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REZUMAT. — Maisura de necompaetitat y
dollea cu argument modificat, in Iaceast;‘iel$l ecuailile diferentiale de ordinul ol

Sate st ol fn Deone (1) (15, s St o
problgm.’l este' pnvxtr‘} Cca un caz particular al problemei IUipDiricm::aé 2 Acea:ti
ecuafia func;lonzfl-dlferentiali (3.1). Principalul rezultat referitor la'gxginnru
solutiei problemei (3.1), (3.2) este continut in Teorema I, in care a licatieiedzi
l“e'ub(’]‘;lad;ept al ectl‘mﬁei (3'-:;) i s(e1 cere si satisfaci o conditie maipslabi decit
aceea i compactd. Aceasti conditi nrimd L |

pactitate a lui lgumtowski. ondivie se exprimd cu ajutoral mésurii de uecom-

1. Introduction. This paper deals with the boundary value problem
w(t) = f{t, u(t), w'(€), w(g:(8), ..., ulgal), ¢ €1, (1.1)
u(t) = o(t), t € I' \\int I, (1.2)

in a real Banach space X, where I = [q,b], I'= [a,b'], &’ Sa<b<?,
/is a continuous mapping from I X Xm*2 into X, g(i =1, . ..,m) are copti-
nuous functions from I into I’ and ¢ is a continuous function from I\
int I into X. ‘

By a solution to problem (1.1), (1.2) we mecan a function » & C¥(I; X) N
NC(I'; X) satisfying conditions (1.1) and (1.2).

For u « C(I; X) lct us denote by #! (¢ = 1(, 4 otherns
into X, 2'(f) == n(g,(f)) if gi(t) € I and w'{t) = o(gi{f)) otherwise.

Let us crmsidﬁr )the ﬁmpping hiIx XXX xCI; X)—~X,

b, x, 3, u) = fl, £, w'{t), ..., w(t)), (1;3)

for t € J, x,v € X and » € C(I; X). L . P
A function # is a solution to (L.1), (1.2) if aid ouly if » = C(I; X) aud
satisfics

..., m) the function from I

w''(t) = hit, u(f), w(t);u), tel, (1.4).
w(a) = o(a), w(b) = 2(0) (15)

: | = by the continuity of
In the particular case when g() C I'_ i=1,...,m, D} .

/it follows ‘ihat / is also continuous. In this case, the existence (')If solutions tg
problem (1.4), (1.5) was established by K. Schm itt and 1I){ holln] Puiger
(17] assuming in addition the compactness of /i and also by us [

.more general additional conditions, on h.

—_——
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- jor A) C I, i=1, e M, the mapping (1.,3) may be .
, tinu(gesn?:]]},;oxb>£ )’ x C(I; X). Nevertheless, its restriction to th§°:u]°)2n;
I X X x X x G, where ¢

C, = {u € C(L; X): u(a) = o(a), u(d) = o(b)},

- ~ontinuols. The main result on the existence of solutions to (1.4),
111?1;tmrlg$:isr£ that h be a— Lipschitz (« being the Kuratowski measure o
:mncox’npactness). The proof of Theorem 1 uses the_,tOPO]OgJC{ll transversality
theorem (Lenay-Schauder’s alfcematlve) for condensing mappings, which g
been proved in [14] without using the tOPolpglcal degree. In addition, we make
use of a priori bounds techmique. Similar m\ethods: have been used by ¥
Schmittand R. Thompson (174, R. Thompson (18], A. Gran
nas, R. Guenther and J. Lee [8]. Theorem 1 may be compared with
the results obtained' by V. Lakshmikantham [11Jand J. Chandr,
V.Lakshmikantham, A. M.ltchell [5]. )

In particular, sufficient conditions for that the prolg]em (1.1), (1.2) have
solutiens are given. These conditions are relaxgd m case X = It»,

The existence theorems are stated in Section 3 and the main result, Theo-
rem 1, is proved in Section 4. In Section 5 a uniqueness theorem is given,

2. Preliminaires. Let X be a real Banach space, X* its dual. We sha]]
denote both the norm in X and its dual norm in X* by |-]. The valuc of
2* € X* at x € X will be denoted by (x* x). In case X = R* the bilincar
functional (.,.) stands for the scalar product.

