GENERALIZED TOPOLOGICAL TRANSVERSALITY AND MAPPINGS OF MONOTONE TYPE

RADU PRECUP*

Riceived: December 12, 1990 AMS subject classification: 47H05, 54H25

> REZUMAT. — Transversalitate topologică generalizată și aplicații de tip monoton. În lucrare se demonstrează o teoremă de existență de tip Browder [2]. Noutatea constă în faptul că în locul condiției de coercivitate se impune o condiție de semn, mai generală. Demonstrația se bazează pe teorema de transversalitate topologică generalizată, obținută în [4]. Această notă constituie un addendum la lucrările [4] și [5].

In this paper a Browder's type result [2] is proved by using our neralized topological transversality theorem given in [4] (see also [5]). We show that the coercivity condition assumed by Browder can be replaced by more general sign condition. This note is an addendum to our previous paper [4] and [5].

1. The generalized topological transversality principle. Let K be a norm topological space, X and \bar{A} two proper closed subsets of K, $A \subset X$, $A \neq X$ and consider a nonvoid class of mappings.

$$\mathfrak{A}_A(X, K) \subset \{f \colon X \to K \; ; \; \text{Fix } (f) \; \cap \; A = \emptyset\},$$

where Fix(f) stands for the set of all fixed points of f. The mappings in $\mathcal{C}_A(X,K)$ are said to be admissible.

An admissible mapping f is said to be essential if

$$f' \in \mathcal{C}_A(X, K), f|_A = f'|_A \text{ imply } \operatorname{Fix}(f') \neq \emptyset.$$

Otherwise, f is said to be inessential.

Also consider an equivalence relation \sim on $\mathcal{A}_A(X, K)$ and assume that the following conditions are satisfied for f and f' in $\mathcal{C}_A(X, K)$:

- (a) if $f|_A = f'|_A$ then $f \sim f'$;
- (h) if $f \sim f'$ then there is $h: [0, 1] \times X \rightarrow K$

such that h(0, .) = f', h(1, .) = f, $cl(\bigcup \{Fix(h(t, .)); t \in [0, 1]\}) \cap A = \emptyset$ and $h(\eta(.), .)$ is admissible for any $\eta \in A$ $\in C(X; [0, 1])$ satisfying $\eta(x) = 1$ for all $x \in A$. We now state the generalized topological transversality theorem.

PROPOSITION 1. If f and f' are admissible mappings and $f \sim f'$, then f and f' are both essential or both inessential.

^{*} University of Cluj-Napoca, Department of Mathematics, 3400 Cluj-Napoca, Romania

The next proposition is useful in order to establish the essentiality of certain admissible mappings. It is formulated in terms of fixed point structures.

By a fixed point structure on a certain space K we mean a pair (S, M) where S is a class of nonempty subsets of K and M is a mapping attaching to each $D \in S$ a family M(D) of mappings from D into D having, each of them, at least one fixed point.

PROPOSITION 2. Let (S, M) be a fixed point structure on the normal topological space K and let $f_0 \in \mathfrak{A}_A(X, K)$. If for every $f \in \mathfrak{A}_A(X, K)$ satisfying $f|_A = f_0|_A$, there exist $D_f \in S$ and $\tilde{f} \in M(D_f)$ such that

$$f|_{X \cap D_f} = \tilde{f}|_{X \cap D_f}$$

and

Fix
$$(\tilde{f}) \setminus X = \emptyset$$
,

then f_0 is essential.

The proofs of Proposition 1 and Proposition 2 and some applications can be found in the papers 4] and [5].

The aim of this paper is to give another application of Proposition 1.

2. **The fixed point structure.** Now we describe the fixed point structure which will be used in the next section.

Let E be a real reflexive Banach space which is normed so that E and its dual E^* are locally uniformly convex and let $J: E \to E^*$ be the duality mapping. Set

 $S = \{D : S \text{ is a nonvoid bounded closed convex subset of } E\}$ and for each $D \in S$,

$$M(D) = \{(J+T)^{-1}(J-N): D \to D(T); T \subset D \times E^* \text{ is}$$

maximal monotone in $E \times E^*$ and $N: D \to E^*$ is

Recall that a mapping $N:D\to E^*$ is said to be *pseudomonotone* if, for any sequence (x_n) in D for which $x_n\to x$ and $\limsup \langle N(x_n),\ x_n-x\rangle\leqslant 0$, we have $\langle N(x),\ x-y\rangle\leqslant \liminf \langle N(x_n),\ x_n-y\rangle$ for all $y\in D$. Also, N is said to be of $type\ (S_+)$ if for any sequence (x_n) in D for which $x_n\to x$ and $\lim\sup \langle N(x_n),\ x_n-x\rangle\leqslant 0$, it follows $x_n\to x$.

