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Abstract

We consider the numerical approximation of the linear ill-posed problem of unique contin-
uation for the Helmholtz equation. We first review the conditional stability of this problem
and then discuss high-order conforming finite element methods, with regularization added
on the discrete level using gradient jump penalty and Galerkin least squares. The method
is shown to converge in terms of the stability of the problem, quantified by the Hölder
exponent, and the polynomial degree of approximation. The analysis also takes into ac-
count possibly noisy data. Numerical examples illustrating the theory are presented for a
Helmholtz version of the classical Hadamard example for two geometric configurations with
different stability properties for the continuation problem, including data perturbations of
different amplitudes.

1 Introduction

Acoustic waves are typically modeled by the Helmholtz equation when their propagation is
considered in the frequency domain. For such partial differential equations (PDEs), we are
interested in the numerical approximation of linear ill-posed problems appearing in the context
of data assimilation, control theory and inverse problems. More precisely, we consider the
unique continuation problem, in which no boundary conditions are known, but measurements
of the solution are available in a subset of the domain. For an elliptic operator such data
can be extended uniquely due to the unique continuation principle: our goal is to numerically
approximate the solution in a target domain.

This ill-posed problem has been recently considered in [BNO19BNO19], with theoretical results
addressing quantitative unique continuation (in norms suitable for numerical analysis) with
explicit dependence on the frequency. The stability of the problem is conditional–one must
a priori assume a certain bound on the solution–and has Hölder continuity, quantifying the
degree of ill-posedness. The sensitivity of the stability estimates with respect to the frequency
depends on the geometric configuration and is crucially determined by a convexity condition
on the geometry of the target domain relative to the data domain. Roughly speaking, when
the target domain is inside the convex hull of the data domain, the stability constant is ro-
bust in the frequency, or grows at most linearly, depending on the norm used (L2 or H1). On
the other hand, when the solution is estimated outside of the convex hull of the data domain,
the stability is very sensitive to the frequency as the constants can grow superpolynomially.
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From the computational point of view, [BNO19BNO19] introduced and analyzed a low-order finite
element method (FEM). In brief, the Helmholtz unique continuation problem–formulated as a
PDE-constrained optimization problem–is first discretized using standard piecewise affine el-
ements and then regularization is added using established techniques from the literature on
stabilized FEM. Convergence is proven using the conditional stability estimates from the con-
tinuous level. This discretize-then-regularize framework represents an alternative to the more
standard Tikhonov regularization (see [BHL18BHL18] for a comparison) and, in particular, it provides
a way of unifying the analysis of the discretization error and the data perturbation error. In
this paper we adopt the same framework but consider high-order conforming approximations.

In general, (well-posed) Helmholtz problems are challenging to solve numerically: first, due
to the oscillatory nature of the solutions, and secondly, due to the so-called pollution effect
[BS97BS97]: the constant bounding the error by the best-approximation error increases with the
frequency, preventing the error estimate from being quasi-optimal. High-order methods are
typically preferred for such problems since, besides the usual improvement in accuracy, the
pollution effect can be reduced or, under some conditions, even eliminated when increasing
the polynomial degree of the approximation [MS11MS11]. When it comes to ill-posed problems for
elliptic equations, high-order FEM were introduced in [Bur13Bur13] and subsequently analyzed in
[Bur16Bur16] for conditionally stable problems (with a focus on the elliptic Cauchy problem), where
it was illustrated numerically that, when dealing with such problems, faster convergence comes
with a price: a higher sensitivity to possible perturbations in data. For the Helmholtz equation,
a high-order hybridized discontinuous Galerkin method for the unique continuation problem
was recently proposed in [BDE21BDE21]. Error estimates were proven in terms of the degree of ill-
posedness, the polynomial order and perturbations in data (which get amplified as the order
increases). However, a study of standard high-order conforming methods for such ill-posed
Helmholtz problems is currently missing from the literature and the aim of this paper is to fill
this gap.

2 Ill-posed problem

Ω

ω

Figure 1: Domains for the unique continuation problem (11).

