GENERALIZED TOPOLOGICAL TRANSVERSALITY AND EXISTENCE THEOREMS Radu Precup

§1. Introduction

In this paper Granas' topological transversality theorem on compact mappings is generalized in order to obtain, in an unitary manner, several known existence results concerning mappings of a number of classes as: compact, condensing, of class $(S)_+$, or mappings of the form T+f with T maximal monotone and f of class $(S)_+$. No references to degree theory are made. Although the mappings in our examples are all single-valued, the theory applies to multivalued mappings, too. Example 3 is notable for the manner in which the topological transversality theorem is applied to a minimal class of admissible mappings attached to a fixed mapping of a certain type.

§2. Generalized topological transversality

Let X be a normal topological space, A a proper closed subset of X, Y a set and B a proper subset of Y. Consider a nonempty class of mappings

$$\mathcal{A}^B_A(X,Y)\subset \{F;X{\rightarrow}Y;F^{-1}(b)\cap A=\emptyset\}\;.$$

The mappings of this class are called <u>admissible</u>. An admissible mapping F is said to be <u>essential</u> if for each admissible mapping F' having the same restriction to A as F, i.e. $F'|_A = F|_A$, one has $I^{r-1}(B) \neq \emptyset$. An admissible mapping which is not essential is called <u>incesential</u>.

Let us denote by \sim an equivalence relation on $\mathcal{A}_A^B(X,Y)$ such that $||f||_A = F||_A \text{ then } F' \sim F,$

We are interested in the case when the equivalence classes contain either only essential mappings or only inessential mappings. The following condition will be sufficient to have such a case:

(#) If $F' \sim F$ then there is $H:[0,1] \times X \rightarrow Y$ such that H(0,.) = F', H(1,.) = F, $cl(\bigcup \{H(t,.)^{-1}(B); t \in [0,1]\}) \cup A = \emptyset$ and $H(\eta(.),.) \in \mathcal{A}_A^B(X,Y)$ for any continuous $\eta: X \rightarrow [0,1]$ satisfying $\eta(x) = 1$ for all $x \in A$.

In what follows we shall assume that conditions (A) and (H) are satisfied.

LEMMA 1. An admissible mapping F is inessential if and only if there exists an admissible mapping F' such that $F \sim F'$ and $F'^{-1}(B) = \emptyset$.

Proof. Our arguments are similar with those in [4].

The necessity part is a consequence of the definition of inessential mappings and of condition (A).

Conversely, let F' be an admissible mapping such that $F \sim F'$ and $F'^{-1}(B) = 0$. Then, by the symmetry of relation \sim , we have $F' \sim F$. Now let H be a mapping associated with F' and F as in condition (H). Denote $Z = \bigcup \{H(t,\cdot)^{-1}(B); \ t \in [0,1]\}$. If Z = 0, then $H(1,\cdot)^{-1}(B) = 0$ and so $F = H(1,\cdot)$ is essential. Thus, we may assume without loss of generality that $Z \neq 0$. By condition (H), the nonempty closed subsets A and cl(Z) of the normal topological space X, are disjoint. Consequently, according to Urysohn's theorem (see [3], Theorem VII.4.1), there is a continuous function $\eta \colon X = [0,1]$ such that $\eta(x) = 0$ for all $x \in cl(Z)$ and $\eta(x) = 1$ for all $x \in A$. By condition (H), the mapping $F^* = H(\eta(\cdot), \cdot)$ is admissible. Moreover, it is easily seen that $F^* \mid_A = F \mid_A$ and $F^{x-1}(b) = 0$. This shows that F is inessential. The proof is complete.

Now we state the topological transversality theorem under our general assumptions.

THEOREM 1. Let F and F' be two admissible mappings such that $F \sim F'$. Then F and F' are both essential or both incsential. Radu Precup

<u>Proof.</u> Assume that F is incosential. Then, by Lemma 1, there exists an admissible mapping F'' such that $F \sim F''$ and $F''^{-1}(B) = \emptyset$. By the transitivity of \sim we get $F' \sim F''$ whence, again by Lemma 1, it follows that F' is inessential too and the proof is complete.

§3. Topological transversality and fixed point theory

Let E be a normal topological space, X and A two proper closed subsets of E such that $A \subset X$, $A \neq X$. Consider a nonempty class of mappings.

$$A_1(X,E) \subset \{f: X \rightarrow E; \operatorname{Fix}(f) \cap A = \emptyset\},$$

where we have denoted by $\operatorname{Fix}(f)$ the set of all fixed points of f. The mappings in $\mathcal{A}_A(X,E)$ are called admissible. An admissible mapping f is said to be essential if for each admissible mapping f' with $f'|_A = f|_A$ one has $\operatorname{Fix}(f') \neq \emptyset$. Otherwise, f is called inessential.

