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« * -  -
citatea soluţiei problemei lui Dirichlet (1.1), (1.2, ¡„tr-un spaţiu “ anach^Ace^tâ 
problemă este privita ca un caz particular al problemei lui Dirichlet (3.2) pentru 
ecuaţ.a funcţional-d ifeen ţiaă (3.1). Principalul rezultat referitor la existenţa 
soluţie, problemei (3.1) (3.2) este conţinut in Teorema 1, in care aplicaţiei din 
membrul drep t al ecuaţiei (3.1) i se cere să satisfacă o condiţie mai slabă decit 
aceea de a fi compactă. Această condiţie se exprimă cu ajutorul măsurii de necoiu- 
pactitate a lui Kuratowski. '

1. Introduction. This paper deals with the boundary value problem

«"W = / ( / ,  «W. «'(0. « M )>  ■ ■.. Mg,.(<))). t e  I, (1.1)
«(/) =  W )’ t e  / ' \ i n t  I, (1.2)

in a real Banach space X, where I  =  [a, b], F = [a', 6'], a' < a < b  < b’, 
j  is a continuous mapping from I  X Xm+2 into A', g,(i =  1, ...,»*) are conti­
nuous functions from I  into F  and <p is a continuous function from F \  
int 1 into A'. ' (

By a solution to problem (1.1), (1.2) we mean a function u <= C - ( I A )’Pj 
n  C(F : X) satisfying conditions (1.1) and (1.2). .

For it <= C(/ ; X) let us denote by it* (i =  1, • ■ m) the function from 1 
into X, «■(/) == »(&(/)) if g,.(0 e  1 and u‘(t) = i otherwise 

Bet us consider the mapping h  : I  X A X A X C(x , A ) —► a ,

1,(1, x, y  ; u) = f  (I, x, y, ul(l), . . . , u m(t)), (1.3)

for t e  / ,  x, y  
A function 

satisfies

s  A' and « e  C(I ] X). . .f
a is a solution to (1.1), (E2) if au(l only if

t e  I,

C2(/ ; X) and

(1.4). 

' (1.5)
u " { t )  =  h ( t ,  t i ( t ) ,  m'W ; »).

=  ?(«),«(£>) = '# )•  _
T , . , w,, » i n f  /  i =  l ........ w, by the continuity of

/  * £ ; ,o t  i S T i s  g g .  f i r s  ?  ^ i  : :

by us [ul under
more general additional conditions, on h.
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t i n u o » r o Î / ’x ° x ”x'°XCX C (Î ; XI.' Nevertheless,
m, the mapping (1.3) may be

C(I ; X) : «(a) =  ?(fl), «(&) =  ?(&)},
T x  X  X X X C* where 

~ Cb =  {«
is continuous. The main result on the existence of solutions to  (1.4), (l.5), Theo 
iem 1 requires that h  be « - Lipschitz (« being the Kuratowski m easu red  
noncompactness). The proof of Theorem 1 uses the topological transversal*! 
theorem (Lenay-Schauder’s alternative) for condensing m appings,. which has 
been proved in [14] without using the topological degree In  addition, we ma£  
use of a priori bounds technique. Similar methods have been used by tr 
S c h m i t t  and R . T h o m p s o n  [17] R. T h o m p s o n  [18], A. G r a­
n a s  R. G u e n t h e r  and J .  L e e  [8 j. Theorem 1 m ay be compared with 
the results obtained by V. L a k s h m i k a n t h a m  [11] and J .  C h a n d r a  
V . L a k s h m i k a n t h a m ,  A. M ' i t c h e l l  [5]. ’

In particular, sufficient conditions for th a t the problem (1.1), (1.2) have 
solutions are given. These conditions are relaxed in case X  =  It".

The existence theorems are stated in Section 3 and the main result, Theo­
rem 1, is proved in Section 4. In Section 5 a uniqueness theorem is given.