Let Ω ⊂ Rd, d ∈ {2, 3}, be an open, bounded and connected set, and let ω ⊂ Ω be a subset (also
open, bounded and connected), as in Figure 1Figure 1. For the Helmholtz equation with wave number
k > 0 (from now on called frequency, for convenience), we consider the unique continuation
problem of finding u ∈ H1(Ω) such that{

−∆u− k2u = f in Ω,

u = g in ω,
(1)
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with source term f ∈ L2(Ω) and interior datum g ∈ H1(ω). Note that no boundary conditions
are prescribed, and partial measurements are given in a subset of the domain. If problem (11)
has a solution, then its uniqueness is guaranteed by the unique continuation principle for elliptic
operators, see for example [Isa17Isa17]. We will assume that the data f and g are compatible, such
that the function g is the restriction on ω of a solution to the Helmholtz equation with source
term f .

It is well-known, see for example [Isa17Isa17], that problem (11) is ill-posed in the sense of
Hadamard: there is no uniform stability with respect to the data f and g. The reason for
this is the fact that the operator mapping a function u to the corresponding pair (f, g) does
not have a closed range, and its generalized inverse is, thus, discontinuous. This means that
one can find functions in the kernel of the Helmholtz operator that are small in the data set
ω, but grow exponentially away from it, as in the example given in Section 4Section 4 concerning the
Hadamard-type solutions (2020). Nonetheless, assuming an additional a priori bound, the solution
can be bounded by the data—this is known as conditional stability and in what follows we will
present a local version of it.

2.1 Conditional stability and frequency dependence

We denote by B ⊂ Ω the target set containing ω such that B \ ω̄ ⊂ Ω, that is B \ ω does not
touch the boundary of Ω. It is well-known, see for example [Isa17Isa17], that there exist constants
Cst(k) > 0 and α ∈ (0, 1] such that the following Hölder stability estimate holds

‖u‖H1(B) ≤ Cst(k)
(
‖f‖L2(Ω) + ‖g‖H1(ω)

)α ‖u‖1−αH1(Ω) , (2)

for any u ∈ H1(Ω) satisfying (11), where the stability constant Cst(k) depends on the frequency
k, typically in an implicit way. The exponent α ∈ (0, 1] encodes the degree of ill-posedness
for the continuation problem: note that α = 1 would correspond to a well-posed problem with
Lipschitz stability, and as α < 1 gets smaller the Hölder stability deteriorates. Both Cst and α
depend on the geometric configuration in a nontrivial way.

ω

B

(a) Cst sensitive to k.

ω

B

(b) Cst robust in k.

Figure 2: Different frequency dependence for the stability constant. Data set ω (dark grey) and
target set B (light grey). Ω is the large box.

How the stability constant Cst(k) depends on the frequency k is an important aspect for
the stability of this ill-posed Helmholtz problem. For example, when there is a straight line
that intersects B but not ω̄, as in Figure 2aFigure 2a, it was proven in [BNO19BNO19, Example 4] that for any
N ∈ N, Cst(k) ≤ kN cannot hold uniformly in k–in other words, the stability constant in (22)
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grows superpolynomially in the frequency. Estimates with such a fast growth might be relevant
in practice only for low frequencies, and it is thus of interest to consider obtaining estimates
with a more favorable frequency dependence. Bounds that have a good behavior with respect
to the frequency can be obtained under a convexity condition of the target domain B relative to
the data set ω–essentially that B is included in the convex hull of ω, as for example in Figure 2bFigure 2b.
Such a condition was first considered in [HI04HI04], where is was shown that the stability of the
solution in the L2-norm can actually improve in a certain sense as the frequency increases. In
this vein, similar results that make use of a convexity condition were proven in [BNO19BNO19] for a
particular geometric setting prototypical for continuation inside the convex hull of ω. It was
shown in [BNO19BNO19, Corollary 2] that the bound (22) is robust with respect to the frequency, i.e.,
it holds with the stability constant Cst independent of k. This robust bound is also valid for
other geometric configurations, as for example the one in Figure 2bFigure 2b.