Let us consider an equivalence relation \sim on $\mathcal{A}_A(X,E)$ which is assumed to satisfy the following two conditions:

(a) if
$$f'|_A = f|_A$$
 then $f' \sim f$

and

(h) if $f' \sim f$ then there is $h:[0,1] \times X - E$ such that h(0,.) = f', h(1,.) = f, $cl(\bigcup \{\operatorname{Fix}(h(t,.)); \ t \in [0,1]\}) \cap A = \emptyset$ and $h(\eta(.),.)$ is admissible for any continuous function $\eta: X \to [0,1]$ satisfying $\eta(x) = 1$ for all $x \in A$.

The following theorem is a consequence of Theorem 1.

PROPOSITION 1. Let f and f' be two mappings in $\mathcal{X}_A(X,E)$ such that $f \sim f'$. Then f and f' are both essential or both inessential.

<u>Proof.</u> Take $Y = X \times E$, $B = \{(z,z): z \in X\}$, $\mathcal{A}_A{}^B(X,Y) = \{F: X \rightarrow Y; \text{ there is } f \in \mathcal{A}_A(X,E) \text{ such that } F(z) = (z,f(z)) \text{ for all } z \in X\}$ and say that $F \sim F'$ if $f \sim f'$, where F(z) = (z,f(z)) and F'(z) = (z,f'(z)). Obviously F is essential (inessential) if and only if its associated f is essential (inessential). Also, condition (a) is

equivalent with condition (A). Moreover, condition (h) on \sim implies condition (H) as follows immediately if we put H(t,x)=(x,h(t,x)) for all $t\in [0,1]$ and $x\in X$. Thus, we may apply Theorem 1 and Proposition 1 is proved.

Remark 1. Another proof of Proposition 1 can be done if, in addition, E is a real linear space. In this case, we may take Y=E, $B=\{0\}$, $\mathcal{A}_A^B(X,Y)=\{F\colon X\to E\colon F(x)=x-f(x) \text{ for all } x\in X,\ f\in \mathcal{A}_A(X,E)\}$, define $F\sim F'$ if $f\sim f'$, where F(x)=x-f(x) and F'(x)=x-f'(x) and put H(t,x)=x-h(t,x), in order to apply Theorem 1.

Remark 2. A similar result to Proposition 1 can be stated, more generally, for multivalued mappings from X into P(E) (the family of all nonempty subsets of E) in a class of admissible mappings

$$\mathcal{A}_A(X,P(E))\subset\{f;X-P(E);\ \operatorname{Fix}(f)\cap A=\emptyset\}.$$

In this case, the mapping h in condition (h) is multivalued. In the proof, we take $Y = X \times P(E)$, $B = \{(x, E_1); x \in X, E_1 \in P(E), x \in E_1\}$ and we apply Theorem 1, again.

A result as that in Proposition I is useful in applications expecially when typical examples of essential mappings are known. In the following we shall propose a test of essentiality in terms of fixed point structures.

Here, by a fixed point structure (see [12]) on a certain space E we mean a pair (S,M), where S is a class of nonempty subsets of E ($S \subset P(E)$) and M is a map which attaches to each $D \in S$ a family M(D) of mappings from D into D having at least one fixed point. Obviously, in this respect we may speak about a fixed point structure on a space E whenever we refer to a fixed point theorem for a certain class of mappings which map a subset of a certain kind into itself. Thus, by Schauder's fixed point structure on a Banach space E, we mean the pair (S,M), where S is the class of all nonempty, bounded closed convex subsets of E and for each $D \in S$, one considers the family M(D) of all

completely continuous mappings from D into itself; by Sadovskii's fixed point structure on a Banach space E, we mean the pair (S,M), where S is also the class of all nonempty bounded closed convex subsets of E and for each $D \in S$, M(D) is the set of all γ -condensing mappings from D into itself. Here we have denoted by γ . Kuratowski's or the ball measure of noncompactness on E (see [2], 2.7.3, 2.9.1 and 2.9.3). We shall also use Mönchs fixed point structure on a Banach space E. Here, S is the class of all nonempty closed convex subsets of E and for each $D \in S$, M(D) is the set of all continuous mappings $f:D \rightarrow D$ for which there is some $x_0 \in D$ such that if $C \subset D$ is countable and $C \subset \overline{\text{conv}}(\{x_0\} \cap f(C))$ then \overline{C} is compact (see [2], 5.18.2).