2. Préliminaires. Let X be a real Banach space, X * its dual. We shall 
denote both the norm in X  and its dual norm in X *  by | • |. The value of 
x* s  X* at * e  X  will be denoted by (x*, x). In  case X  =  I t” the bilinear 
functional (...)  stands for the scalar product.

Denote ||« || =  max ( |» (/) |: / e  I) for u e  C =  C(I ; X), ¡|«||1 =  ruax
u( II u II, II u’ II) for m e  c1 =  0 ( 1 ; X) and 

for m e  C2 =  0 ( 1 ; X).
Let ‘J be the duality mapping of X, i.e. : X

<}* =  {**
Recall that

2 =  max ( « u « I!)

2 X \

X* : (**, x) = \ x f  == | x* |-}, x  e  X . 

( x * , y - x ) (2.1)

for all x,y  e  X  and x* e
Let us denote by a the Kuratowski measure of noncompactness; for each 

bounded subset A of a Banach space one has
a(A) — inf {8 >  0 . A can be convered by finitely many sets of diameter ^  8}.

«lrpkjf «IfT *° aV̂  any con ûs'0n we will denote by a„ the Kuratowski mea- 
T «  |l L  mS?ilMC|ineSS ° V n , l i anaCh SpaCe C"(Z ' X ) endowed with the norm 
measure o f ’ ' f ’ 11 uM I )• 0nly for the space C( I ; X)  the Kuratowski

o L t  T a T , C S^ 1 Simply denoted by a instead of «..
t -  /, whtfe Alt) 1  {»$“ “  ? x i c  ; X )  then «K M ) « « K ) for “uTVWi i iJ . t Moreover, we have

* ts a hounded equicontinuous subset of C(1; X) then
«(A) =  a (A(I)) =  sup (oc(A(t) ) : t <= I) • (2.2)

where A(l) =  {«(¿) A, t 7} C  X. '
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This result has been proved by A a m n .

the classical Ascoli—Arzelii Theorem. ' m b r 0 s e 1 1 1 [2] and generalizes

-where

Also

If ^ is a bounded subset of C»(Z; X) (» ^ i) then

*n(A) =  max H A ), x(A'), . . . , a(Z<»>)), (2.3)

AM =  {uM:u * A } C C ( I - X ), { = 0,1,

for i =  1. • ••> n -
Let Y be a closed convex subset of X  and Z 

A continuous mapping F : Z ^ Y  is said to be (a p) 
every bounded subset A of Z, F(A) is bounded-and

(2.4)

an arbitrary subset of X. ' 
— Lipschitz, p ^ 0, if for

<x(A(Z)) ^ pa(Z).

F is called a -  Lipschitz if there exists p ^ 0 such that F  be-(«, p) -  Lip­
schitz. F  is said to be condensing if for every bounded subset A of Z F(Z) 
is bounded and if <x(A) >  0 then ’

«(F(A)) < oc(A).

Let U C  Y  be bounded and open in Y  and let 61 (U ; Y) be the set of all conden­
sing mappings F -.U -+ Y  which are fixed point free on the boundary dU of V . A 
mapping. F  e  <3(U ; Y) is said to be essential if each mapping of &(U; Y) 
which coincides with F  on dU has at least one fixed point in U.

In this connection, the following lemma will be used latter (for the proof 
see Lemma 2.1 in [14]).

lemma 2. For each fixed x0 e  U the mapping,F: U-*-Y, Fx =  x0 for all 
x e  l/, -is essential. -

Two mappings F 0, F t e  g,(U; Y) are said to be homotopic if there exists 
FI: [0, 1] x  0 - + Y  such that =  .) e  a (0  ;Y) for all X e  [0, L],
H0 =  F 0L // ,  F l and //( ., x) : [0, 1]-*-Y is continuous uniformly with respect 
to x e. C\ ■

We also note the following topological transversality theorem (Leray  ̂
Sehauder's alternative) for condensing mappings.

LEMMA 3. Let F 0, F x e  a (U ; Y) be two homotopic mappings. Then F 0 is 
essential i f  and only i f  F 1 is essential.