In order to use such conditional stability estimates for the numerical analysis of a finite
element method, the norms for measuring the data must be weaken: from L2(Ω) and H1(ω) to
H−1(Ω) and L2(ω), respectively. A result of this kind was proven in [BNO19BNO19, Corollary 3 and
Lemma 2] under a geometric convexity condition. More precisely, there exist constants C > 0
and α ∈ (0, 1] such that

‖∇u‖L2(B) + k ‖u‖L2(B) ≤ Ck
(
‖f‖H−1(Ω) + ‖g‖L2(ω)

)α( ‖f‖H−1(Ω) + ‖u‖L2(Ω)

)1−α
, (3)

for any u ∈ H1(Ω) satisfying (11). Note that the bound is robust in the L2-norm, while the
frequency dependence is linear for the H1-seminorm. Apart from the good dependence on the
frequency, this kind of estimate is particularly suitable for numerical analysis since it can be
directly applied to the finite element error equation.

As discussed above, when the domains do not satisfy the convexity condition, the stability
constant can be sensitive to the frequency. To mark the difference, in general we write the
stability estimate as follows: there exist constants Cst(k) > 0 and α ∈ (0, 1] such that

‖u‖H1(B) ≤ Cst(k)
(
‖f‖H−1(Ω) + ‖g‖L2(ω)

)α( ‖f‖H−1(Ω) + ‖u‖L2(Ω)

)1−α
. (4)

Let us also remark that for three-ball inequalities (where ω,B,Ω are concentric balls) it was
recently shown in [BM21BM21] that, when using the maximum norm, Cst(k) grows exponentially in
k and this dependence is optimal.

3 Discretization, regularization and error analysis

3.1 Finite element preliminaries

From now on we will consider for simplicity that Ω ⊂ Rd, d ∈ {2, 3}, is a convex polygo-
nal/polyhedral domain. Let {Th}h>0 be a quasi-uniform family of shape-regular meshes cover-
ing Ω, each triangulation Th containing elements K with maximal diameter h. Let p denote the
polynomial degree of approximation and let Pp(K) be the set of polynomials of degree at most
p defined on an element K. We consider the conforming finite element space

V p
h :=

{
vh ∈ H1(Ω) : vh|K ∈ Pp(K), ∀K ∈ Th

}
,

with continuous, piecewise polynomial functions defined on the mesh Th, and its subspace with
homogeneous boundary conditions

W p
h := V p

h ∩H
1
0 (Ω).
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For a given mesh, we collect all the interior edges/faces of the elements in the set Fi and denote
the jump of a quantity across such an edge/face F by J·KF , omitting the subscript whenever
there is no confusion. For a discrete function vh ∈ V p

h , we denote the jump of the normal
gradient across F ∈ Fi by

J∇vh · nKF := ∇vh · n1|K1 +∇vh · n2|K2 ,

with K1,K2 ∈ Th being two elements such that K1 ∩K2 = F , and n1, n2 the outward pointing
normals of K1,K2, respectively.

We now recall some classical finite element results, see for example [EG21EG21]. We will use the
inverse inequality

‖∇vh‖L2(K) ≤ Ch−1‖vh‖L2(K), ∀vh ∈ Pp(K). (5)

and the trace inequality

‖v‖L2(∂K) ≤ C(h−
1
2 ‖v‖L2(K) + h

1
2 ‖∇v‖L2(K)), ∀v ∈ H1(K). (6)

We denote by πh : L2(Ω)→ V p
h the L2-projection, that satisfies the orthogonality

(u− πhu, vh)L2(Ω) = 0, ∀u ∈ L2(Ω), ∀vh ∈ V p
h .

The L2-projection is stable in the L2-norm

‖πhu‖L2(Ω) ≤ ‖u‖L2(Ω) , ∀u ∈ L2(Ω),

and, since the family {Th} is quasi-uniform, it is also stable in the H1-norm

‖πhu‖H1(Ω) ≤ C ‖u‖H1(Ω) , ∀u ∈ H1(Ω).