PROPOSITION 2. Let (S, M) be a fixed point structure on the normal topological space E and let $f_o \in \mathcal{A}_A(X,E)$. If for every $g \in \mathcal{A}_A(X,E)$ satisfying $g|_A = f_o|_A$ there exist $D_g \in S$ and $\tilde{g} \in M(D_g)$ such that

$$g \mid_{X \cap D_g} = g \mid_{X \cap D_g} \tag{1}$$

and

$$fix(\bar{y})\backslash X = 0$$
, (2)

then fo is essential.

<u>Proof.</u> Since $\tilde{y} \in M(D_g)$, there exists an $x \in D_g$ such that $\tilde{y}(x) = x$. Then, by (2), $x \in X$. Hence $x \in X \cap D_g$ and by (1) we have g(x) = x. Thus, each $g \in \mathcal{A}_A(X, E)$ satisfying $g|_A = f_0|_A$ has a fixed point, which proves that f_0 is essential.

- 4. Examples and applications. In this section we shall give some examples of classes of admissible mappings endowed with a prescribed equivalence relation satisfying conditions (a) and (h) and some known theorems of Leray-Schauder type will be derived from our Proposition 1, via Proposition 2, as applications.
 - Topological transversality theorem for compact mappings. A special

case of our Proposition 1 is a result of A. Granas (see [4] which was at the origin of our theory).

Let E be a Hanach space, Ω a nonempty open subset of E, $X = \overline{\Omega}$ the closure of Ω and $A = \partial \Omega$ its boundary. We deal here with compact mappings $f: \overline{\Omega} \to E$, i.e. continuous mappings having $cl(f(\overline{\Omega}))$ compact in E. Let us denote

$$A_{\partial\Omega}(\overline{\Omega}; E) = \{f : \overline{\Omega} \rightarrow E; f \text{ compact and } Fix(f) \cap \partial\Omega = \emptyset\},$$
 (3)

and consider the equivalence relation $\sim \text{ on } \mathcal{A}_{\partial\Omega}(\overline{\Omega};X)$:

 (h_1) $f' \sim f$ iff there is a compact $h:[0,1] \times \bar{\Omega} \to E$ such that $h(0,\cdot) = f'$, $h(1,\cdot) = f$ and $Fix(h(t,\cdot)) \cap \partial \omega = 0$ for all $t \in [0,1]$.

It is easily seen that condition (a) is satisfied (if $f'|_{\partial\Omega} = f|_{\partial\Omega}$ we take $H(t_{t_1}) = (1-t)f' + tf$) and also that condition (h_1) implies (h).

With this choice of admissible mappings and of the equivalence relation ~. Proposition 1 is the topological transversality theorem itself which is given by A. Granas in [4], Theorem II.4.7.

Note that the constant mapping $f_{\phi}(x) = x_{\phi}$ for $x \in \overline{\Omega}$, where $x_{\phi} \in \Omega$, is essential. This follows from Proposition 2, where we use Schauder's fixed point structure on E and we take $D_g = \overline{\operatorname{conv}}(g(\overline{\Omega}))$, $\bar{g}(x) - g(x)$ if $x \in \overline{\Omega}$ and $\bar{g}(x) = x_{\phi}$ if $x \notin \overline{\Omega}$. (See also [4], Theorem II.4.9.)

As an application, we mention a Leray-Schauder's result:

COROLLARY 1. Let E be a Banach space, Ω an open subset of E and $f:\widetilde{\Omega}\to E$ a compact mapping. If for some $\varepsilon_0\in\Omega$ one has

$$t(f(x)-x_0)\neq x-x_0 \text{ [or all } t\in]0,1] \text{ and } r\in\partial\Omega,$$
 (4)

then f has at least one fixed point in Ω .

<u>Proof.</u> By (4), the essential constant mapping $f_o(x) = x_o$ for $x \in \overline{\Omega}$, is equivalent with f in the sense of (h_1) (use $h(t, \cdot) = (1-t)x_0 + tf$). Thus, by

Proposition 1, f is also essential in class of mappings (3) and in particular $Fix(f) \neq 0$.