The proof of this lemma can be found in [14]. I t  reproduces with some 
specificai changes tha t of the topological transversality theorem for completely 
continuous mappings (see [6] and [7]).

For other properties of measures of noncoinpactness and other results on 
condensing mappings we refer to the  ̂book^of R- R* A h m e r o v, ±
^  e n s k i  itig.

I T p o t a p o v ,  A. E. R o d  k i n  a and B. N. S,i
M. I. K a -
d o v s k i i
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3. Existence theorems. Let ns consider the problem
, U"[t) = h(t,u(t), u'(t); u), t e  /, (3 .1)

(̂a) == r, w(6) =  s, (3.2)
where r and s are two fixed elements of X.

Let Cb -  {u eC (/ ]X) : u(a) =  r, «(6) =  s}, CJ =  C6 f j  C1 and Cf =  Q fjC 2. 
We shall consider on Cb, C\ and Q  the topologies induced by those of C, Cl 
and C2, respectively.

The main existence result is 
t h e o r e m  1. Assume that
(i) li e  C(I X X X X  X CJ; X) and h is uniformly continuous on I  x A 1 x 

X X whenever A lf A 2 are bounded subsets of X  and A 3d  Cb is bounded 
in C1.

(ii) There exists p such that
0 ^ < p <  min (8/(6 — a)2, 2/(6 — a), V (3.3)

and
a(h(t, A x, A 2, A 3)) $ p max ( a ^ ) ,  a(.42), a ^ a ) ) ,  (3.4)

whenever t e  I, A x and A 2 are bounded subsets of X  andA3CZ Cf zs bounded in C1.
(iii) For each x e  X  satisfying \x \  >  M ^  max (|r |, |s |)  there exists x* e  °\x 

such that
(x * ,h ( t ,x ,y ,z ) )>  0, (3.5)-

for all t ]a,b\_,y ^  X  satisfying (x*,y) — 0 and z e  Q  with ||z |f =  |# |..
(iv) There exists a nondecreasing function

T :  [0, + ° o [ - v ] 0, +oo[
such that ,

lim inf t2p¥{t) > 4  M  (3.6)
/—► +’00

and
\h { t ,x ,y ,z ) \  <Y(|j>|), (3-7)

for all t e  / , x ,y  ^  X  and z e  Cf* satisfying \x \  ^ | |2 || ^ Af.
TAew equation (3.1) has at least one solution u e= Q.
Remark 1. If h: I  x X  X  X  X C£—* X  is completely continuous then con­

dition (i) in Theorem 1 holds, condition (3.4) holds with p == 0 and (3.5) may 
be relaxed as follows :

(x*, h(t, x, y ; z)) > 0. (3.8)
Indeed, in this case, for 1 ¡n <  min.(8/(6 — a)2, 2/(6 —1 a), 1) the mapping 
hn (t, x ,y \z )  =  h{t, x / y ; z) +  (1 ¡n)x satisfies the hypothesis of Theorem 1 with 
p =  1/wandY +  M  instead of Y. In consequence, by Theorem 1, the equation

u"(t) =  hn(t, u(t), u \ t) ; u)t t €= I  (3.9)



MEASURE OF NONCOMPACTNESS 29

has at least one solution un e= C*. Let be a sequence of solutions to
(3.9), where 1 ¡n0<  min (8/(j — a)2, 2/(6 — a), 1). As follows from the proof of 
Theorem 1, the set {u„}n>„t is bounded in C2. Hence {«„}„»„„ is equicontinuous 
in C1. On the other hand, if G„: 7 X 7 -► R is the Green’s function associated 
with the scalar problem y"  — (1 ¡n)y =  f(t), y(a) — y(b) =  0 and w" is the unique 
solution from Cf to the equation u" — (1 ¡n) u — 0, then we must have

b

*.(<)> l) h{V_uH(l), u'n{l) ; U„)dl +  «?(#). (3.10)
■ T  .