We also use the Scott-Zhang interpolant πsz : H1(Ω)→ V p
h which preserves vanishing Dirichlet

boundary conditions. This interpolant is stable in both the L2- and the H1-norm and enjoys
the same approximation error estimate as the L2-projection

‖u− ihu‖L2(Ω) + h ‖∇(u− ihu)‖L2(Ω) ≤ Ch
m|u|Hm(Ω), ∀u ∈ Hm(Ω), ih = πh, πsz. (7)

3.2 Discretization

We denote the standard inner product (with its induced norm) on a set S by

(vh, wh)S :=

∫
S
vhwhdx,

and define on V p
h ×W

p
h the standard bilinear form corresponding to the Helmholtz equation

a(uh, wh) := (∇uh,∇wh)Ω − k2(uh, wh)Ω.

The discrete weak form of the continuation problem (11) reads as follows: find uh ∈ V p
h such

that
a(uh, wh) = (f, wh)Ω, ∀wh ∈W p

h and uh = g in ω. (8)

To take into account the presence of noise in the measurements, we will consider the perturbed
datum

g̃ = g + δg, δg ∈ L2(ω).
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As a starting point, the continuation problem can be formulated on the discrete level as a
constrained minimization:

min
uh∈V p

h

1
2 ‖uh − g̃‖

2
ω subject to a(uh, wh) = (f, wh)Ω, ∀wh ∈W p

h ,

where the L2-distance to the interior datum is minimized under the constraint of the weak
form of the differential equation. Introducing a test function as a Lagrange multiplier, one can
consider the discrete Lagrangian functional

L0
h(uh, zh) := 1

2 ‖uh − g̃‖
2
ω + a(uh, zh)− (f, zh)Ω, (uh, zh) ∈ V p

h ×W
p
h .

The solution to the above optimization problem is given by the saddle-points of L0
h, satisfying

the Euler-Lagrange equations. However, the ill-posedness of problem (88) has not been alleviated
in any way by this reformulation, and the optimality conditions lead to a linear system that
might be singular.

3.3 Regularization

To mitigate the ill-posedness, one must regularize the problem by adding some penalty terms
that provide well-posedness. The approach that we take herein has been introduced in [Bur13Bur13]
and is a discretize-then-regularize one. We add the regularization terms on the discrete level,
using techniques from stabilized FEM for numerically unstable well-posed problems: gradient
jump penalty and Galerkin least squares. Apart from providing the needed stability, the regu-
larizing terms should ideally perturb the problem in a weakly consistent way by converging to
zero at optimal rates for smooth enough solutions.

For an approximation uh ∈ V p
h and a Lagrange multiplier zh ∈ W p

h , we consider the regu-
larized Lagrangian

Lh(uh, zh) := 1
2 ‖uh − g̃‖

2
L2(ω) + 1

2s(uh − u, uh − u)− 1
2s
∗(zh, zh) + ah(uh, zh)− (f, zh)Ω, (9)

with s and s∗ being the stabilization/regularization terms, to be specified later. The saddle-
points (uh, zh) ∈ V p

h ×W
p
h of Lh satisfy the optimality conditions: for any (vh, wh) ∈ V p

h ×W
p
h ,{

0 = ∂uhLhvh = (uh − g̃, vh)ω + s(uh − u, vh) + a(vh, zh),

0 = ∂zhLhwh = −s∗(zh, wh) + a(uh, wh)− (f, wh)Ω.

The stabilized finite element method is thus looking for (uh, zh) ∈ V p
h ×W

p
h such that{

(uh, vh)ω + s(uh, vh) + a(vh, zh) = (g̃, vh)ω + s(u, vh)
a(uh, wh)− s∗(zh, wh) = (f, wh)Ω

, ∀(vh, wh) ∈ V p
h ×W

p
h . (10)

The linear system associated to this problem can be represented in block matrix form as[
Mω + S AT

A −S∗
] [

uh
zh

]
=

[
g̃ + su
f

]
.