Denote ||#)| =max (Ju()}:¢ 1) for u € C= C(I; X), ||u], = max
(Neelf, He']}) for u € C? = CYI; X) and || u ||, = max (||«]|, |[[«'(|, " }1)
for u  C2 = C¥I; X).

Let 9 be the duality mapping of X, ie. §: X — 2,

o= {a* € X>: (x%, 1) =[x =|2*}}, » € X.

(1.5), Theo.

"Recall that
(2%, y— 1) < —'2—|y|2—%|x|2, @.1)

for all ,y € X and x* & Jx.

Let us denote by « the Kuratowski measure of noncompactness; for each
bounded subset A of a Banach space one has

«(4) = inf {8 > 0: 4 can be convered by finitely many sets of diameter < 8}.
With a view to avoid any confusion we will denote o Juratowski mea-
sure of noncompactness on the Banach space (I ;132") ezlc‘;f)lielc?livitll the norm
ol = max (jju)], ..., ||um Il). Only for the space C(I; X) the Kuratowski
meas&re c])f noncompactness will be simply denoted by oc,instead of o,
L < I, whore fy = 2 bounded subset of C(I'; X) then a(d(f) < «(d) for all
RN I( )={ut):u « 4}C x. Moreover, we have
MMA L If 4 45 a bounded equicontinuons subset of C(I; X) then

“4) = a(4(I)) = sup («(A(t)): ¢ = 1), : (2:2)
where A(l) = {u(t): u < 4,teDCX. ‘
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It has been ‘ ' Z
This result has been proved by A A :
the classical Ascoli—Arzeld Theorem. Ambrosetti [2] and generalizes

1f A is a bounded subset of CYI; X) (

o%,(A4) = max (a(4), a(d’), ..., a(40)), (23
where : -
: AV = {0« AYC O ), i 1
Also |
%-1(4) < o(d), (2.4)
for z= ly.i.)”n. 1 d
Let e a closed convex subset of X and 7 i ‘
A continuous mapping F: Z—Y is said to be («, e) Z ?:};lgiirtz 5“‘;5%‘ (i)ff f)gr
every bounded subset 4 of Z, F(A4) is bounded -and e

«(F(4)) < pa(A).

F is called o« — Lipschitz if there exists ¢ > 0 such that F be («, p) — Lip-

schitz. I is said to be condensing if for every bounded subset 4 of Z F(A
is bounded and if «(4) > 0 then of Z, F(d)

«(F(4)) < o(4).

Let UCY be bounded and open inY and let @(T ; Y) be the set of all conden-
sing mappings F: U—Y which are fixed point free on the boundary aU of U. A
mapping. F € 4(U;Y) is said to be essential if each mapping of Q(U; Y)
which coincides with F on U has at least one fixed point in U.

In this conncction, the following lemma will be used latter (for the proof
sece Lemma 2.1 in [14]). . ‘

LEMMA 2. For cach fixed x, € U the mapping, F:U—Y, Fx = x, for all
x € U, 1s essenlial. .

Two mappings F,, F, € @(U;Y) are said to be homotopic if there exists
H:[0,1] x U—Y such that H,=H(, .) €@a(U;Y) for all 1 e [0, 1],
Hy=F, H, - Fyand H(., x): [0, 1]—Y is continuous uniformly with respect
to x e [, .

We also note the following topological transversality theorem (Leray—/
Schauder’s alternative) for condensing mappings. . '

LEMyA 3. Let F,, F, € a(U;Y) be two homotopic mappings. Then Iy is
essential if and only if F, is essential. B

The proof of this lemma can be found in [14]. It reproduces with some
specifical changes that of the topological transversality theorem for completely
continuous mappings (see [6] and [7]). . d’ ther tesults on

For other properties of measures of noncompactness and OtAer resy
condensing magpizﬁgs we refer to the book of _R. R. Ahmero \S/, 1\(/1[ I.' Kkai I
menskii, A. S. Potapov, A E. Rodkina and B. N. Sadovs
1.
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3. Existence theorems, Let us consider the problem )
w'(f) = h(t, u(t), u'(t); u), t <1, (3.1)
u{a) =r, u(d) =s, (3.2)

where 7 and s are two fixed elements of X.

Let C, = {uesC(I;X): u(a) =7, u(b) = s}, C} = C, N C* and C} = C,NC2
We shall consider on C,, C} and C} the torologies induced by those of C,Ct
and C?, respectively.