2) Topological transversality theorem for condensing mappings. Let E be a Banach space, Ω a nonempty open bounded subset of E, $X = \overline{\Omega}$ and $A = \partial \Omega$. We shall consider γ -condensed mappings $f: \Omega \to E$, i.e. continuous mappings for which $\gamma(f(B)) < \gamma(B)$ whenever $B \subset \overline{\Omega}$ and $\gamma(B) > 0$. Denote

$$\mathcal{A}_{\partial\Omega}(\overline{\Omega},E) = \{f; \overline{\Omega} \rightarrow E; \ f \ \gamma\text{-condensing and } \mathrm{Fix}(f) \cap \partial\Omega = \emptyset\}$$
 (5) and consider an equivalence relation \sim on $\mathcal{A}_{\partial\Omega}(\overline{\Omega},E)$, namely
$$(h_2) \ f' \sim f \ \text{iff there is a mapping } h:[0,1] \times \overline{\Omega} \rightarrow E \ \text{such that } h(0,\cdot) = f', \ h(1,\cdot) = f,$$

$$h(t,\cdot) \in \mathcal{A}_{\partial\Omega}(\overline{\Omega},E) \ \text{for all} \ t \in [0,1] \ \text{and} \ \{h(\cdot,x); x \in \overline{\Omega}\} \ \text{is equicontinuous.}$$

If $f', f \in \mathcal{A}_{\partial\Omega}(\Omega, E)$ and $f'|_{\partial\Omega} = f|_{\partial\Omega}$ then taking $h(t, \cdot) = (1 - t)f' + tf$ we immediately see that $f' \sim f$. Thus, condition (a) is satisfied.

In order to prove that condition (h_2) implies (h), let us consider two admissible mappings f' and f such that $f' \sim f$ and a mapping h as in condition (h_2) . Since $h(t,\cdot) \in \mathcal{A}_{\partial\Omega}(\overline{\Omega},E)$ for all $t \in [0,1]$, we have that $Z = \cup \{\operatorname{Fix}(h(t,\cdot)); t \in [0,1]\} \subset \Omega$. In addition, the equicontinuity of the set $\{h(\cdot,x); x \in \overline{\Omega}\}$ implies that Z is closed. Hence $cl(\cup \{\operatorname{Fix}(h(t,\cdot)); t \in [0,1]\}) \cup \partial \Omega = \emptyset$. Thus, we have to show only that $h(\eta(\cdot),\cdot)$ is admissible for every continuous $\eta \colon X \to [0,1]$ with $\eta(x) = 1$ for all $x \in \partial \Omega$. Obviously, $h(\eta(\cdot),\cdot)$ is continous and since $\operatorname{Fix}(f) \cap \partial \Omega = \emptyset$, one has $\operatorname{Fix}(h(\eta(\cdot),\cdot)) \cap \partial \Omega = \emptyset$. Now let $B \subset \overline{\Omega}$ be such that $\gamma(B) > 0$. We wish to show that $\gamma(h(\eta(B) \times B)) < \gamma(B)$. To do so, let c(t) > 0 be such that $\gamma(h(t,B)) < \gamma(B) - 3c(t)$ and let V(t) be a neighborhood of t such that $\|h(s,x) - h(t,x)\| \le c(t)$ for all $x \in V(t)$ and $x \in B$. It follows that $\gamma(h(V(t) \times B)) < \gamma(B)$. Let $\{V(t_1); i = 1, \dots, n\} \subset \{V(t); t \in [0,1]\}$ be a finite convering of the interval $\{0,1\}$. Then $\gamma(h(0,1] \times B)) \le \max\{\gamma(h(V(t_1) \times B))\}$ if $i = 1, \dots, n\} < \gamma(B)$ and consequently, $\gamma(h(\eta(B) \times B)) < \gamma(B)$. Hence (h_2) implies (h) and Proposition 1 is true.

The constant mappings $f_{\theta}(x) = x_{\theta}$ for all $x \in \overline{\Omega}$, with $x_{\theta} \in \Omega$, are essential. This follows easily by Proposition 2 where we use Sadovskii's fixed point structure on E and we take D_g and \bar{g} as in Example 1.

As an application we have the following result (see [2]):

COROLLARY 2. Let E be a Banach space, Ω an open bounded subset of E and $f: \overline{\Omega} \to E$ a γ -condensing mapping. If for some $x_o \in \Omega$ one has

$$t(f(x)-x_0)\neq x-x_0$$
 for all $t\in]0,1]$ and $x\in\partial\Omega$,

then f has at least one fixed point in Ω .

<u>Proof.</u> Observe that f is equivalent in the sense of (h_2) , with the essential constant mapping $f_o(z) = z_o$ $(z \in \overline{\Omega})$ and apply Proposition 1.

3) A Mönch's fixed point theorem. The following generalization of the result in Corollary 2 is due to H. Mönch (see [7] and [2], Theorem 5.18.1). We shall deduce it from Proposition 1 via Proposition 2, by using Mönch's fixed point structure.