To address the well-posedness of the discrete problem we must prove that it satisfies an inf-sup
condition. For this, let us introduce the bilinear form

Ah[(uh, zh), (vh, wh)] := (uh, vh)ω + s(uh, vh) + ah(vh, zh)− s∗(zh, wh) + ah(uh, wh),

for which the system (1010) reads as follows: find (uh, zh) ∈ V p
h ×W

p
h such that

Ah[(uh, zh), (vh, wh)] = (g̃, vh)ω + s(u, vh) + (f, wh)Ω, ∀(vh, wh) ∈ V p
h ×W

p
h .
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Notice that a simple choice of the test functions gives that

Ah[(uh, zh), (uh,−zh)] = ‖uh‖2ω + s(uh, uh) + s∗(zh, zh).

To prove an inf-sup condition, it is enough to define the stabilizing bilinear forms s and s∗ such
that

‖(vh, wh)‖s :=
(
‖vh‖2ω + s(vh, vh) + s∗(wh, wh)

) 1
2 (11)

represents a norm on V p
h ×W

p
h . Indeed, we have that

Ah[(uh, zh), (uh,−zh)] = ‖(uh, zh)‖2s

and hence we obtain the following inf-sup condition

sup
(vh,wh)∈V p

h×W
p
h

Ah[(uh, zh), (vh, wh)]

‖(vh, wh)‖s
≥ ‖(uh, zh)‖s , (12)

which is equivalent to the well-posedness of the discrete problem (1010).
We now present some stabilization operators that satisfy the criteria discussed above. First,

we define the gradient jump penalty, also known as continuous interior penalty (CIP),

Jh(uh, vh) :=
∑
F∈Fi

∫
F
hJ∇uh · nKF J∇vh · nKF ds,

to which we add the Galerkin least squares and define the bilinear form s : V p
h × V

p
h by

s(uh, vh) := γJh(uh, vh) + γh2(Luh,Lvh)Ω + h2p(∇uh,∇vh)Ω. (13)

This represents the primal stabilization that will act on the approximation uh ∈ V p
h . The

constant parameter γ > 0 is meant to tune the stabilization empirically and will be omitted
from the analysis. The presence of the gradient term in s is motivated by the a priori H1-
bound that the discrete solution must satisfy (uniformly in h) in order to be able to use the
conditional stability from the continuous level, see also [Bur16Bur16]. This gradient term is not needed
for piecewise affine approximations. The right-hand side term in (1010) for the true solution u is
given by

s(u, vh) = h2(f,Lvh).

For the dual stabilizer s∗ : W p
h ×W

p
h acting on zh ∈W p

h , we take

s∗(zh, wh) = (∇zh,∇wh)Ω. (14)

With this choice, since the finite element space contains piecewise polynomials we have that s
induces a norm on V p

h , and also that s∗ induces a norm on W p
h . We will denote these norms by

‖vh‖V p
h

:= s(vh, vh)
1
2 , ‖wh‖W p

h
:= s∗(wh, wh)

1
2 . (15)

Note that (1111) is indeed a norm on V p
h ×W

p
h , thus guaranteeing the inf-sup condition (1212) is

satisfied. This means that the discrete problem is well-posed.
From the standard approximation (77) and the trace inequality (66), we have the approxima-

tion bound in the stabilization norm

‖u− πhu‖V p
h
≤ Chp ‖u‖Hp+1(Ω) . (16)

Let us now motivate the choice for the gradient jump penalty Jh and the Galerkin least
squares stabilization in the primal stabilizer (1313) by the following continuity result.
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Lemma 1. Let u ∈ H1(Ω), uh ∈ V p
h , w ∈ H

1
0 (Ω) and the norm ‖w‖# := h−1 ‖w‖Ω + ‖∇w‖Ω.

Then
a(u− uh, w) ≤ C ‖(u− uh, 0)‖s ‖w‖# .

Proof. Integrating by parts and using the continuous trace inequality (66)

a(u− uh, w) = (∇(u− uh),∇w)Ω − k2(u− uh, w)Ω

= (L(u− uh), w)Ω +
∑
F∈Fi

∫
F
J∇(u− uh) · nKF w ds

= (hL(u− uh), h−1w)Ω + Jh(u− uh, u− uh)
1
2
(
h−1 ‖w‖Ω + ‖∇w‖Ω

)
≤ C ‖u− uh‖V p

h

(
h−1 ‖w‖Ω + ‖∇w‖Ω

)
.