Whence, using the compactness of h we obtain that the sets {un(t)} and {u'n(t]} 
are precompact in X  for each t ^  I. Thus, by the Ascoli—Arzela Theorem the 
sequence {*u„} has a subsequence which converges in C1; its limit is a solution 
to (3.1) as follows also by (3.10).

As regards the existence of solutions to (1.1), (1.2) we have the following 
result 1

corollary 1. Suppose that
(i) / is uniformly continuous on each bounded subset of I  X  <X ’m+V g * e  C(I * / ' ) ,  

i  =  1, . . m and <p e  C ( / '\ in t  1 ; X).
(ii) There exists p satisfying condition (3.3) and

. <*(/(/, A lf A 2t . . -4»+2)) ^ P max (a^ -) : Z =  1, 2, . . w +  2), (3.11)
Whenever t e  I  and A it i =  1, 2, . . . ,  w +  2 ar£ hounded subsets of X .

(iii) .For ^  X satisfying \x \  >  M ^ max (|<p( )̂| • £ e  F \  int I) 
there exists x* e  ‘J# swcA that

{x* ,f(t,x ,y ,-x \ . . . ,* " ) )  > 0 ,  ’ (3.12)
/o r aZZ t e  i} a, #ZZ # ,y, a;1, . . xm ^  X  satisfying [%*,y) =  0 ¿mi |#*| ^

< \x\> i =  1 , . .
(iv) There exists a nondecreasing function

Y  : [0, +oo [—► ] 0, +oo [ satisfying condition (3.6) and
W , x ty , x \  . . . , * " ) |  ^ T ( |y |) ,  (3.13)

/o r all t e= I  and all x, y, x1, . . xm ^  X  with \x \  < jlf ¿mi | ^ i¥ , Z =  
=  1, . . m.

Then problem (1.1), (1.2) has at least one solution.
Remark 2. Theorem 1 and Corollary 1 remain true if we consider certain 

other measures of noncompactness instead of the Kuratowski measure of non­
compactness.

On finite-dimensional spaces some requirements of the hypothesis of Theo­
rem 1 may be lessened as follows. 

theorem 2. Assume that
( i) The mapping h : I  X RM X RM X Cb-+ Rn is continuous.
(ii) There exists M  ^  max (\r\, |s |)  such that

\xl h(t, x, y \ z) )  ^ 0, (3 .14 )
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R» with I x\ >  M, y  e R” wüh lx> y) = o and Z ^ qtfor o U t ^ I ^ x

fy i n g Z l  “  * T  : € (i . »} awá cííc/í M' > 0 there is a function vp 
ro J 5 ¿ 7 o  + ° ° í  « *  * * *  ¿s locally integrabl6 on [K’ +™\l * t r e
K =  |r  -  s\f(b -  a),

^  / Yy.iT '(<) *  > (3.15)

and | fy(¿. *, ̂ ; z) I < Y/.at (I y> D’ (3.16)
whenever t ^  I, x <b and z ^  CJ satfsfr 1*1 < IMI < M  and 3' e  R», 3> =
— (yv satisfies |y,-| < M ' for all i < ]• 1-

Then the system (3.1) has at least one solution u  «= Q . .
This result may be compared with Theorem 2.4 iu [8 ], chap. V. Its  proof 

follows easily by that of'Theorem 1 if we take into account Lemma 5.6 in [8], 
chap. II  and Remark 1. .

As a consequence of Theorem 2 we have 
COROLLARY 2. Let the following conditions hold
(i) /  e  C{I X (R")"+2; RB), g ie  C( I ; I ’), i — 1, . . . , m  and
• ( <p e  C ( 7 '\ i n t I ; R " ) .
(ii) There exists M  > max (| y(t) | : t <= Z ' \ i n t / )  smc/i that

\x,f{t, x, y . x 1, . . . .  xm)) > 0, (3.17)
/or all t I, x e  R» with |  x \ >  M, y  s  R” with (x, y) =  0 and all x‘ e  R* 
satisfying |* ‘| < | s | ,  i =  1, . . . ,  m.