CURULLARY 3. Let E be a Banach space, $\Omega \subset E$ open and $f: \overline{\Omega} \to E$ continuous. Suppose that for some $e_0 \in \Omega$

$$t(f(z)-r_0)\neq z-r_0$$
 for all $t\in [0,1]$ and $z\in\partial\Omega$ (6)

and

if $C \subset \overline{\Omega}$ is countable and $C \subset \overline{\text{conv}}(\{z_o\} \cap f(C))$, then C is compact. (7) Then f has at least on fixed point in Ω .

<u>Proof.</u> In order to apply Propositions 1 and 2, let us set $X = \overline{\Omega}$, $A = \partial \Omega$,

$$\mathcal{A}_{\partial\Omega}(\overline{\Omega}\,,E)=\{g;g(x)=x_o+\theta_\lambda(x)(f(x)-x_o)\ \text{for}\ x\in\overline{\Omega}\ ,$$

where
$$\lambda \in [0,1], \theta_{\lambda} \in C(\tilde{\Omega};[0,1]), \theta_{\lambda}(x) = \lambda$$
 for all $x \in \partial\Omega$ (8)

and define an equivalence relation on this class of mappings by

$$(h_3)$$
 $g' \sim g$ iff $\lambda' = \lambda$ or $\{\lambda', \lambda\} = \{0, 1\}$, in case $f(x) \equiv x_0$ on $\partial \Omega$;
 $g' \mid_{\partial \Omega} = g \mid_{\partial \Omega}$, otherwise.

Here $g(x) = x_o + \theta_{\lambda}(x)(f(x) - x_o)$ and $g'(x) = x_o + \theta_{\lambda'}(x)(f(x) - x_o)$.

It is easy to see that this relation satisfies the above conditions (a) and (h). Indeed, if $g'|_{\partial\Omega} = g|_{\partial\Omega}$, then obviously $g' \sim g$ in case that $f(x) \equiv x_g$ on $\partial\Omega$. In the opposite case, one deduces that $\lambda' = \lambda$ and hence $g' \sim g$ as well. Thus, condition (a) holds. On the other hand, if $g' \sim g$, and we consider $h(t,x) = (1-t)g'(x) + tg(x) = x_g + \{(1-t)\theta_{\chi'}(x) + t\theta_{\chi}(x)\}(f(x) - x_g)$, we see that condition (h) also holds. Consequently, Proposition 1 is applicable and since f is clearly equivalent, in the sense of (h_3) , with the constant mapping x_g , we have only to prove that the constant mapping x_g is essential in class (8). To do this, let g be any element in class (8) satisfying $g|_{\partial\Omega} \equiv x_g$. Assume

$$g(x) = r_0 + \theta(x)(f(x) - x_0)$$
 for $x \in \overline{\Omega}$, (9)

where θ is a certain element of $C(\Omega;[0,1])$ constant on $\partial\Omega$. Let

$$D_g = \overline{\operatorname{conv}}(g(\Omega))$$
 and $\hat{g}; D_g \rightarrow D_g$,

 $\tilde{g}(z) = g(x)$ for $x \in \overline{\Omega}$ and $\tilde{g}(x) = x_0$ if $x \notin \Omega$. Let us observe that $\tilde{g} \in M(D_g)$, where M arises from Mönch's fixed point structure. Indeed, let $C \subset D_g$ be countable and $C \subset \overline{\operatorname{conv}}(\{x_0\} \cup \tilde{g}(C)) = \overline{\operatorname{conv}}(\{x_0\} \cap g(C \cup \overline{\Omega})).$

By (9), we have $\overline{\operatorname{conv}}(\{x_o\} \cup g(C \cap \overline{\Omega})) \subset \operatorname{conv}(\{x_o\} \cup f(C \cap \overline{\Omega}))$. Consequently, $C \subset \overline{\operatorname{conv}}(\{x_o\} \cup f(C \cup \overline{\Omega}))$ and using (7) we find that $\overline{C} \cap \overline{\Omega}$ is compact. Further, the continuity of f implies that $f(\overline{C} \cap \overline{\Omega})$ is compact and Mazur's lemma that $\overline{\operatorname{conv}}(\{x_o\} \cup f(C \cap \overline{\Omega}))$ is also compact. It follows that C is compact, too, and so $g \in M(D_g)$. Since the conditions (1) and (2) in Proposition 2 are clearly satisfied, it follows that the constant mapping x_o is essential as claimed and the proof is complete.