The main existence result is

THEOREM 1. Assume that y

(i) h e C(I x X X X X C}; X) and h is uniformly continuous on I X A, X
X Ay X A, whenever Ay, Ay are bounded subsets of X and Az C C} is bounded
in CL

(il) There exists p such that

0 </p < min (8/(b — a), 2/(b — a), 1" (3.3)
and . ‘
a(h(t, Ay, As, Ag) < p max (a(4,), «lds), ox(Aa)), (3.4)

whenevert < I, A, and A, are bounded subsets of X and A, C C} is bounded in CL.

(iii) For each x € X satzsfymg [*]> M > max (J7}, |s| there exists x* € Jx
such that

(x*, B¢, x, v, 2)) >0, 3.5y

Jor all t € Ja, b,y = X satisfying (x*,y) =0 and z € C} with || z|t=|x}.
(iv) There exists a nondecreasmg Sfunction

: [0, +oo[—T0, 4+-oof

such that .
lim inf 2/F() > 4 M (3.6)
=00
and .
/ Vht, 2,3 2)] < ¥(o), (3.7)

for allt €1, x,y € X and z € C} satisfying b=l < lizll <M
Then equation (3.1) has at least one solution u < C3.

Remark 1. If h: I X X X X X C}— X is completely continuous then con-
dition (i) in Theorem .1 holds, condition (3.4) holds with p =0 and (3.5) may
be relaxed as follows:

(x*, b(t, 2, v; 2)) = 0. (3.8)

Indeed, in this case, for 1/# < min (8/(b — a)?, 2/(b — a), 1) the mapping
hy (2, x,y;2) = h(t, 2,y ; 2) + (1/n)x satisfies the hypothesis of Theorem 1 with
p = l/nand¥ + M insteadof ¥'. In consequence, by Theorem 1, the equation

w'(t) = ho(t, u(t), w(t);u), t I (3.9)
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| ]
has at least one solution #, € C2. Let {u,,},.;,,, be a sequence of solutions to
(3.9), where 1/n,<min (8/(b — a)?, 2/(b — a), 1). As follows from the proof of
Theorem 1, the set {4,}n5,, is bounded in C2. Hence {#,}n>n, 1S equicontinuous
in C1. On the other hand if G,: I X I — R isthe Green’s function associated
with the scalar problem y”’ I/n )y = £(£), ¥(a) = ¥(b) = 0 and #} is the unique
solution from C} to the equation "’ — (1/n) u = 0, then we must have

b

a?f“iYMLQMﬁm@LMm;MWK+%W (3.10)

©
a

Whence, using the compactness of % we obtain that the sets {u,(f)} and {u.(f)}
are precompact in X for each ¢ € I. Thus, by the Ascoli—Arzela Theorem the
sequence {u,} has a subsequence which converges in C!; its limit is a solution
o (3.1) as follows also by (3.10).

As regards the existence of solutions to (1. 1), (1.2) we have the following
result

COROLLARY 1. Suppose that

(i) fis uniformly continuous cn cach bounded subset of I x Xm+2,g,€ C(I1-1I),
=1,...,mand ¢ € C(I"\int I ; X).
( 1) There cxists p satisfying condition (3.3) and

a(f(t, Ay Ags oo ny Apsy2)) < pmax (w(d):i=1,2, ...,m+2), (3.11)

whenever t € I and 4;,1=1,2, ..., m + 2 are bounded subsets of X.

(iii) For egch x € X satzsfymg lzx]> M > max (Jo(f)}: ¢t € I'"\ int I)
there exists x* € Jx such that

(%, f(t, %, 3,2, .., 2™) >0, (3.12)
Jor all t = T a,bland all x,y, %, ..., 2" < X satisfying (x*,5) = 0 and | '] <
<2 i=1,...,m
(iv) There exists a nondecreasing function
Y: [0, +o[— 10, 4oo[ satisfying condition (3.6) and

It 2, 4, ., 2] < ¥y, (3.13)
Jor all t = I and all x,9, 2%, ..., 2" € X with |x| < M and x| < M, i=
=1,
T hen j)roblem (1.1), (1.2) has at least one solution.
Remark 2. Theorem 1 and Corollary 1 remain true if we consider certain

other measures of noncompactness instead of the Kuratowski measure of non-
compactness.