LEMMA 1. The pair (S, M) given by (3) and (4) is a fixed point structure on E.

This statement is just a B r o w d e r 's result [2] (see also [6, Theorem 32 A]). Nevertheless, we will insert here its proof.

Proof of Lemma 1. We have to show that each mapping in M(D) has at least one fixed point, i.e., there exists at least one solution to

$$x_0 \in D(T), \ 0 \in N(x_0) + T(x_0).$$
 (5)

46 , R. PRECUP

We will first solve (5) under the assumption that N is of type (S_+) : In view of the maximal monotonicity of T in $E \times E^*$, (6) is equivalent to:

$$x_0 \in D, \langle x^* + N(x_0), x - x_0 \rangle \geqslant 0 \quad (6)$$

for all $(x, x^*) \in T$.

For any finite — dimensional subspace Y of E with Y \cap D \neq Ø, we look for a solution y to

$$y \in Y \cap D, \langle x^* + N(y), x - y \rangle \geqslant 0 \quad (4)$$

for all $(x, x^*) \in T$ with $x \in Y$.

Since N is demicontinuous, a solution to (7) exists in view of Debrunner-Flor's lemma (see [6, Proposition 2.17]). Thus, the set

$$V_Y = \{(y, -N(y)) \in D \times E^*; \langle x^* + N(y), x - y \rangle \ge 0 \text{ for}$$

$$\text{all } (x, x^*) \in T \text{ with } x \in Y\}$$

is nonempty. Clearly, the family $\{V_Y\}$ has the finite intersection property; thus the family of weak-compact sets $\{w-cl(V_Y)\}$, $Y \cap D \neq \emptyset$, has a nonvoid intersection. Let (x_0, x_0^*) an element of its intersection.

Note that, due to the maximal monotonicity of T, there exists $(z_0, z_0^*) \in T$ such that

$$\langle z_0^* - x_0^*, z_0 - x_0 \rangle \leq 0.$$
 (8)

Now, for an arbitrary $(x, x^*) \in T$, we choose Y such that x, x_0 and z_0 belong to Y and we take a sequence $(y_n, -N(y_n))$ in V_Y such that $y_n \to x_0$ and $-N(y_n) \to x_0^*$. We have

$$\langle z^* + N(y_*), z - y_* \rangle \geqslant 0, \tag{9}$$

for all $(z, z^*) \in T$ with $z \in Y$. From (9) we get

$$\langle N(y_n), y_n - w \rangle = \langle N(y_n), y_n - z \rangle + \langle N(y_n), z - w \rangle \leq$$

$$\leq \langle z^*, z - y_n \rangle + \langle N(y_n), z - w \rangle \qquad (10)$$

for all $(z, z^*) \in T$ with $z \in Y$ and $w \in E$. Taking $w = x_0$, $z = z_0$, $z^* = z_0^*$ we obtain

$$\langle N(y_n), y_n - x_0 \rangle \rangle \leqslant \langle z_0^*, z_0 - y_n \rangle + \langle N(y_n), z_0 - x_0 \rangle,$$

whence, letting $n \to \infty$ and taking into account (8), we get

$$\limsup \langle N(y_n), y_n - x_0 \rangle \leqslant 0.$$

This, since N is supposed of type (S_+) , implies that $y_* \to x_0$. Consequently, $x_0^* = -N(x_0)$ and passing to limit in (10) with w = z = x and $z^* = x^*$ we obtain just (6). This proves the solvability of (5) in case N is of type (S_+) .

Finally, for N pseudomonotone, use the fact that $N + \varepsilon J$ is of type (S_+) for each $\varepsilon > 0$, in order to deduce the existence of an y_{ε} , solution to

$$0 \in N(x_{\varepsilon}) + \varepsilon J(x_{\varepsilon}) + T(x_{\varepsilon})$$

and letting $\varepsilon \to 0$, find a solution to (5). This step is well known and we omit the details. The lemma is thus proved.

The existence of a solution to (5) is known even if D is unbounded, but under the additional hypothesis that N is coercive with respect to 0 (see [2, p. 92] or [6, Theorem 32. A]). In what follows we shall prove, via Proposition 1, that the coercivity of N may be replaced by a more general sign condition.

