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REZUMAT. — Transversalitate topologlcd generalizati g1 aplicajli de tip mo-
noton. In lucrare se demonstreazi o teoremd de existentd de tip Browder
[2). Noutatea consti in faptul c# in locul conditiei de coercivitate se impune
o conditie de semn, mai generali. Demonstratia se bazeazd pe teorema de
transversalitate topologicd generalizati, obtinuti in [4]. Aceastd notd constituie
un addendum la lucridrile [4] si [5].

In this paper a Browder’s type result (2] is proved by using our
neralized topological transversality theorem given in [4] (see also [5]).
show that the coercivity condition dssumed by Browder can be replaced by
more general sign condition. This note is an addendum to our previous pa
(41 and [5].

1. The generalized topological transversality prineiple. Let K be a mnor
topological space, X and 4 two proper closed subsets of K, 4 <« X, A # X a
consider a nonvoid class of mappings.

auX,K) < {f: X-> K; Fix (f) n 4 =3}, {l

where Fix(f) stands for the set of all fixed points of f. The mappings in d4(X,
are said to be admissible.
An admissible mapping f is said to be essential if

F'€ QuX, K), fia = f |« imply Fix(f) # 0. o

Otherwise, f is said to be inessential.
Also consider an equivalence relation ~ on @4(X, K) and assume that|
the following conditions are satisfied for f and f’ in @4(X, K):

(@) f fla=f"|a then f ~f';
(h) of f ~ f" then there is h: [0,1] X X - K
such that h(0,.) = f', W1, .) =/, !
(U{Fix(h(t, .)); t= [0,11}) N A =D and h(xn(.), .) is admissible for any ne
€ C(X; [0, 1)) satisfying »n(x) =1 for all x<= A.
We now state the generalized topological transversality theorem.

PROPOSITION 1. -If f and f' are admissible mappings and f ~ f', then f amd
f' are both essential or both inessential.

-
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The next proposition is useful in order to establish the essentiality of cer-
tain admissible mappings. It is formulated in terms of fixed point structures.

By a fixed point structure on a certain space K we mean a pair (S, M) where
Sis a class of nonempty subsets of K and M is a mapping attaching to each D =
€ S a family M (D) of mappings from D into D having, each of them, at least one
fixed point. ‘

PROPOSITION 2. Let (S, M) be a fixed point structure on the mormal topo-
logical space K and let fo < Au(X, K). If for every fe Au(X, K) satisfying fl4 =
=fola, there exist D, < S and fe M(Dy) such that

flxoap, = 7 |xop;
and

Fix () \ X =6,
then fo 1s essential.

The proofs of Propesition 1 and Propos1t10n 2 and some applications can
be found in the papers 4] and [5].

The aim of this paper is to give another application of Proposition 1.

2. The fixed point structure. Now we describe the fixed point structure
which will be used in the next section.

Let E be a real reflexive Banach space which is normed so that E and its
dual E* are locally uniformly convex and let J: E —» E* be the duality mapping.
Set

S ={D; S is a nonvoid bounded closed convex subset of E} (3)
and for each D = S,
Dy={J+T)(J—N):D>D(T); T<D X E*is
maximal monotone in E X E* and N: D - E* is
pseudomonotone, bounded and demicontinuous}. 4)

Recall that a mapping N: D — E* is said to be pseudomonotone if, for any
sequence (x,) in D for which x, — x and lim sup (N(%,), x, — x> < 0, we
have (N(x), x — ¥> < lim inf (N(x,), x, — ¥)> for all y e D. Also, N is said
to be of type (S, ) if for any sequence (x,) in D for which %, — x and lim
sup {N(x,), x, — x> < 0, it follows x, > x.

LEMMA L. The pair (S, M) given by (3) and (4) is a fixed point structure
on E.

This statement is justaBrowder’ sresult [2] (see also [6, Theorem 32 A ]).
Nevertheless, we will insert here its proof.