On {finite-dimensional spaces some requirements of the hypothesis of Theo-
rem 1 may be lessened as follows.

THEOREM 2. Assume that

(i) The mapping h:I X R* X R ¥ Ciy— R* is comtinuous.

(i) There exists M > max (7], |sl) such: that

(x, h{t, %, v; 2)) > (3.14)
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' aitel xR with | x| > M,y € R* with *5) =0 and 2 « c
Jor ) |
(it [Fo]foea_;i};o]ﬁ seuf;lz’ t}t;‘;’ t/?[fj,w(t) is locally integrable on (K, 4o L, w]}}t,;
00— ,
E(()’ilr _ 5|/ — a),

Satis.

{1 ¥ ) 2> 2M (3.15)
'K
and | (2, =, y;2)| § Ti.M' (1> 1), (3.16)

henewert €I, x s R and z = Ci satisfy |x| <1||z|| <M andy <1, y=
zi_ (31, - - -» Yu) Satisfies |y:l < M’ forall v < j— 1. 2
;hen the system (3.1) has at least one solution u € C%.

. i 4 in [8], éhap. V. Its proof

t may be compared with Theorem 2 .
follov'g:J :aglirulby th};t of Theorem 1 if we take into account Lemma 5.6 in (8],
chap. IT and Remark 1.

As a consequence of Theorem 2 we have

COROLLARY 2. Let thé following conditions_ hold

() feCI X Rm+2; R, ;e C{I; 1), i=1,...,m and
o ¢ € C(I'\int I; It").

(ii) There exists M > max (Jo(t)):¢ = I"\\int I) such that

.

(%, f(t, x, 9,24, ..., 2™)) 20, (3.17)
for all t = I; xR with |z} > M, y € R with (x,y) =0 and all ¥ € R
satisfying | ¥} <|«x) i=1, ..., m. '

(iii) For each j < {1, ..., n} and each M’ > O there is a function V' :[0,
+0[—10, +oo[ such that t['¥; - (t) is locally integrable on [K, 400 [, satisfies con-
dition (3.15) and '

il %9, 2, o 2] S Tl 941, (319
foreveryt eI, %, 21, ... xm e Rn satisfying |x] < M, || < M, i=1,...,
and any y < R* with |y;,| < M’ for all i <j—1.

Then the problem (1.1), (1.2) has at least one solution.

4. Proofs. For the proof of Theorem 1 we need some lemnas referring to
the a priori bounds on solutions of equation (3.1).

LEMMA 4. Assume that conditions
any solution u < C} of equation

m

(i) and (iii) from Theorem 1 hold. Thew
(3.1) satisfies the mequality

Lall < M. (4.1)
Proof. YLetu = C3 be a solution of
= |u(ty)) Xf ¢y = a or o = b then (

(3.1) and let ¢, = I be such that || #ll =
Let t, € Ja, bf. Then we have (

4.1) follows by M > max ArL1sh-
%o, u'(ty)) = 0 for any x§ = Ju(l)-
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Assume,” a contrario, that I u(t
x;é‘}%(fo) such that o> M. Then, by (35), there exists
, (xO) h(tO: u’(to), u'(to) ; u)) > 0.
Since h$ continuous there is 8> 0 such that

(Xo, HtO + X U0+ x), u’(t0+ X);«)) > 0

whenever | X| < S and /0+ U J. This implies that ’
K.*" o+ 7)) > 0 for | X|< Switht. + X *L
Hence, by using the Taylor’s formula
«(to +X) - u(tQ)= X<(4 + O
where x= (XX lies between t0 and t0 - x, we deduce that
(P> «('o + *) —«<0)) > 0 for | X < § X" 0 with + Xe /.

On the other hand, since x\e }«(/,,), by (2.i), we must have

@O«(t0+ X - «(/,)) Ju(t0+ X|2- -|«(i0f< 0,

which contradicts the previous inequality. Therefore |[w(/0)| < and the proof
is complete.

