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GENFHALEZED TOPOLOGICAL THANSVERSALITY AND EXISTENCE THEOREMS

Itadu Frecugp

§i. Introduction

In this paper Granas’ topological tramsversalily theorem on compact
mappings ia gemeraliwcd in order to obtain, in an nitary panner, several kouen
existence results cancerning mappings of a number of classes ss: canpct,
comdensing, of class (S}, or wappings of the form U'+f with T maximal monotone
and f of class (§].. No roferences to degroe  thoory are made.  Although the
mappings in  dur  examples are all  single-valued, the theory applies to
multivalued wappings, Lou, Example 3 is potable for the manner in which Lhe
topological transversality theorem is epplied 1o a minimal class of admissible

mappings attached to A fixed mapping of a cortain typs.

§2. Generalized Lopological transversality

Ler X be a normal topological spacc, A & proper closed subset of X, ¥ a
seboand B a proper subset of ¥, Consider a nonempry o |ass of mappings

A viciEx ViF-Yna=u).

The mappings of this class are ralled mlpissible. An adsissilile mapping I is
said to be essential If for each adwissible mapping #' laving Lhe same

restriction ta A as F, i.c. J‘"|A=F|1 . voe has THH AU, An admissihble

mapping which ix nol essential is called jgesscntial,

Let ns denote by ~ an equivalence relation on ..-t‘rff.\', YY) such that

(A) if F’ll.:FI.I then ¥~ F,

We are inlerested in the case vhen the equivalence classes contain either

valy essential mappings or only inesscntial mappings, The follnving conditinp
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will be sullicient Lo have such & case:

(MYIL F'~F then there is WD 1]xX—=V such that M{0.)=#, H{l)=F,
cl{u {F(e) Bt el (A =0 and H{J]{.}..lE.IﬁfI.}'] for any continwous g X—[0,1]
satisfying glz)=1 for all sed.

In vhat follavs we aball aysume thatl conditions () and () arc satisfied,

LEMMA L. An .?I.dll:l'i.ﬂﬁihl.!.:! mapping F is jnessential il aml only 1f Lhere

exists an admizsible mapping P’ soch that &~ F apd Fl )y =0,

Prowaf. Our argoments arc similar with those in [4].

The neccessity part i=s a consequence of the definition of loessential

mappings and of condition (A}

Conversely, let #' be an admissible wsapping suwch that F~F' and
F""[ﬂ]:ﬂ. Then, by the symmetry of relation -~ , we have FleF, Now let I be
a mapping associated with_ & and F  as in cowlition {(H). Denote
Z=U{AL)"MA); (o)), If Z=0, then M1, 3" %8} =0 and sa F=H(.) iz
essential.  Thus, we may assume withouwt loss of generality that ¥ 20, By
condition (H), the noncmpty closed subsets A and el #) of the novmal topelogical
space X, are disjoint. Consequently, according to Urysohn's Lheorem (see [3],
lhearem ¥IL.4.1}, Lhere is a continwous functiom gX—{0 0] such that gpiz}=0 for
all zeellZ) aml fz)=1 Tor all zed. Uy condition (H). the mapping F* = H(g.).)
is admissible, Moreover, It 1s casily seccon that "".!_4=V|,| and Fr-'{ii=0n.

Thia shows that F is inessential., The proof is complete.

Nov we state the topological trapsversalily Lheorem under our gensral

assumptions.

THEQREH 1. Tet F awml F' be two admissible mappings such Lhat F~F',

Then F and £ are both esseptianl or both incssential.
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Proof. Assume that F bs incssential, Then, by Lemma 1, thepe exists an
admisaible mapping F such that F~F" apd F"-'({B)=80. Ay the transitivity of
~ we get F'af" yhenco, again by Lemma 1, 10 fallows that F' s [nessential

too and Lhe proof is complete,

3. Topological Lransversality and fixed point theory

Let K be a normal topological space, X aml A tvo proper closed subsels
of F soch that A X, A#X. Consider a nonempty class of mappingsa.
ALK E) e {fiXE; Fix(find =0},
where we have dedoted by Fix{f) the ser of all fixed poiots of f. The mappings
in JA{X,H} are vcalled admissible. An admissible mapping f is said to he
eraential if for cach admissible mapping f' with ['| y=f|, one has Fix(f)#0.

fitherwize, f is called incssential.

et na conaider an equivalence valation ~ on ..-f._![.\'.E} wvhich is assuped to
satiafy the tollowing two conditions:
(a) i€ f'] y=7] 4 then f'nf
and
(hy iF f"~J then there is m[0,1])%x X—E soch that A(0,.)= /", &{1,.) =/,
el U{Fixfh.)); (1] inA=0 and Kin(.),.}] is admissible for any continuouns

Tupction mX—{0,1] satisfying g{z)=1 for-all red.
The following theorem ia a consequence of Theoren 1,

PROPOSITION 1, Let f and f' be Lwo mappings in AN E) such that F~r.