Hemark 3. One can prove Corollary 1 and Corollary 2 in the small way as Corollary 3, i.e. by showing that f is essential in the smaller class of mappings (8), endowed with the equivalence relation (h_3) . But in case of Corollary 3, we can not prove the essentiality of f in the larger class of all

continuous mappings satisfying conditions (6) and (7). It is because we don't know if for two such mappings g and g', the mapping (1-t)g+tg' also has property (7).

4) Topological transversality and mappings of monotone type. Let E be a Banach space and E* the conjugate space of E. We denote by <...> the duality between E* and E and we shall use the symbol → for strong convergence and — for weak convergence. Let X be a subset of E and f mapping from X into E*. Then f is said to be monotone if

$$\langle f(x) - f(y), x - y \rangle \ge 0$$
 for all $x, y \in X$,

and is said to be of class (S), if for any sequence (z_j) in X for which $z_j \rightarrow z$ in E and

$$\overline{\lim} < f(x_j), x_j - x > \le 0,$$

we have $x_f \rightarrow x$. The mapping f is called <u>hemicontinuous</u> if f(x+ty) - f(x) as $t \rightarrow 0$ and <u>demicontinuous</u> if $y \rightarrow x$ implies f(y) - f(x).

Any monotone hemicontinuous mapping $f: E \rightarrow E^*$ is maximal monotone (see [8], Corollary III.2.3) in the sense that its graph is a maximal element in the set of all $T \subset E \times E^*$ satisfying

$$\langle x^* - y^*, x - y \rangle \ge 0$$
 for every $[x, x^*], [y, y^*] \in T$,

ordered by inclusion.

If E is a reflexive Banach space then it can be renormed so that E and E^* are both locally uniformly convex. Then there exists a unique mapping $J:E\to E^*$ (the duality mapping) such that $\langle J(x),x\rangle = \|x\|^2 = \|J(x)\|^2$ for all $x\in E$. Moreover, J is bijective, bicontinuous, monotone and of class $(S)_+$ (see [1], Proposition 8, on [8], III.2.6). In this case, the maximal monotonicity of a monotone mapping f is equivalent with the surjectivity of J+f. Moreover, if f is maximal monotone then J+f is even bijective and $(J+f)^{-1}:E^*\to E$ is

demicontinuous (sec [8], III.2.11).

In what follows we shall give a topological transversality theorem for mappings of the form $(J+T)^{-1}(J-f)$ with f demicontinuous and of class $(S)_+$, T being fixed monotone hemicontinuous mapping. We shall apply this theorem to establish the existence of solutions to equation

$$(T+f)(z)=0.$$

In contrast to paper [1] of F. Browder, these results are proved without using the degree theory.

Let E be a reflexive Banach space which is normed so that E and E^* are both locally uniformly convex, $T:E\rightarrow E^*$ a hemicontinuous monotone mapping and $\Omega\subset E$ a nonempty open bounded subset of E. Let us consider the following class of admissible mappings:

$$\mathcal{A}_{\partial\Omega}(\overline{\Omega}, E) = \{g; g = (J + T)^{-1}(J - f), f \text{ demicontinuous},$$
of class $(S)_+$ and $\emptyset \notin (T + f)(\partial\Omega)\}$.

(10)
If $g', g \in \mathcal{A}_{\partial\Omega}(\overline{\Omega}, E), g' = (J + T)^{-1}(J - f')$ and $g = (J + T)^{-1}(J - f)$ we set

 $\begin{array}{lll} (h_4)\ g'\sim y & \text{if there exists} & h^*;[0,1]\times\overline{\Omega}-E^* & \text{such that} & h^*(0,.)=f', & h^*(1,.)=f,\\ 0\not\in (T+h^*(t,.))(\partial\Omega) & \text{for every } t\in]0,1[& \text{and for any sequence } (x_j) & \text{in }\Omega & \text{with } x_j\to x & \text{and}\\ & \text{any sequence } (t_j) & \text{in } [0,1] & \text{with } t_j\to t & \text{for which } \overline{\lim}< h^*(t_j,x_j),x_j-x>\leq 0, & \text{we have}\\ & x_j\to x & \text{and } h^*(t_j,x_j) & h^*(t,x). \end{array}$

The relation ~ defined in this way is an equivalence relation on class (10).

Suppose that $g'|_{\partial\Omega}=g|_{\partial\Omega}$. Then, by the injectivity of $(J+T)^{-1}$, one has $f'|_{\partial\Omega}=f|_{\partial\Omega}$. Now if we set $h^*(t,.)=(1-t)f'+tf$, then it is easily seem (see [1], Proposition 12) that $g'\sim g$. Thus, condition (a) is satisfied.