(iii) For each j  «= (1, . . . , «}  and each M ' >  0 there is a function  :[0,
+°p [—*-’]0, -foo [ such that tfV^M-lf) is locally integrable on [K, + co[, satisfies con* 
dition (3.15) and •

I fA l> x- 3 x") | ^  Yy.^-d yt 1), (3.18)
for every t e  I, x, x1, . . . ,  xm e  R» satisfying 1*1 ^  M, | * ' |  < M, i =  1........ m
and any y  e  R» with \yt | ^  M' for all i < / _  1 .

• TVie» i/ie problem (1.1), (1 .2) has at least one solution.
.i 4‘ For the proof of Theorem 1 we need some lemmas referring to
the a priori bounds on solutions of equation (3.1).
anv s S Z n t  t SSr ™ f  tkat ,C0M¿̂ 0WS «  *nd '(iii) from Theorem 1 hold. Then any solution u Q  of equation (3.1) satisfies the inequality

I|m| | <M .  (4.1)

=  ¡ « Z Í u f  -  « S - í*  * ? ^ tÍO” , í  f3'1) and >« <» -  I  be such th a t || » II =
Let ' V l ~ bl  I ' *  ”  t hm  <41) f0ll0ws *>y M  > -tax  ( |r |.  |s |) .  t c t  <. -  X  i t  Then we have (*;, «•(,.)) _  0 for any »; -  }*(/,).
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by (3.5), there exists

Since his continuous there is 8 >  0 such that

(x'o, H t0 +  X. U(t0 +  x), u’(t0 +  X);«)) >  0 
whenever | X | <  S and /0 +  U J .  This implies that ’

K . * "  (̂ o +  ^)) >  0 for | X | <  S with t. +  X * L  
Hence, by using the Taylor’s formula

«(to +  X) -  u(t0) = X«'(/#) +  (X2/2)«"(/# +  
where ¡x =  (x(X) lies between t0 and t0 -f- x, we deduce that

(*o» «('o +  *) — «(<o)) >  0 for | X| <  S, X ^  0 with +  X e  /. 
On the other hand, since x\e }«(/„), by (2.i), we must have

(x*0,«(t0 +  X) -  «(/„)) =$ | u(t0 +  X)|2 -  - |« ( i 0) f <  0,

which contradicts the previous inequality. Therefore |w(/0) | < and the proof 
is complete.

The next lemma is due to K. S c h m i t t  and R. T h o m p s o n  [17'] and 
it will be used to derive a priori bouuds on derivatives of solutions of equa-' 
tion (3.1). , .

lemma 5. Lei XF : [0, +oo [—*- ] 0, +co [ a nc,ndc ft casing function satis­
fying condition (3.6) and let Mbe a positive number. Then there exists a positive 
constant Mj ( depending only on T  and M) such that, i f  u e  C2( I ; X) is such that 
|| « || *£ M and \\u"\\ < T ( | |« '| |) ,  then

| |« ' | |  (4-2)
Let G : I  x  I  —► II be the Green’s function associated with the scalar boun­

dary value problem y "  =  f(t), y(a) =  y(b) =  0. We have

C(t, l) =  -  -  -  —  for l
b — a

=  (/ -  a) (6 f()r 1>L  
b — a

Define the linear integral operator N : C —+C2,

We have 

for all u €=

b '
(Nu)jt)  =  -   ̂G(i, l) «(l) dl, t e  I.