Then f and f* are hoth easentinl or both inessential.

Mo, Take Y =X=x&, #=|{rzhre X}, JAB[.‘-’.V] ={F:X—=¥; therc is=s
fe 4K E) such that Fz)=(zrf{e)) for all ze X} and say that F-F if f-f',
where Flr}={s flr)) and F'{-y=(z f(z]). Obviously F is csaential (inesseatial) if

and only if its associoled [ is cssential (incssential), Also, condition (a) is
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eqiivalent with condition {4}, Moreaver, vondition (hY on =~ juplies condition
() ns Tollows immediatcly il we put H{tx)=(ghit.z]) far all te(0,1] and € XL

Fhus, we may apply Theorem | and Proposition 1 is proved.

Aemark L. Asother proof of Proposition | can be done ily in addition, F
bs & real lincar  =jkice. In  this ease, we may take Y =E, #={0},
AR VY = (P X BiF(e) ¢ f(5) for all re ¥, feA(X.E)}, define FaF' if fn /',
where Fiz) =+ [lz] and Flsl=z—'{z) and put H{t,z}=c—hil.z}) ; in order to apply

Theorem L.

Hemark 2. A sipilar rvesult to Proposition 1 can be staled, more
guencrally, for multivalued mappings from X into FlEY { the family of all
bonempty subsets af £)] in‘a class of admissihle mappings

AJNPENC (X =P(E); Fix(f)n4d =0}, '
In rhis case, the wapping b in condition (4) is multivalwed. [n Lho proof, we

take VY =Xx (L), H— lie.Ey )i re X B € P{E)z € K} and we apply Theorem 1, Agail.

A resnlt as that in Proposition 1 is useful iu applications expecially
when typival wxamples of essential mappings are knovn, In the following we

shnll propose & Lest of exsentlality in tevms of fixed peint structures,

llere, by a fixed poinl sirocture (see [12]) on o certain space E we mesn

a pair (S,M), where § is & class of nonenply subsetz of E (SCPEY) and M ig &
map which attaches to each De S a family M{D) of mappings from D iate D having
#l least uape [ixed poind, Obviously, in this pespect we may speak about a
fixed point slructure an o space E vhenover we vefer bo & fixed point theorem
for a certain class of wappings vhich map & subset of & certain kind into

itself. Thus, by Schauder’s fixed point structure on a Panach apace £, wa mean

the paiv [5.M), where § is the class of all nonempty, bounded closed conves

subsets of £ aml for each PcS, one considers the family AM{D) of all
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canpletely continvons mappings fram 0 inio itselTy by Sadovskii’s tixed poing

structure on o Danach wspace K. we mean the pair (5.M), where § is slse Lhe
class of all mmempty boonded closed conves siulisets of F and [or each bes,
WD) is the sct of all s-romlénsing mippings From 2 into itsclf., Hlere wve have
denoted by 30 Koralowski®s or the Ball measiie of noncompactness on £ (sce =],

22700, 22901 and 2.9,3).  We shall alao use Minchs fixed point structiire on a

Banach space F. Heve. 5 is the class of all nonenipty closed convex subsels of
E and for cach Nt 5, WD) is the set of all continuous mappings f: D0 for
which there is some Ty E 8 =Sueh that i ©CD is countahle and CTonv({z,} N fiC)

thei & is compact (see [2], 5, 18.9),

PRUPDSITION 2, Let {5, M) be a [lixed point Structure on the normal

topulogical space F and |1-I: ,F,JEJ.__tl."L'.Hj. If for every yE.flJlf.\.'.E‘} satisfying

gl 4= gl 1 there exisc M2y e & gl FEM{Dg) sich Lhat

3] L - i 1
”'.1nﬂl,l, 9|_1mjy (L)

and
Fidgh X =0, (2)

then f, is essenlial.