3. Application of the generalized transversality theorem. The main result of this note is the following proposition.

THEOREM 1. Let E be a real reflexive Banach space, K an unbounded closed convex subset of E, $T \subseteq K \times E^*$ maximal monotone in $E \times E^*$ with $(0, 0) \subseteq T$ and let $N: K \to E^*$ be a bounded demicontinuous pseudomonotone mapping such that there exists r > 0 so that

$$\langle N(x), x \rangle \geqslant 0 \text{ for all } x \in K \text{ with } ||x|| = r.$$
 (11)

Then there exists $x \in D(T)$ a solution to

$$0 \in N(x) + T(x).$$

Remark. Condition (11) is less restrictive than the coercivity condition:

$$\langle N(x), x \rangle > 0$$
 for all $x \in K$ with $||x|| \ge r$.

Under the coercivity condition on N, Theorem 1 was proved in [2, p. 92]. Proof of Theorem 1. The same argument as in the proof of Lemma 1, allows us, setting $N + \varepsilon J(\varepsilon > 0)$ in place of N, to assume that N is of type (S_+) and in addition, that the inequality in (11) is strict.

We shall succed two steps:

1) Application of Proposition 1. Consider the class

$$\mathfrak{A}_{\lambda}(K_{r}, K) = \{(J+T)^{-1} \circ \eta_{\lambda}(J-N) : K_{r} \to D(T) ; \eta_{\lambda} \in C(K_{r}; [0,1]),$$
$$\eta_{\lambda}(x) = \lambda \text{ for } x \in A\}$$

where $A = \{x \in K; ||x|| = r\}$ and for each R > 0 we denote

$$K_R = \{x \in K \; ; \; ||x|| \leq R\}.$$

Note that the mappings in $\mathcal{C}_A(K_r, K)$ can not have fixed points in A because, in view of (11), the inclusion

$$(\lambda - 1) J(x) - \lambda N(x) \in T(x)$$

is false for all $x \in A$.

Also define an equivalence relation on $\mathfrak{A}_{A}(K_{r}, K)$ by setting

$$(J+T)^{-1} \circ \eta_{\lambda}(J-N) \sim (J+T)^{-1} \circ \eta_{\lambda'} (J-N)$$

if and only if

$$\lambda = \lambda'$$
 or $\{\lambda, \lambda'\} = \{0, 1\}$, in case $J - N \not\equiv 0$ on A always, in case $J - N \equiv 0$ on A.

48 R. PRECUP

Since $(J+T)^{-1}$ is one-to-one, condition (a) is satisfied. In order to ver condition (h), set

$$h(t, .) = (J + T)^{-1} \circ [(1 - t)\eta_{\lambda'} + t\eta_{\lambda}](J - N).$$
 $\eta(x) = 0$

Clearly, $h(\eta(.), .) \in \mathcal{C}_A(K_r, K)$ for each $\eta \in C(K_r; [0, 1])$ satisfying $\eta(x) =$ for all $x \in A$. Also, by (11), the sets A and $Z = \cup \{ \text{Fix } (h(t, .)) ; t \in [0, 1] \}$ are disjoint. It remains only to show that Z is closed. For this, let (x_n) be sequence in Z such that $x_n \to x_0$. We have $h(t_n, x_n) = x_n$ for some $t_n \in [0, 1]$. We may assume $t_n \to t_0$. Setting

$$\mu_n = (1 - t_n) \eta_{\lambda'}(x_n) + t_n \eta_{\lambda}(x_n)$$
 and $\mu_0 = (1 - t_0) \eta_{\lambda'}(x_0) + t_0 \eta_{\lambda}(x_0)$,

we thus have

$$\langle -(1-\mu_n)J(x_n)-\mu_nN(x_n)-x^*, x_n-x\rangle \geqslant 0$$

for all $(x, x^*) \in T$. Letting $n \to \infty$ and using the demicontinuity of J and A we get

$$\langle -(1-u_0)I(x_0)-\mu_0N(x_0)-x^*, x_0-x\rangle \ge 0$$

for all $(x, x^*) \in T$, i.e., $h(t_0, x_0) = x_0$, as desired.

Therefore, Proposition 1 can be applied. But

$$(J+T)^{-1}(J-N) \sim (J+T)^{-1} \circ 0(J-N) \equiv 0.$$

Hence, in order that the mapping $(J+T)^{-1}(J-N)$ have a fixed point, it is sufficient to prove that the null operator is essential in $\mathfrak{C}_A(K_r, K)$.