A

|| jV«||2 max ((b -  «)2/8, (b — a)/2, 1), 

C having | |« | |  < L

(4.3)
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i. 7 . 7  V y y  X x C i - X  is continuous we mav „i If  we assume that &: I X a  X a  a 6 may also

define the operator F :C t-«-0, ^

. (Fu){t) =  A(i, #(0. M'W ; uf  * s
Let *  be the unique solution from Q  to the equation * "  =  0 and define 

the operator T : Cj-*-C|,
Tu =  NF« +  «j, « ® CJ. (4.4)

lemma 6 I f  the mapping N F :Q -+ C - is condensing and i f  there exists 
M >  0 'such that || «1|2 <  Si for any solution u •  Cf to tfo equation

, «"(t) =  X/i(i, «(i), «'(0 ; «). * e  1 (4.5)
and for all X e  [0,1], then the problem (3.1), (3.2) has at least one solution 

Proof. A'function u is a solution to problem (3.1), (3.2) if and only if
i

u(t) =  -  jG(f, l) h(i, «($), «'(£) ; u)d l +  ub{t), t e  I
ft

or, equivalently, if and only if it is a fixed point of T, i.e.
. u =  NFu +  ub. (4.6)

Similarly, u e  C| is a solution to (4.5) if and only if
«, — \N Fii +  ub. (4.7)

Let U =  {« e ,C |: H«i|2' <  M}. Clearly C2b is a convex closed subset _of the 
Banach space C2 and U_is open in C\. By Lemma 2 the  mapping I I0 : 0  — CJ, 
H0u =  ub for all u e  U, is essential.'Also, if we define : i / —*■ C*, Hx» =  
=  XNFw +  ub we see that Hx s  & {0 ; C?) for all X e _[0, l j .  Moreover, since 
NF is condensing and 0  is bounded we have that NF (U) is a bounded subset 
of C2 and in consequence the mapping H(. ; u) : [0, 1]—*- C\ is continuous uni­
formly with respect to u e  1J. Thus H 0 and H 1 are homotopic and by Lemma 3 
it follows that Hx is also essential. Therefore T{= H,) has at least one fixed 
point, as desired.

Proof of Theorem 7. We will prove first tha t the mapping I  : Cb —►C is 
(a,. P) -  Lipschitz. ,

First of all let us show that by (i) and (ii) we have

■ a^ Z’ A* A>' A*)) < P max («(Ax), a (4 2), a ^ ) ) ,  £(4-8)

rei T l V0 be’afhitrarw0r ^  an<̂  p» bounded in C1. To this end,
(i) it follows that fn y T ? '  ^ r en’ the uuiform continuity of h assumed iu(i), it follows that for each t e  I  there is a neighbourhood V(i , z) of t such that.

Ih{t> x> y  > z) ~  h [T, x, y  \ z)\ < z 1
for all N 7 ( i ;  e), * e  A v y  «= A\ and 2 e  A 3. Consequently

a(^(F(i; e), Ax, A 2; A 9)) ^  »(/;(/, A x, A2; A3)) +  2s. ’
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I' ,
This, by  (3.4) and the compactness of I, yieid s .

a(h(I, A lt A 2; ¿ 3)) ^  p max ( « ( ¿ j ; . ^  + ^

Now letting e—*■ 0 we get (4.8) as desired.
The^continuity of F  follows easily by that of h.
Let D be an arbitrary bounded subset of r** i t  , ..

¿ 2< & i*  “  D V )  “ 4 *  ■- ■D *  -  i

<F{D)) ^  pa2(Z>). (49)

S ’bytimSi tw T hfvr d D' “  •*
a(D) =  sup-(a(D(0) : N i ) ,  a(D') =  sup (a (D'(t)): t e  /). (4.10)

Moreover, the equicontinuity of D and D' together with the uniform continuity 
of A assumed in (1), implie that F(D) is also an equicontinuous family of func­
tions. Thus ’

*{F{D)) =  sup (*{F(D)(1)) : t 
Eut, by (3.4), (2.3) and (2.4), we have

!)■ (4.11)

a.(F(D){t)) =  a ({h(t, u(t), u'(t) ; u) \ u e  £}) < p max (ot(Z)(f)),
a(O '(0). ax(D)) =  pai(D) ^ p«2(Z)),

for all l e. / .  Whence, (4.9) follows by (4.11).
Therefore the mapping F  is (a, p) — Lipschitz as claimed. 'A 
Further, by (4.3)^ andj_(4.9), we get

x2(NF(D)) < p max ((b -  «)-/8, (b -  a)/2, 1)«2(D),

whence we may claim that NF  is condensing. '
Now, according to Lemma 6, we have only to prove the boundedness in 

C2 of the set of solutions to equation (4.5).
For each x e  ]0, 1 ] the function \h  satisfies the hypothesis of Lemma 4. 