The next lemma is due to K. Schmitt and R. Thompson [17] and
it will be used to derive a priori bouuds on derivatives of solutions of equa-'

tion (3.1). .
lemma 5. Lei X : [0, +o0[—=*]0, +co [ a nc,ndcftcasing function satis-
fying condition (3.6) and let Ne& a positive number. Then there exists ap
constant M( dependingonly on T and M) such that, if u e C2(I; X) is such that
l«|| £M and \\u"\\ < T(||«"]]), then
[« 42
Let G: 1 x |—»11 be the Green’s function associated with the scalar boun-
dary value problem y" = f(t), y(a) = y(b) = 0. We have
= . - - - —for |
=(-aeE fOor 1>L
bh—a

Define the linear integral operator N :C —+C2
b 1
(NWjt)= - ~G(i, ) «() dl, tel

A

We have : (43)
liV«]]2 max ((b- «)28, (b — a)/2, 1), :

for all u €& C having ||«|] <L
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If we assume that 2h: Ix X x X x C,— X is continuous we may g
define the operator F:Ci—C,

(Fu)(t) = ht, ult), w'(t) ; w), tel

Let 4, be the unique solution from C} to the equation %" =0 and defip,
the operator T: Ci— C3, , ,
Tu = NFu + u, % € C}. (4.4)
LENMA 6. If the mapping NF: Ct— C? is condensing and '1'f there exists
B> 0 such that |l < M for any solution u = C} to, the equation

~ w'(t) = Nt w(), W) ), ST (43)

i for all » € [0, 1), then the problem (3.1), (3:2) has at lcast one solution.
“ ');’roof. A'furEction  is a solution to problem (3.1), (3.2) if and ouly if

b

ulf) = — SG(t, E) h(Z, u(%), w'(E); w)dE + w(t), t =1

s
or, equivalently, if and only if it is a fixed point of T, ie.
% = NFu 4+ w,.

(4.6)
Similarly, # € C? is a solution to (4.5) if and only if

# = ANFu 4- w, 4.7)

Let U= {u C}: ||ull, < M}. Clearly C} is a convex closed subsct of the
Banach space C? and U is open in C}. By Lemma 2 the mapping H,: U—C},
Hogu =, for all u € U, is essential.’ Also, if we define H,:U— C}, Hyu=
= AMNFu - 4, we see that H, «@(U; C}) for all % = [0, 1]. Moreover, since
NF is condensing and U is bounded we have that NF (U) is a bounded subset
?frgﬂ and in consequence the mapping H(. ; #): [0, 1]— C} is continuous uni-
ormly with respect to u € U. Thus H,and H, are homotopic and by Temma 3

it follows that H, is also essential. Theref = e o
point, as desired. efore T(= H,;) has at lcast one fixed

Proof of T} " wi o firet ' . o :
(@ o) —fLi{) schﬁ;’.’em 7. We will prove first that the mapping F:Ci—C is

First of all let us show that by (i) and (ii) we have -

n “(WT, Ay, 45 A3)) < o max (a(d,), a(dy), a,(4y)), E+8)
;;te:e;'(g éel’afﬁi'?rr:rbof‘?nded in X and 4, C C} is bounded in C!. To this end,
(), it Tollowe ot ¥y fixed. Then, by the uniform continuity of /i assumed in
: oreach & I thereig a neighbourhood V(f; ¢) of I such that.
. 1 |h(t,x»yiz)—h(Z,x,y;z)i<e ¢
1 ; -
orallz e V(;e), x e Ayy<d,and z A, Consequently
a(h(V(t_: ) A 4y 43) < a(i, 4,, Ay, A3)) + 2¢
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This, by (4) and the compactness of 7, yielgs.

a(h(I; Al» Az: AS)) < f max (a(Al):a(Az), “I(Aa)) + %e.
Now letting e—0 we get (4.8) as desired.

The]continuity of F follows easily by that of 2

Tet D be an arbitrary bounde )
= D(I)’ 4, = '(I) and 43 =D
show that

d subset of C3.

If ) _
we see that F( we apply (4.8) to 4,

D) is bounded. Further we will

«(F(D)) < pay(D).

(4.9)
Since D is bounded in C?, the sets D and D’ are equicontinuous families of func-
tions. Hence, by Lemma 1, we have ~

a(D) = sup («(D(t)): ¢ = I), a(D') = sup («(D'(t)) : ¢ I).