Prool., Sipee _-?E.IF{DH:I. there exisis an -"-Eﬂ.j Aueh Ehat plr)==r. Then, by
(2), r£X. llence 50 ."I.'HDE and by (1) ve have glz)=:. Thus, wvach g €A (X E)

satisfyving gl.i:-'r"l.-l bas & [ixed point, which proves that fa 18 essential.

4. Examples and applications. In this sec'ion we shall give  somo

cxamples  of  classes of admissible mappings:. endowed  with a4 prescribed
equivalence relation satisfying eonditions (a) aml {#) and semeé known theorems
of Leray-Schauder tvpe vill be derived from our Proposition |, via Froposition

2, as applieations.

L} Topolegical transversalily theorem for compact EApRings. A spercial
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case of our Proposition | is & result of A, Granas (see [4] which was at the
origin of our theory).

Let £ b o Hanach space, 1 a nonemply oped sebset of B, X=17 the
closire of @ and A—=&Y ivs bouondary. ¥e deal here with compact mappings
B, i.e. continwons wappings baviog r:'i'{ﬂﬁ‘,l] compact in E., Lel us dooote

Aao(iE) = {0 —8 [ compact and Fix(f)r@ =0}, (3)
and consider the cquivaleace relation =~ op A‘mﬁﬁ;.\']:
(hy) fla~f iff there is a compact R[01jx0—& such that Mo.)=Jf'. KL.)=S and

Fix{h{t,.))ndw =0 for all te][b,1].

It is easily seen Lhal condition (o) is satisFied (if -‘"'an:“m we Llake
It )= (1 —t)f"+1tf) and also that condition (k) fmplies (h).

With this clholce of admissible mappings and of Lhe eguivalenve relation
~ Propoeition | s the topological transversallty theorem itself which is
given by A, Granas in [4), Theorem I1.4.7.

Note that the colstant LERTLE TS IBLJ‘J—.xﬂ [usr :EE. wliere :caEﬂ‘, is
esseplial. This follows from Propesition 2, vhere wve nze Schanderis Fixed
point strucbare on E and we take .ﬂgzcun\rﬁg{ﬁ Wy Fiz)l—alz) if zeDl and Flz) =1z,

if rgfi. (5ee also [4], Theorem II1.4.0.)
As an nppli:s.l.tiun, ve mention a Leray-Schander's jesult:

CORDLLARY 1. Let E be a Dapach space, {1 an oper subset of E and f:{i—K A

compact mapping. Il [or some f,€1l onc has

Wf{z)—sg) # e—5p [ur all te10.1] and redi, (1)

Lhen f has st least ane figed p::ir_n_:_"i_!-!. L1

Proof, By (4), the ecssential constant mapping [ ir)=sz; for ze@l, is

cquivalent with [ io the sense of (h) (wse AlL)=(1—ths,+1f). Thus, by
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Proposition 1, f is alse cssential in class of mappings (3) and in particular
Fi(f)£0.

2} Topological transversality thesrem for conlensing mappings. let B Le

a Bawach space, N a nonempty open bownded sibset of Ey X=0 and A=80. we
shall consider f-condenszed tappings f:—E, i.e. continnous mappings for which
AN < () whenever BT and 1(#) >0, Denote

Aey (L E)= i 2 —F; | y-condensing and Fix(findft=n} (5)
aml consider an eguivalence relation —~ ay .{ﬂn[ﬂ.h‘]. namely
(hy) F'f iEf thers is & mapping {0 1]xT—E such that A(D,.)=/", hi:)=f,

Kt} E Jm!{ﬁ..ﬁ':l For all to |0 and (b, zhzreil]} is equicontinuous.

IF [ JE 3000, E) and Plag=/lan then taking Bt )=(l=0f 4+ we

immediatlely see that '~ f. Thus, condition fa) is satiafied, .