3.4 Error analysis

We start by proving that the stabilization/regularization converges optimally for smooth so-
lutions in the norm ‖(uh − πhu, zh)‖s. Note that this is independent of the stability of the
continuous problem.

Lemma 2. Let u ∈ Hp+1(Ω) be the solution to (11) and let (uh, zh) ∈ V p
h ×W

p
h be the finite

element solution to (1010). Then

‖(u− uh, zh)‖s ≤ C(hp ‖u‖Hp+1(Ω) + ‖δg‖ω).

Proof. From the triangle inequality we have that

‖(u− uh, zh)‖s ≤ ‖(u− πhu, 0)‖s + ‖(uh − πhu, zh)‖s .

The first term is bounded from the approximation estimate (1616) and we only need to focus on
the second term. Let us start by expanding

‖(uh − πhu, zh)‖2s = (uh, uh − πhu)ω + s(uh, uh − πhu) + s∗(zh, zh)

− (πhu, uh − πhu)ω − s(πhu, uh − πhu)
(17)

For the first row of this expansion we use (1010)1 and we have that

(uh, uh − πhu)ω + s(uh, uh − πhu) + a(uh − πhu, zh) = (g̃, uh − πhu)ω + s(u, uh − πhu).

We can use (1010)2 to write

a(uh − πhu, zh) = s∗(zh, zh) + (f, zh)Ω − a(πhu, zh)

= s∗(zh, zh) + a(u− πhu, zh),

thus giving that

(uh, uh − πhu)ω + s(uh, uh − πhu) + s∗(zh, zh) = (g̃, uh − πhu)ω + s(u, uh − πhu)

− a(u− πhu, zh)

Returning to the stabilization norm (1717), we obtain that

‖(uh − πhu, zh)‖2s = (g̃ − πhu, uh − πhu)ω + a(πhu− u, zh) + s(u− πhu, uh − πhu) (18)
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We now discuss the convergence of these three terms. First, by Cauchy-Schwarz and standard
approximation (77) we bound

(g̃ − πhu, uh − πhu)ω ≤ ‖g̃ − πhu‖ω ‖uh − πhu‖ω
≤ C(hp+1 ‖u‖Hp+1(Ω) + ‖δg‖ω) ‖uh − πhu‖ω .

Second, since πh is the L2-projection we use orthogonality and again the approximation (77) to
write

a(πhu− u, zh) = (∇(πhu− u),∇zh)Ω ≤ Chp ‖u‖Hp+1(Ω) ‖zh‖W p
h

Third,

s(u− πhu, uh − πhu) ≤ ‖u− πhu‖V p
h
‖uh − πhu‖V p

h
≤ Chp ‖u‖Hp+1(Ω) ‖uh − πhu‖V p

h
,

where we used the approximation bound (1616). Collecting the bounds for the terms in (1818), we
conclude that

‖(uh − πhu, zh)‖2s ≤ C(hp ‖u‖Hp+1(Ω) + ‖δg‖ω) ‖(uh − πhu, zh)‖s
and hence

‖(uh − πhu, zh)‖s ≤ C(hp ‖u‖Hp+1(Ω) + ‖δg‖ω).

We continue by proving that the dual norm of the residual can be controlled by the stabi-
lization.

Lemma 3. Let u ∈ Hp+1(Ω) be the solution to (11) and let (uh, zh) ∈ V p
h ×W

p
h be the finite

element solution to (1010). Let r ∈ H−1(Ω) be the residual
〈
r, w

〉
= a(u − uh, w), w ∈ H1

0 (Ω).
Then

‖r‖H−1(Ω) ≤ ‖(u− uh, zh)‖s ≤ C(hp ‖u‖Hp+1(Ω) + ‖δg‖ω).