Denoting by $h = (J + T)^{-1}(J - h^*)$ we shall prove that (h_4) implies (h).

Clearly, since $0 \notin (T + h^*(t_*))(\partial \Omega)$ for any $t \in [0,1]$, we have that $Z = \sqcup \{\operatorname{Fix}(h(t_*)), t \in [0,1]\}$ and $\partial \Omega$ are disjoint. In addition, Z is closed. Indeed, let (x_j) be a sequence in Z such that $x_j \cdot x_i$, then, there is a sequence (t_j) in [0,1] such that $h(t_j, x_j) = x_j$, or equivalently, $h^*(t_j, x_j) = 0$. Passing, if necessary, to a subsequence, we may assume that $t_j \to t$ and by (h_i) we obtain $h^*(t, x) = 0$, that is h(t, x) = x. So, $x \in Z$, two. Hence $el(Z) \cap \partial \Omega = 0$. Let $\eta: \widetilde{\Omega} \to [0,1]$ be continuous and $\eta(x) = 1$ for all $x \in \partial \Omega$. We wish to show that $h(\eta(\cdot), \cdot)$ is admissible in class (10). First, since $0 \notin (T + f)(\partial \Omega)$, we see that $h(\eta(\cdot), \cdot)$ is fixed point free on $\partial \Omega$. Next, let (x_j) be a sequence in Ω such that $x_j = x$ and

$$\overline{\lim} < h^*(\eta(x_j), x_j), x_j - \varepsilon > \le 0.$$

We may suppose, without loss of generality, that $\eta(x_j) - \lambda$ in [0,1]. Then by (h_4) , $x_j - x$, $h^*(\eta(x_j), x_j) - h^*(\lambda, x)$ and since η is continuous, $\lambda = \eta(x)$. Hence $h^*(\eta(\cdot), \cdot)$ is of class $(S)_+$ and demicontinuous. Thus, $(h_4)_-$ implies $(h)_+$ as claimed.

Therefore, Proposition 1 is applicable and an we may speak about a topological transversality theorem for mappings of class (10). As an application, we have

COROLLARY 4. Let E be a reflexive Banach space which is normed so that E and E^* are locally uniformly convex, $T:E \cdot E^*$ a hemicontinuous monotone mapping with 0 = T(0), $\Omega \subset E$ an open bounded subset with $0 \in \Omega$ and $f_0: \overline{\Omega} \to E^*$ a demicontinuous mapping of class $(S)_+$. Assume that

$$(1-t)J(x)+tf_{\phi}(x)+T(x)\neq 0 \text{ for all } t\in [0,1] \text{ and } x\in \partial\Omega. \tag{11}$$
 Then there exists at least one solution $x\in \Omega$ to equation $(T+f_{\phi})(x)=0$.

<u>Proof.</u> Observe that $0 = (J+T)^{-1}(J-J) \sim (J+T)^{-1}(J-f_0)$. Indeed, the mapping h^* , $h^*(t,\cdot) = (1-t)J + tf_0$ for $t \in [0,1]$, satisfies the requirements of condition (h_4) . Hence, taking into account Proposition 1, one has only to show that the constant mapping $0 = (J+T)^{-1}(J-J)$ is essential in class (10). To do