In order Lo prove that conditien (hy) dmplics (h), let ws consider twn
admissible mappings J' and f such that f'ef wod & wapping h as in copdition
(g ds Since -'rl,!,.}EJ.ml:ﬁ.H:l ler all te|nif, we have that Z= L {Fisd B, 0
Ce Q. I addition, the cquicontinuity of the set {h{.x)hiceil} implies
that # is closed, Hence el {Fixlh{f-)) te[0]UST =11, Thus, ve have to ashou
enly that hin(.),.) is adwissible [or every contipuous X of0,1] wvith nfx}=1 for
all redfl. Ubviouely, #ip(.),.) Is continous aml sigee Fix{fINidQ =0, one has
Fik{h(n{.h)}ndt =0, Now let HcT be such that «{B}z10. We wvish o show Llat
ﬁ{ﬁ{p;{ﬂ}xﬂ]]{ﬂﬂj.r To do aa, let «ff) =0 be auch that =0 B} <y BY —#{t) and tet
Vit) ke a neighborhood of ¢ such that | Bz, 2) —bideh || < eft) for all sEV{l) and
e M. T fallows that T} < A)Y < 4(H). Let ikt = L) o {Vitht ¢ (0,1]) beoa
finite converipng of the interval [, 1. Then -n’a[ﬂ,l]xHJ]gmax{-,-{ﬁ{V[!l-]xﬂ}j';
i=li...n}< y(B) and conzequently, Hhin(D) = BV <3 (). Hence (hg) implies (A) aml

Proposition 1 is trie,
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The ronatant mappings [ (z)=2, for all refl, with T, Ef, are ecssential.
This follows easily by Proposition 2 where we use Sadovskii's fixed point

structire on £ and ve lake Dp and ¢ as in Fxample 1.
A% an application ve have Thr._fin]'lnwing rosult {sec [2]):

COROLLARY 2. Lel £ be a Danach space, 0 an open honnded subsct of E and

,.I’.'!i_?—*ﬁ'_ _Hi—-:nn-len.-sing mapping. I[ [or somé ry €11 one has

Wiz} —r ) F 2—2, Far all teld!1] aml £ efit,

then f bas at least one fixed point in 1.

Proof. bserve that f is cguivalent in the sense of (h), wvith the

essentbial constant mapping f(e)l==z, (2 Eﬁ} and apply Proposition 1.

4} A Minch's fixed point theorem. The following generalization of the

result in Corollary 2 i duc o W, Minch (See [T] and [2], Theorvem 5.18.1). We
shall deduce it from Proposition 1 via Proposition 2. by using Méuch's [ixed

point structurc.

CURULLARY 2. Let K be a Haoach space, {1C K apen and fill—§ eon LIS .

Suppose that for some raeil

Hffz) =25} # r—z; for all te[0]1] and redl (6)

]
=]
=8

if ¢ cil is countable and eeonvi{r, )N N then € is compack, (7)

Then f kaa at least on fixed point in §7.

Pruel. In erder to apply Propositions 1 amd 2, let ws sct X =114 =00,
AGlE) = (yiglz) = £, 48, (£)(J(2) —2,) For ref,
where A0, 1]8y EC{ﬁ:[U,I]},Hﬂ:]:l for- all redi} (83
and define an equivalence relation on this class of maiiiings by
(] g ~g iff M=dor (MA}={0,1}, in case fir)=x, on Hi};

2’| = gl B athervise,
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Here g{rj::u--i-tl‘l[:ﬂf{:j I,) and g'lr) = Eg *‘”I‘r{ﬂ[”#} <&l

[L is wasy to see that this relation sacisfies the above condisiois (a)
amd (h)e  Tmadeed, if yilﬁﬂ'_”l:'i'ﬂ‘ then whvivusly 4"~y in ease thal flz)=cr, oy
fj 48 In the oppesile case. one dedeces that A=A and hence ¢~y as well,
fhus, condition (w) holds, Iy the other hand, if g'~¢, and we consider
h[f.r]:{l—!}g;{z}+!g[:]:ra{-[[I—fjl‘i'l,[:iIEﬂ.l{x}]fj{r}—xu], wee see that eamdition (k)
also hobds,  Consequently. Proposition 1 is applicable and since fis elearly
eqgnivalent, in the asnsie of {(h}, vith the constant mapping r,, we have only Lo
prove Lhal the constant mapping Fy is essential in elass (B}, To do this, let g
be any elesent in clasa (8) satisfving yl-:'iﬂ T Iz Assume

girl=rgt fedfle) = z,) for cefl, (")
where # is a cortain elemest of C[02:00,1]) vunstant an 80, Let
0, =ronv(git)}) and a:ﬂﬂ—.dﬂ.
flz)=nlr) for £of and §lo)—s, il €6, Lol us ohsorve that §c MDD} wheve &

arises from Ménch's fixed poiotl structure.  Indeed, ler ¢ C I3y b countable snd

C o] {r,) el = v (o} nglc uTin.