Proof. Let us first recall from (1010) that

a(uh, wh)− s∗(zh, wh) = (f, wh)Ω = a(u,wh), ∀wh ∈W p
h ,

which gives the Galerkin orthogonality

a(u− uh, wh) = −s∗(zh, wh), ∀wh ∈W p
h .

Using an interpolant πsz of Scott-Zhang type, we write the residual〈
r, w

〉
= a(u− uh, w) = a(u− uh, w − πszw) + a(u− uh, πszw)

= a(u− uh, w − πszw)− s∗(zh, πszw)

From the continuity Lemma 1Lemma 1 and interpolation inequality (77) we bound the first term

a(u− uh, w − πsz) ≤ ‖(u− uh, 0)‖s ‖w − πszw‖# ≤ ‖(u− uh, 0)‖s ‖w‖H1(Ω)

The second term is bounded by Cauchy-Schwarz and the stability of the interpolant

−s∗(zh, πsz) ≤ ‖∇zh‖Ω ‖πszw‖Ω ≤ ‖(0, zh)‖s ‖w‖H1(Ω) ,

and we obtain that 〈
r, w

〉
≤ ‖(u− uh, zh)‖s ‖w‖H1(Ω) ,

with the conclusion following from

‖r‖H−1(Ω) ≤ ‖(u− uh, zh)‖s
and Lemma 2Lemma 2.
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We will now prove an error estimate on the solution in a target domain B, using the con-
ditional stability from Section 2Section 2. We will write a general version, with implicit dependence on
the frequency–this can be made explicit for particular geometric settings satisfying a convexity
condition.

Theorem 1. Let u ∈ Hp+1(Ω) be the solution to (11) and let (uh, zh) ∈ V p
h ×W

p
h be the finite

element solution to (1010). Then

‖u− uh‖H1(B) ≤ Cst(k)hαp(‖u‖Hp+1(Ω) + h−p ‖δg‖ω).

Proof. We consider the error u − uh together with the residual
〈
r, w

〉
= a(u − uh, w), for

w ∈ H1
0 (Ω), and apply the conditional stability estimate (44)

‖u− uh‖H1(B) ≤ Cst(k)
(
‖u− uh‖L2(ω) + ‖r‖H−1(Ω)

)α( ‖u− uh‖L2(Ω) + ‖r‖H−1(Ω)

)1−α
.

Note that ‖u− uh‖L2(ω) is bounded from Lemma 2Lemma 2 and the residual ‖r‖H−1(Ω) is bounded from
Lemma 3Lemma 3. Bounding

‖u− uh‖L2(Ω) ≤ Ch
−p ‖(u− uh, 0)‖s ≤ C(‖u‖Hp+1(Ω) + h−p ‖δg‖ω),

we obtain that

‖u− uh‖H1(B) ≤ Cst(k)h(α−1)p(hp ‖u‖Hp+1(Ω) + ‖δg‖ω)

≤ Cst(k)hαp(‖u‖Hp+1(Ω) + h−p ‖δg‖ω).

Note that in Theorem 1Theorem 1 the convergence rate increases linearly with the polynomial degree
p of the approximation and in the case of well-posed problems (with α = 1) we recover the
optimal rate p. In the presence of noise, the error bound can degenerate and perturbations in
data get amplified as p increases, meaning that in practical settings the advantages of high-order
methods might be reduced. Also, one should consider a certain threshold after which refining
the mesh becomes detrimental.

4 Numerical experiments

We present numerical experiments for the Helmholtz unique continuation problem (11) solved
with the high-order conforming method (1010). The test case we will focus on has been considered
in [Nec20Nec20] and [BDE21BDE21], and represents the Helmholtz version of the classical Hadamard example
for ill-posed elliptic equations. Let n ∈ N and consider the Cauchy problem