Moreover, the equicontinuity of D and D’ to
of # assumed in (i), implie that F(D)
tions. Thus

(4.10)

: gether with the uniform continuity
is also an equicontinuous family of func-

a(F(D)) = sup (a(F(D)(_t)) 't e 1), - (4.11)
But, by (3.4), (2.3) and (2.4), we have

a(l7(D)(1) = «({h{t, u(t), w'(!); u): 4 € D}) < p max (a(D(.t)),
a(D'(1)), (D)) = puy(D) < pay(D),

for all { € 1. Whence, (4.9) follows by (4.11). .
Therefore the mapping F is (, p) — Lipschitz as claimed. L
Further, by (4.3), andf(4.9), we get

a,(NF(D)) < p max ((b — «)¥/8, (b — a)[2, 1)ay(D), -

whence we may claim that NF is condensing. ’ .
Now, according to Lemma 6, we have only to prove the boundedness in
C2 of the set of solutions to equation (4.5). e the hyoothesis of Lemma 4
For each A e J0, 1] the function M satisfies the hypothesis na 4.
Thus ||u]) < M for] any solution # € C} to equation (4.5) and for all A = ]é)a,lt].
In addition, since M > max (J7], |s]) we sce that;‘;,,, the unique solution in C} to
. ’ . <
equation (4.5) for A = 0, also satisfies ||#% || < M. .
Further, according to assumption (iv) and Lemx:xa 5, there e(;ns‘clsl ; ??(S)taﬁt
M, such that !'u’|| < M, for any solution # € C? to (4.5) and a 1],
Finally, if we put )
’ : - ‘a certain A € [0, 1]}
D={u = Ct:u is a solution to (4.5) for.a ce (
and we aéply (4."8) to A;=D(I), A,=D'(I), 4;= D, then we ob;am tha}i lth:- ;;t,
D"(I) is bounded in X. Hence, there exists a constant M, such t z;t f|| ';“h e(|) rzm f’
for any solution u < C} to equation (4.5) and all A< {0, 1]. The proof o
1s now complete.

3 — Mathematica 2{1989
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5. Uniqueness, We will establish - the uniqueness of solution to equa
. 5. ‘

w'(t). = h(t, u(t), w'(t)) + AL, »), ¢ e I, ;(5.1)
together with the boundary conditions (3.2), where h maps I X X x x inte .
8 X. . ) . e

gmd 'i‘ihemsgisqigescsb ilsuteostablished under some monotonicity conditions,

THEOREM 3. Suppose that the following conditions are satisfied :

@) (2%, hit, x + 24,5 + ) — Bt M>0  (20), 52
Jor all t € Ja, b, %, weX with x#0, x* € §x and all vy, MeX S“tisfying
(x*, y) =0.

(i1) (x*, A(to, u)) — Altg, #5)) 20 (> 0),
for all uy, u, € C}, 4y # #y, g € Ja, b[ such that Ju,(ty) — u,
and all x* € Yuy(to) — #alto)): ‘ ,

Then problem (5.1), (3.2) has at most one solution % < C:.

Proof. Let u, and #, be two solutions to (5.1), (3.2) and let u = 5, — 4

If u, # u, then it whould exist {, € ], b[ such that [« = | nl] > 0. Thizs',
would imply that (x*, u'(;)) =0 and
(x*,.4""(t,)) <0, (5.4)
for all x* € Ju(t,). On the other hand, by (5.2) and (5.3) we should have
(%, (L)) = (%%, hlto, urlto), #1(to)) — hlto, #s(to), ¢slty))) +
+ (x*, ALy, %)) — A(ty, %5)) > 0,

which would contradict (5.4). Thus #, = #, and the thcorem is proved.

As an application we will establish the uniqueness of solution to problem
(1.1), (1.2) in the particular case when equation (1.1) has the form.

ti()n

N

J

| (5.3)
(to) 1 = 12y — u,

w(t) = h{t, w(e), w'(0) + g(t) u() + 2 9:(t) u(gi(0), (5:3)

where ¢ and ¢, i.=1, ..., m are real functions defined on I.
.COROLLARY 3. Suppose that h satisfies condition (i) from Thcorem 2 and

) <0, )+ )20 (>0), (5.6)
Jor all t « Ja, b[. =t ‘
Then problem (5.5)

) 1.2 has at m st .
Proof. Apply Theo refn 3)1:0 oSt one s?lutzon,

A0 = 900 ) + 3 0.0 w0,
Note that Theor ~

in [15] em 3 and Corollary 3 generalize Theorem 6 and Theoretn 7
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