t) = e [I7) = 72 BB} (@ (1), weqr)),

hence we obtain that

" 28 (t4) 2R

(3:25) la(t) = ol < oI ~ e I° + g + 28(0(0), ) +

t
2 2 a4
—_— €“(s)s3 T ds.

el [ )
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From Theorem 2.1, we have that @(t) — 0 as t — co. Since z) — x*we get that 26(t)(&(t), zer)) — 0
as t — 0o. Now by the hypotheses of the theorem we have that

t
e(t)t3 - 400 and thH / €2(s)s3tds — 0 as t — +oo
3

G(t) ty

hence, we get that the limit of the right hand side in (3.25) goes to 0 as t — +o0.
Consequently, ||2(t) — 2| — 0, t — 400, that is,

*

tllgloo:c(t) ="

Now, we analyze the second case as follows.
Case II: Assume that there exists T' > tg such that the trajectory {xz(t) : ¢ > T} stays in the open ball
B (0, ||z*||) Equivalently, we have that ||z(t)|| < ||z*| for every ¢ > T. By the fact that

—+o0

t

/ ﬂdt < 400
to t

and with respect to Theorem 2.3 and Theorem 2.1, we have that

Jim g(z(t)) = ming.

Now, we take T € H a weak sequential cluster point of the trajectory x, which exists since the trajectory
is bounded. This means that there exists a sequence (t,),cy € [T, +00) such that ¢, — +oo and z (t,)
converges weakly to & as n — +o0o. We know that g is weakly lower semicontinuous, so one has

-\ < L —
9(z) < liminfg (z (ty)) = ming,
hence z € argmin g. Now, since the norm is weakly lower semicontinuous one has that
2] < Timinfy s oo [|2 (En) || < [l2*],

which, from the definition of z*, implies that Z = a*. This shows that the trajectory x(-) converges weakly
to z*. So
[[*[] < lim inf [[()]| < Timsup [lz(2)]] < [[«"]],
—+oo t— 400

hence we have
. - *
Jim_[la(0)] = [la”]]

From the previous relation and the fact that z(t) — z* as t — +o00, we obtain the strong convergence, i.e.
lim z(t) = 2*.
t——+o0o
Finally, the last case reads as follows.
Case III: We suppose that for every T' > t, there exists ¢ > T such that ||z*|| > ||z(¢)| and also there exists
s > T such that ||z*|| < ||z(s)|. From the continuity of the unique strong global solution z(-), we find that

there exists a sequence (t,),cy C [to, +00) such that ¢, — +00 as n — +o0 and, for all n € N we have

[l (Ea)ll = [l"]] -
In order to show that z (t,) — z* as n — 400, we let T € H to be a weak sequential cluster point of
(% (tn)),en- By using that the sequence is bounded and by employing arguments similar to the previous
case, we eventually find that (x (t,)),,cy converges weakly to z* as n — +oco. Obviously ||z (t,)|| — ||=*|| as
n — +o00. So, it follows that ||z (t,) — z*|| — 0 as n — 4o00. This leads to

tin inf [J2(t) — 27| = 0,

and the proof is over. O
REMARK 4. Observe that according to (3.23), in case o > 3, v = 0 it is enough to assume that

. 1 Y a2
tli)rgl()W\/t E(S)SSdS—O.
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4. Conclusion, perspectives. The dynamical system (1.1) studied in this paper can be seen as a
second order system with implicit Hessian driven damping, therefore it is in strong connection with the
dynamical system studied in [20]. At the same time, (1.1) is a perturbed version of the dynamical system
with asymptotically vanishing damping considered in [10]. We have shown that (1.1) possess all the valuable
properties of the two related systems, as we obtained fast convergence of velocities to zero, integral estimates
for the gradient of the objective function and fast convergence of the objective function values to the minimum
of the objective function. Further, depending the Tikhonov regularization parameter €(t) goes fast or slow
to zero, we obtained weak convergence of the trajectories to a minimizer of the objective function and strong
convergence of the trajectories to a minimizer of minimum norm, respectively. Even more, by using the
techniques from [16], we were able to obtain both strong convergence of the trajectories to a minimizer of
minimum norm and fast convergence of the function values for the same dynamics.