∆u+ k2u = 0 in Ω := (0, π)× (0, 1),

u(x, 0) = 0 for x ∈ [0, π],

uy(x, 0) = sin(nx) for x ∈ [0, π],

(19)

whose solution for n > k is given by

u(x, y) =
1√

n2 − k2
sin(nx) sinh(

√
n2 − k2y), (20)

for n = k by u(x, y) = sin(kx)y, and for n < k by

u(x, y) =
1√

k2 − n2
sin(nx) sin(

√
k2 − n2y).
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For such Hadamard-type solutions, we will consider the interior datum g = u|ω and study the
convergence in the target set B for two geometric configurations of ω and B, as discussed in
Section 2Section 2, namely

ω = Ω \
[
π
4 ,

3π
4

]
× [0, 0.25], B = Ω \

[
π
4 ,

3π
4

]
× [0, 0.95], (21)

sketched in Figure 2bFigure 2b, and

ω =
(
π
4 ,

3π
4

)
× (0, 0.5), B =

(
π
8 ,

7π
8

)
× (0, 0.95), (22)

sketched in Figure 2aFigure 2a. To assess the effect of increasing the frequency, we will take n = 5, k = 1
and n = 11, k = 10, having similar values for

√
k2 − n2 in (2020). Noisy data is considered by

polluting the nodal values of the given restriction g with uniformly distributed values in [−h, h]
or [−h2, h2], for a noise amplitude O(h) or O(h2), respectively. The results shown below are
obtained with the stabilization parameter γ = 10−3 in the primal stabilizer (1313).

For the domains in (2121), data is given around three sides of the domain Ω and the stability
of the continuation problem is expected to be close to Lipschitz. Indeed, for approximations
of order p ∈ {1, 2, 3} we observe in Figure 3Figure 3 clear convergence with rate p, indicating that the
exponent α ≈ 1 in the conditional stability estimate (33). The convergence rates are in agreement
with the theoretical error estimates. Also, in this case the target set B is inside the convex hull
of the data set ω, and we notice that increasing the frequency has only a small effect on the
size of the errors, showing the robustness of the stability constants.

(a) n = 5, k = 1. (b) n = 11, k = 10.

Figure 3: Convergence rates for domains in (2121), good stability.
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(a) Noise amplitude O(h2). (b) Noise amplitude O(h).

Figure 4: Noisy data, convergence rates for domains in (2121), n = 5, k = 1.

In Figure 4Figure 4 we consider noisy data for the domains in (2121) with stability exponent α ≈ 1.
We observe that for a noise amplitude of O(h2) the perturbations have no impact for p ∈ {1, 2},
while for p = 3 one order of convergence is lost, as predicted by the theory. Increasing the
data perturbations to O(h) makes no difference for p = 1, while the convergence decreases by a
factor of h for p = 2, and by a factor of h2 for p = 3. This confirms the theoretical results and
shows that high-order methods are more sensitive to the size of the data perturbations.

(a) n = 5, k = 1. (b) n = 11, k = 10.

Figure 5: Convergence rates for domains in (2222), poor stability.

Figure 5Figure 5 shows the numerical results for the domains (2222), for which the stability of the
continuation problem–quantified by the exponent α� 1–is expected to be poor. For k = 1, the
convergence rate for p = 1 is close to 0.25 and increasing the frequency to k = 10 has a strong
effect on the numerics: the convergence rate for p = 1 is now close to 0.1 and the size of the
errors increase. This is due to the fact that continuation is done outside of the convex hull of
the data region, and the stability constants increase very fast with the frequency. Nevertheless,
in both plots we observe that the rates for quadratic and cubic approximations increase linearly
with the polynomial order p, as expected from Theorem 1Theorem 1.

12



(a) O(h2). (b) O(h).

Figure 6: Noisy data, convergence rates for domains in (2222), convexity condition not satisfied.

Perturbations in data for the domains (2222) are considered in Figure 6Figure 6. We see that for a
noise amplitude of O(h2) the perturbations have no impact, while for an amplitude of O(h) the
method does not seem to converge for p = 3. The noise effect for p = 2 does not seem apparent
for such coarse meshes, probably due to the large size of the stability constants. When using
high-order methods for problems with poor stability and large perturbations in data, it is clear
that one should consider stopping the mesh refinement before the accuracy of the approximation
starts to deteriorate.
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