Thus || u || < M  for any solution u e  C\ to equation (4.5) and for all X f  ]0,L]. 
In addition, since M  ^  max ( |r |, Jsj) we see that ub, the unique solution in C* to 
equation (4.5) for X =  0, also satisfies | | m4|| < M.

Further, according to assumption (iv) and Lemma 5, there exists a constant 
M , such th a t Ü « ' || 4 M , for any solution « e  C; to (4.d) and all X e  [O, 1 J.

Finally, if we put 
D =  {« e  d  : u is a solution to (4.5) for a certain X ® [0,1]}

and we apply (4.8) to A ,=0(1), A2=D'(I), A3=D, then we obtain that the set 
0 "(I)  is bounded in X.  Hence, there exists a constant M 2 such th a t \\u || < M t
for any solution u 
is now complete.

i Q  to equation (4.5) and all X e  [0, 1 ]. The proof of Theorem l

3 — Mathematic# 2/198S
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, 5. Uniqueness. We " i l l  e s tab lish  the u n iq u e n e ss  o f s o lu t io n  to  eq „alion

n"(t) =  h(t, u(t), u'(t)) +  A{t, u), t  e  I , ^

together with the boundaryomditions (3:2). where h m aps I  X X  x  X ^ x

and  The" unfqueiess‘ ¿Established under some ; m onotonicity conditions. 
theorem 3, Suppose that the following conditions are satisfied:

(i) (#*, h[t, x + x1, y  +  y1) — W r %1> y 1)) >  ® ^  0), (5 2)
for all t e  ]a,b[, x, x ^  X  with * # 0 , * * M *  and all y , y i  €  X  satisfying
(**, y) =  °-

(ii) (x*. A(t0, Uj) — A[t0, u2)) Z 0 ( >  0), (5 3j

for all ult u2 e  Cl, «i ¥= u2, t0 e  ]«, 6[ such that |« i( i0) — “ 2(̂ 0) I =  || ut — ti2n 
and all x* e  cl(u1(t0) — u2(t0)). '

Then problem (5.1), (3.2) has at most one solution u  e  Q .
Proof. Let ux and u2 be two solutions to (5.1), (3.2) and let u =  u 2 — u2. 

If «i + m2 then it whould exist t0 e  ]a, b[ such th a t | u(t0) \ =  || u || > 0 .  This 
would imply that (x*, «'(<„)) =  0 and

(*.*,.«"(/0)) ^  0, (5.4)
for all x* s  <JM(i0). On the other hand, by (5.2) and (5.3) we should have 

•(**» u (<„)) =  (%*, h(t0, Wj(/q), wx(<0)) h{J>Q, u 2(l0), u2(i0))) +
+  (**, A{t0, Uj) -  A{t0, u2)) >  0,

which would contradict (5.4). Thus Uy =  ii2 and the theorem is proved.
As an application we will establish the uniqueness of solution to problem 

(1.1), (1.2) in the particular case when equation (1.1) has the  form.
tn

u"{t) = h(t, u(t), u\t)) +  q(t) U(t) +  £  qft) u(gt(i)), (5.5)
«-1

where q and qit *.= 1, . . . ,  m are real functions defined on I .
. COROLLARY 3. Suppose that h satisfies condition (i) from  Theorem 2 and

for all t e  ]«, &[.
?<(i) < 0, q(t) -f <]i{t)

j w #r “ r  & 5)> (1-2)Proof. Apply Theorem 3 to one

0 ( > 0),

solution.

(5.6)

m

A(t,u) = q(t) u(t) +  ¿ ^ ( ¿ )  Ui{t)

[15].tC that Theorem 3 and Corollary 3 generalize Theorem 6 and Theorem 7
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