Proof of Lemma 1. We have to show that each mapping in M(D) has at
least one fixed point, i.e., there exists at least one solution to

% < D(T), 0= N(x) + T(%). (5)
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We will first solve (5) under the assumption that N is of type (S,): In
view of the maximal monotonicity of T in E X E*, (6) is equivalent to:
%< D, {x* + N(x), x — x) 2 0 ce) (6)
for all (», x*)e T.
For any finite — dimensional subspace Y of E with Y n D # &, we look for
a solution y to
yeY 0D (a* 4+ N, 2= >0 (F) (7)
for all (x, x*)e T with xe Y.
Since N is demicontinuous, a solution to (7) exists in view of Debrunner-Flor’s
lemma (see[6, Proposition 2.17]). Thus, the set
Vy = {(y, ~N(y)) € D X E*; (x* + N(y), x — y> > 0 for
all (x, x*)e T with x = Y}
is nonempty. Clearly, the family {Vy} has the finite intersection property ;
thus the family of weak-compact sets {w—cl(Vy)}, Y n D # &, has a nonvoid
intersection. Let (x,, x5) an element of its intersection.
Note that, due to the maximal monotonicity of T, there exists (z, 20) €
e T such that :
(2 — 2%, 2o — %oy < 0. £R) (8)
Now, for an arbitrary (x, x*) € T, we choose Y such that x,x, and z
belong to Y and we take a sequence (y,, —N(y,)) in Vy such that y, — x, and
—N(y,) = x5 . We have ' ‘
<Z* + N(yn)’ 4 —'yn> Z 0’ ('6‘) (9)
for all (z, z*¥) = T with ze Y.
From (9) we get
ANw) Ya—w)> = AN(D,), Y — 2> +AN(@a), 2 — @) <
4
< <Z*' z— yn) + <N(yn)! zZ — w) ( lO) (10)
for all (2, z2*¥) e T with 2€Y and we E.
Taking w = %x,, 2z = 2, 2* = z; we obtain
<N(y»)’ In — x0)> < <ZB » %o —yn> + (N( n)! %0 — x0>’
whence, letting » - oo and taking into account (8), we get
lim sup <{N(v,), ¥, — %oy < O.

This, since N is supposed of type (S,), implies that y,— . Consequently,
%6 = —N(x,) and passing to limit in (10) with w = z = x and z* = x* we
obtain just (6). This proves the solvability of (5) in case N is of type (Si)-
Finally, for N pseudomonotone, use the fact that N 4 ¢J is of type
{S4) for each € > 0, in order to deduce the existence of an y,, solution to

0 N(x) + eJ(%) + T(x)
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and letting € — 0, find a solution to (5). This step is well known and we omit
the details. The lemma is thus proved.

The existence of a solution to (5) is known even if D is unbounded,
but under the additional hypothesis that N is coercive with respect to 0 (see
2, p. 92] or [6, Theorem 32. A]). In what follows we shall prove, via Propo-
stion 1, that the coercivity of N may be replaced by a more general sign
condition.

3. Application of the generalized transversality theorem. The main result
of this note is the following proposition.

THEOREM 1. Let E be a real reflexive Banach space, K an unbounded closed
conpex subset of E, T < K X E* maximal monotone in E X E* with (0, 0)e T
ad let N : K- E* be a bounded demicontinuous pscudomonotone mapping such
lia! there exists v > 0 so that

(N(x), ) 20 for all x= K with ||x|| = 7. (1
Then there exists x € D(T) a solution to
0= N(x) 4+ T(x).
Remark. Condition (11) is less restrictive than the coercivity condition:
(N(x), 2) > 0 for all x« K with ||x|| > r.

Under the coercivity condition on N, Theorem 1 was proved in (2, p. 92].

Proof of Theorem 1. The same argument as in the proof of Lemma 1, allows
us, setting N 4+ ¢J(¢ > 0) in place of N, to assume that N is of type (S,)
and in addition, that the inequality in (11) is strict.

We shall succed two steps:

1) Application of Proposition 1. Consider the class

GalK,, K) = {(J + T)* o m(J — N): K, » D(T) ; 9, < C(K, ; [0,1}),
m(x) = A for x € A}
vhere A = {x = K; ||x|| =r} and for each R > 0 we denote
Krp={x<s K; [|x|] < R}

Note that the mappings in d,(K,, K) can not have fixed points in A because,
in view of (11), the inclusion

o (n — 1) J(x) — AN(x) = T(x)
is false for all x = 4. ‘

Also define an equivalence relation on Q4(K,,  K) by setting
J+DTomJ—N)~(J+T)emx (J—N)
if and only if .
A=2A"or {As -2} =1{0, 1}, in case ] - N =0 on A
always, in case | — N=0 on 4.
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Since (J + T)~! is one-to-one, condition (a) is satisfied. In order to ver
condition (h), set _L_ elo U