2) Use of the fixed point structure. We shall now prove that the null operator is essential, i.e., each mapping

$$f = (J + T)^{-1} \circ \eta_{\lambda}(J - N)$$

$$\Im \cap \mathsf{N} \not\equiv \mathsf{O}$$

satisfying $f \equiv 0$ on A, has at least one fixed point. Remark that if $J - N \not\equiv 0$ on A, then λ must be zero, while if $J - N \equiv 0$ on A, then λ is any number in [0, 1]. To do this, for any fixed $R \geqslant r$ we consider the mapping

$$f_R = (J + T_R)^{-1} \circ \tilde{\eta}(J - N) : K_R \to K_R,$$

where $T_R \subset K_R \times E^*$ is maximal monotone in $E \times E^*$ and $T|_{K_R} \subset T_R$ (see [1, Theorem 1.4]) and

$$\tilde{\eta}(x) = \eta_{\lambda}(x), \text{ if } x \in K_{r}$$

$$0, \quad \text{if } x \in K_{R} \setminus K_{r}.$$
(12)

Clearly, $K_R \in S$. We shall prove that $f_R \in M(K_R)$, i.e., the mapping

$$\tilde{N}: K_R \to E^*, \tilde{N} = J + \tilde{\eta}(N - J)$$
 (13)

is pseudomonotone, bounded and demicontinuous. The last two properties are immediate. To prove its pseudomonotonicity, consider any sequence (x_n) in K_R such that $x_n \to x$ and

$$\lim \sup \langle N(x_n), x_n - x \rangle \leq 0.$$
 (14)

According to (13), we have

$$\min\{\langle J(x_n), x_n - x \rangle, \langle N(x_n), x_n - x \rangle\} \leqslant \langle N(x_n), x_n - x \rangle. \tag{15}$$

Now, from (14) and (15) and since J and N are both of type (S_+) , it easily follows that $x_n \to x$. Hence, \tilde{N} is of type (S_+) and since \tilde{N} is also demicontinuous, it follows that \tilde{N} is pseudomonotone (see [6, Proposition 27.6]). Therefore, $f_R \in M(K_R)$ and according to Lemma 1, there exists a fixed point $x_R \in K_R$ for f_R . Moreover, by (12), $x_R \in K_r$. Since $f_R(x_R) = x_R$,

$$\langle z^* + \tilde{N}(x_R), z - x_R \rangle \geqslant 0$$
 (16)

for all $(z, z^*) \in T_R$ and in particular, for all $(z, z^*) \in T$, with $z \in K_R$. Now let (R_n) be an increasing sequence such that $R_n \to \infty$ and denote $x_n = x_{R_n}$. We may assume

$$x_n \rightarrow x_0 \in K$$
 and $\tilde{N}(x_n) \rightarrow x_0^* \in E^*$.

Choose a pair $(z_0, z_0^*) \in T$ such that

$$\langle z_0^* + x_0^*, z_0 - x_0 \rangle \leq 0.$$
 (17)

Now for an arbitrary pair $(x, x^*) \in T$, there is n_0 such that $x_0, z_0, x \in K_{Rn}$ for all $n \ge n_0$. From (16), we get

$$\langle \tilde{N}(x_n), x_n - w \rangle \leqslant \langle z^*, z - x_n \rangle + \langle \tilde{N}(x_n), z - w \rangle$$
 (18)

for all $(z, z^*) \in T$ with $z \in K_{Rn}$ and $w \in E$.

Taking $w = x_0$, $z = z_0$, $z^* = z_0^*$, letting $n \to \infty$ and using (17), we get

$$\lim \sup \langle \tilde{N}(x_n), x_n - x_0 \rangle \leq 0$$

whence, since \tilde{N} is of type (S_+) , $x_n \to x_0$ and

 $x_0^* = \tilde{N}(x_0)$. Clearly, $x_0 \in K$, and

 $\tilde{N}(x_0) = J(x_0) + \eta_{\lambda}(x_0)(N(x_0) - J(x_0))$. Finally, passing to limite in (18) with x = z = x and $z^* = x^*$, we obtain

$$\langle x^* + J(x_0) + \eta_{\lambda}(x_0)(N(x_0) - J(x_0)), x - x_0 \rangle \ge 0.$$

Consequently, x_0 is a fixed point of f and the proof is complete.

REFERENCES

1. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.

4 F. E. Browder, Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces,

50

R. PRECUP

Proc. Sympos. Pure Math., Vol. 18, Part 2, Amer. Math. Soc., Providence, 1976.

- 3. J. Dugundji, A. Granas, Fixed Point Theory I, Warszawa, 1982.
- 4. R. Precup, Generalized topological transversality and existence theorems (to appear,
- 5. R. Precup, On the topological transversality principle (to appear).
- 6. E. Zeidler, Nonlinear Functional Analysis and its Applications I and II/B, Spri 1986 and 1990.