Radu Precup

this, let g be any admissible mapping satisfying $g|_{\partial\Omega}=0$. We have $g = (J+T)^{-1}(J-f)$, where f is demicontinuous, of class $(S)_+$, $0 \notin (T+f)(\partial \Omega)$ and f(x) = J(x) for all $x \in \partial \Omega$. We want to show that y has a fixed point, i.e. there exists $z \in \Omega$ such that (Tf)(z) = 0. We shall proceed as in the proof of Theorem 4 In [1]. Let Δ be the partially ordered set of finite-dimensional subspaces E_{λ} of E ordered by inclusion and denote by φ_1^* the projection mapping of E^* onto E_{λ}^* . For each λ , the mapping $f_{\lambda} = \varphi_{\lambda}^*(T+f)$: $\overline{\Omega}_{\lambda} \to E_{\lambda}^*$, where $\Omega_{\lambda} = \Omega \cap E_{\lambda}$ is continuous and $t(x-f_{\lambda}(x))\neq x$ for all $t\in [0,1]$ and $x\in \partial\Omega_{\lambda}$. Indeed, if we assume that $t(x-f_{\lambda}(x))=x$ for some $t\in [0,1]$ and $x\in \partial\Omega_{\lambda}$, then since f(x)=J(x) we obtain that $t < T(x), x > + ||x||^2 = 0$. But $< T(x), x > \ge 0$ because 0 = T(0) and T is monotone. Hence x=0, which is impossible because $x\in\partial\Omega$ and $0\in\Omega$. Now by Corollary 1, the mapping $I - f_{\lambda}$ from $\overline{\Omega}_{\lambda}$ to $E_{\lambda}^{\bullet} \equiv E_{\lambda}$ has a fixed point $x_{\lambda} \in \Omega_{\lambda}$, that is $f_{\lambda}(x_{\lambda}) = 0$, or equivalently, $\langle (T+f)(x_{\lambda}), y \rangle = 0$ for all $y \in E_{\lambda}$. Thus, the set $V_{\lambda} = \{x \in \Omega; \ <(T+f)(x), x > <0 \,, \qquad <(T+f)(x), y > =0 \quad \text{for all} \quad y \in E_{\lambda} \} \quad \text{is nonempty.}$ Clearly, the fammily $\{V_{\lambda}\}$ has the finite intersection property. It follows that the family of weakly compact sets $\{w-cl(V_A)\}$ has nonempty intersection. Let x_0 be a point of this intersection. For an arbitrary point $y \in E$ choose E_X in Δ such that $z_o, y \in E_{\lambda}$. Let (x_i) be a sequence in V_{λ} such that $z_i \rightarrow z_o$. Since $x_i \in V_{\lambda}$, we have

 $<(T+f)(x_j),x_j>\leq 0, \quad <(T+f)(x_j),x_o>=0 \text{ and } <(T+f)(x_j),y>=0$ It follows that $<(T+f)(x_j),x_j-x_o>\leq 0, \text{ or equivalently}$

$$< f(x_j), x_j - x_0 > \le - < T(x_j), x_j - x_0 >$$

Since $< T(x_j), x_j - x_0 > \ge < T(x_0), x_j - x_0 >$ and $< T(x_0), x_j - x_0 > \rightarrow 0$, we deduce that $\overline{\lim} < f(x_j), x_j - x_0 > \le 0$ and since f is of class $(S)_+$ and demicontinuous, we infer that $x_j \rightarrow x_0$ and $f(x_j) \rightarrow f(x_0)$. By (12) we also deduce $< T(x_j), x_0 > \cdots < f(x_0), x_0 >$ and $< T(x_j), y > \rightarrow \cdots < f(x_0), x > \cdots$. Now, from $0 \le < T(x_j) - T(y), x_j - y > \cdots < T(x_j) - T(y), x_0 - y > \cdots < T(x_j), x_j > \cdots < T(x_j), x_j$

 $-< T(x_j), x_0> -< T(y), x_j-x_0>$; passing to limit $j-\infty,$ we obtain $0<< -f(x_0)-T(y), x_0-y>.$

Since y was arbitrary and T is maximal monotone, we may conclde that $-f(x_0) = T(x_0)$, as we wished.

Remark 4. In the same terms of essential mappings one can prove the existence of a solution for $0 \in (T+f)(z)$, where T is more generally a multivalued maximal monotone mapping (see Remark 2).

REFERENCES

- F. E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. 9, 1-39 (1983).
- 2. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985.
- 3. J. Dugundji, Topology, Allyn and Bacon, Boston, 1973.
- 4. J. Dugundji, A. Granas, Fixed Point Theory, I. Varszava, 1982.
- A. Granas, The theory of compact vector fields and some of its applications to topology of functional spaces (I), Rozprawy Mat. 30, Warszawa, 1962.
- A. Granas, R. Guenther, J. Lee, Nonlinear boundary value problems for ordinary differential equations, Dissertationes Mathematicae, CCXIV, Varszawa, 1985.
- 7. H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Number Anal. 4, 985-99 (1980).
- D. Pascali, S. Sburlan, Nonlinear mappings of monotone type, Edit. Acad. Bucuresti and Sijthoff & Noordhoff, 1978.
- H. Precup, Topological transversality, perturbation theorems and second order differential equations, "Babes-Holyai" University, Preprint nr. 3, 1989.

- R. Precup, Measure of noncompactness and second order differential equations with deviating argument, Studia Univ. "Babes-Bolyai," 34, No. 2, 25-35 (1989).
- 11. R. Precup, <u>Topological transversality and applications</u>, <u>Proceedings of the Colloquium on Geometry and Topology</u>, <u>Timisoara</u>, 1989, <u>University of Timisoara</u>, 1990.
- I. A. Rus, <u>Fixed point structures</u>, <u>Mathematica</u> (Cluj) 28 (51), 59-64 (1986).