M ) =+ D)7 e [ty + ] — N). e =4

Clearly, A(n(.), .) € Q4(K,, K) for each e C(K,; [0, 1]) satlsfylng n(x) =
for all x = 4. Also, by (11), the sets 4 and Z = v {Fix (&(¢, +)); t< [0, 1
are d151omt It remains only to show that Z is closed. For th1s let (x,) be
sequence in Z such that x, - x,. We have A(f,, x,) = x, for some?, € [0 1
We may assume ¢, — f,. Settmg ('xm') e

= (1 — £,)nn (x,) + f,ma(x,) and wo = (1 — Zo)m (%0) + ZoMa(%o),
we thus have
. <-—(1 - p’n)](xn) - !"'nN(xn) - x*’ Xy — x) 2 0

for all (x, x*) € T. Letting #'—> o and using the demicontinuity of J and 2J
we get N

(=(1 — wo)J (%) — polN (%) — 2% % — x> >0

for all (x, ¥*) e T, ie., h(ty, %) = %o, as desired.
Therefore, Proposition 1 can be applied. But

J+D*(J—-N~J+T)7-0J—=N)=0.
Hence, in order that the mapping (J 4+ T)7(J — N) have a fixed point, it i

sufficient to prove that the null operator is essential in d,(K,, K).

2) Use of the fixed point structure. We shall now prove that the null ope
rator is essential, i.e., each mapping

f=J+Dren —N) 1-N 30

satisfying f = O on 4, has at least one fixed point. Remark that if J — N ¢
on A, then A must be zero, while if ] — N = 0 on 4, then A is any number
in [0 1]. To do this, for any fixed R > » we consider the mapping

fR = (] + T‘R)_‘1 ° 7](] — N) :KR—) KR’
where Tp © Kp X E* is maximal monotone in E X E* and Tl|g, < Tr (see

[1, Theorem 1.41)
and

2(x) = n(#), if x< K, (12) (12)
0, if x< K \X,.
Clearly, Kre S. We shall prove that fr e M(Kpg), i.e.; the mapping
N Kem EXN =]+ —]) (1) (13)
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is pseudomonotone, bounded and demicontinuous. The last two properties are
immediate. To prove its pseudomonotonicity, consider any sequence (x,) in
K, such that x, — x and

 lim sup (N(%,), %, — x) <O. (14)
According to (13), we have

mln{(](xn)’ Xn — x>’<N(xn)» Xn — x>} < <N(xn)’*xn - x) (15)
Yow, from (14). and (15) and since J and N are both of type (S +), it easily

follows that x,» x. Hence, N is of type (S,) and since N is also demicon-
tinuous, it follows that N is pseudomonotone (see [6, Proposition 27.67). There-
fore, f € M(Kg) and according to Lemma 1, there exists a fixed point x5 € Kp
for /. Moreover, by (12), xz < K,. Since fr(xg) = %z,

* + N(xg), 2 — 2z) > 0 (16)

for all (z, 2%) € Tp and in particular, for all (z, z*) € T, with z € Ky. Now
lt (R,) be an increasing sequence such that R, —» oo and denote x, = xp,.
We may assume’

X, — X € K and N(x,) — x% € E*.
Choose a pair (zo, 2;) € T such that
o+ 2 20— %) < 0. (17)

Yow for an arbitrary pair (x, x*) € T, there is #, such that xy, 2, x € K, for
al # > ny. From (16), we get

<N(xn)' Xp — w> <‘<Z*’ z — xn> + <N(xn): gz — w) (18)
forall (2, 2*) € T with 2 Ky, and we< E.
Taking w = %y, 2 = z,, 2* = z;, letting # > oo and using (17), we get

lim sup (N(x,), %, — %) <O
whence, since N is of type (S +), %, %, and
f;= N(x,). Clearly, x,= K, and
Nxo) = J(%0) + na(%0)(N(%) — J(%o)). Finally, pasging to limite in (18) with
v=2=2x and z* = x*, we obtain
x* 4 J(%0) + M%) (N(xo) — J(%)), x — %> > 0.

(onsequently, x, is a fixed point of f and the proof is complete.
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