The article presents the basic analysis of the dynamical system (1.1), many aspects of which have
yet to be developed. We ought to enlarge the framework by considering optimization problems with non-
smooth convex objective function and in the corresponding dynamical system, with or without Tikhonov
regularization term, to replace the function by its Moreau envelope, (see [15]). Further, we intend to study
the inertial algorithms obtained from (1.1) via explicit discretization and by taking advantage by the fact that
these algorithms may have different inertial terms (see [3]), to obtain convergence of the generated sequences
to a minimizer of the objective function. The Tikhonov regularization of these algorithms may allow to obtain
strong convergence of the generated sequences to a minimizer of minimal norm of the objective function,
(see [16]). Some recent results show that for non-convex objective, considering different inertial terms in the
corresponding algorithms, bring some improvements (see [28]). It would be interesting to show that similar
results hold also in convex case. However, if we discretize the dynamical system (1.1) by making use the
Taylor expansion of the gradient we obtain inertial algorithms similar to the algorithms considered in [§]
and [2]. Further, in case the objective function is non-smooth, the above described discretization techniques
lead to algorithms which are related to the celebrated algorithms (RIPA) [18] and (PRINAM) [14].

Acknowledgements The authors are thankful to three anonymous reviewers for their comments and sug-
gestions which improved the quality of the paper.

Appendix A. Existence and uniqueness of the trajectories generated by the dynamical
system (1.1). In what follows we show the existence and uniqueness of a classical C? solution z of the
dynamical system (1.1). To this purpose we rewrite (1.1) as a first order system relevant for the Cauchy-
Lipschitz-Picard theorem.

THEOREM A.l. Let (ug,vg) € H X H. Then, the dynamical system (1.1) admits a unique global
C?((to, +00),H) solution.

PROOF . Indeed, by using the notation X (¢) := (z(t),(t)), the dynamical system (1.1) can be put in
the form

X(t) = F(t, X(t))
(A.1) {X(to) = (uo,v0),

where F : [tg,00) X H X H — H x H, F(t,u,v) = (v,—%v —¢e(t)u — Vg (u+ <7+ %) v))

Our proof is inspired from [12]. Since Vg is Lipschitz on bounded sets, it is obvious that for (A.1) the
classical Cauchy-Picard theorem can be applied, hence, there exist a unique C' local solution X. Conse-
quently, (1.1) has a unique C? local solution. Let z be a maximal solution of (1.1), defined on an interval
[t0, Tmax)s Tmax < +00. In order to prove that & is bounded on [tg, Tmax) One can use the same arguments
as in the proof of Lemma 3.1.

Let [[#ooll = SUPsefty 1ne) 12(H) || and assume that Tinax < 4o00. Since [[2(t) — z(¥')[| < |lZoo [t — '], We
get that lim;_, 7 2(t) := 2o, € H. By (1.1) the map Z is also bounded on the interval [tg, Tax) and under

max

the same argument as before lim;_, 7 4(t) := z exists. Applying the local existence theorem with initial

data (e, Too), we can extend the maximal solution to a strictly larger interval, a clear contradiction. Hence
Tiax = +00, which completes the proof. O

Appendix B. Auxiliary results. In this appendix, we collect some lemmas and technical results
which we will use in the analysis of the dynamical system (1.1). The following lemma was stated for instance
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in [10, Lemma A.3] and is used to prove the convergence of the objective function along the trajectory to its
minimal value.

LEMMA B.1. Let 6 > 0 and f € L'((5,+00),R) be a nonnegative and continuous function. Let ¢ :
[0, +00) — [0, +00) be a nondecreasing function such that lime_, o p(t) = +00. Then it holds

1 t
lim — s)f(s)ds = 0.
Jim — [ er

The following statement is the continuous counterpart of a convergence result of quasi-Fejér monotone
sequences. For its proofs we refer to [1, Lemma 5.1].

LEMMA B.2. Suppose that F : [ty,+00) — R is locally absolutely continuous and bounded from below
and that there exists G € L([ty, +00),R) such that

%mwgam

for almost every t € [tg, +00). Then there exists lim¢_, oo F'(t) € R.
The following technical result is [19, Lemma 2].

LEMMA B.3. Let u : [tg, +00) — H be a continuously differentiable function satisfying u(t) + Lu(t) —
u € H ast — 400, where a > 0. Then u(t) = u as t — +oo.

The continuous version of the Opial Lemma (see [9]) is the main tool for proving weak convergence for
the generated trajectory.

LEMMA B.4. Let S CH be a nonempty set and x : [tg, +00) — H a given map such that:
(1) for every z € S the limit lim |x(t) — z|| ezists;
t—+oo
(i) every weak sequential limit point of x(t) belongs to the set S.

Then the trajectory x(t) converges weakly to an element in S as t — 400.

LEMMA B.5. (Lemma A.6 [18]) Let to > 0 and let w : [tg, +00) — R be a continuously differentiable
function which is bounded from below. Given a nonnegative function 6, let us assume that

ti(t) + aw(t) + 0(t) < k(t),

for some o > 1, almost every t > to, and some nonnegative function k € L*((ty, +o0),R).
Then, the positive part [w]4 of W belongs to L'((to, +00),R) and lims_, oo w(t) exists. Moreover, we
have

+oo
/ O(t)dt < +oc.

to
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