By (%), we have m\"[{rﬂ]Uy{lf'l"l‘ﬁ]]Ci:uﬂ‘t’{{:a}u_ﬂf?ﬂﬂ‘”. Consequentcly,

U(_'EDHV{{IH}UI{CUﬁH and waing (7)) we find that ©nff is compact,.  Furthep,

the contimmity of [ implies that JIE N} i3 compact and Mazie's lemma that

v {x, JUAONT)) is alse compact. |t follows that ¢ is compack, ton, and so
f.'r[];'v.ﬂﬂg}. Since the conditions (1) and (2} in |roposition 2 are cIeé.rLy
spbisficd, it follows that rthe constant mapping £, is cssential as claimed and

the proof is complele.

Hewmark 3. One ean prove Corallary 1 and Corollary 2 in the s wWay as
Corollary 3, i.c. by showing that [ is essential in the smaller class of
mappings (8), eadowed with Lhe cquivalewce relation (hy). Dot in case of

Corollary 3, we can not prove the essantinlity of f in the larger class of all
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continuous mappings satisfying vonditions (6) and (7). [L is bocawse we dom'tn
know if for tuo such mappinga y and ¢, the sapping (1—tlp+ iy’ also has propeciy

(7).

1) Topological tl'ansuarﬂalit}_r and mappings of monotone Lype. Let E he A

Banach space .and E* ihe coningate space of . ¥e denote by <. . .> the
duality letween E¥ aod £ oand we shall use the symbol — for slrong convergence
anmid — for weak convergence. Let X be o subset of E and [ sapping from X intlo
E*. Then f Is said to be monotone §F
< f{x)— flyl,z—p> =0 for all rpe X,
aml ia said to be of class (8);, if for any sequence {zJ—} in X for vwhich £iE in
E and
m{ﬂxj-}..:j—:.} <h,
we hiave By The mopping [ is valled henmicontinwous if f{e+tg)—flz} as (-0 and

devicontinnans if p—r impliea fly)—f(z).

Any monotonc hemicontinuwous mapping [iE—E® is wouxjmal monatone {(see [8],
Corallary I11.2.3) in the sense that itsograph Is a waxinal element in the aet
of all T¢C ExE® zatisfving

crt—y*, r-y=> 20 [or every [r,c™], [o4"JET,

oridered by inclusion.

Lf ¥ is a reflexive Banach space thea it can be renormed so that E and E*
are buth-locally uniformly convex. Then there exists o onlgue mapplag J:E—E*
{the duality mapping) such that <J{z}z> = ||:|[!: ||.F{:]|||j for all zgFE.
Morcover, J is bijective, bicontinuous, monotonc and of class (§), (sce [1],
Propusition 8, on [8], IT1,2.6). In this case, Lhe maximal monotonicity of a
monotone mapping f ls equivalent with the serjectivity of Jyf. Morcover, 1f [

ia maximal monotone then J+f i8 even bijective  aml [J+”'1;E*. E s
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demicontinuous (soe [B], II1.3,.11).

In what follows wve shall give a topological Lransversality thcorem for
mappings of Lthe forwm {(J+T)"WJ-f} with § demicontinuous and of clasa £ P
heing lixed monotone hemicontinuous mapping. We sball apply this theorem ta
cstablish the existence of solutions te equation

[T+ iz} =0,
In contiast to paper [1] of F. Drovder, these results are proved withont using

the ilegirer Lheory.

Let E be a veflexive Hanacl space which is normed so that & and E* arve
hoth locally wniformly convex, F1E—F* a hemicontinuous monotons mapping and
QC £ o nonempry wpen bownded subsct of E.  Let ws cousider the [ollowing class
af admissible mappings:

A1 E) = [my={F £ T)= S = 1), J demicuntinuous,
of ‘class (5), and DE(T ¢ f)aH) . (10)

If o', g€ Luof@ E), o =(J ¢ TN —1") and g={J FTY=Yd = f) we ser

(h) g~y i  theve exists AS0UxD—K* such  that A%, =/, B
O (T+h"1 6D for every te 1] and for any sequence (zj‘,l in {i with z—e and
AUy SEQUALGE :rj-} in [{,1] with (el for which m<h'rl‘j.:j}.:j—x} <0; we have
£ ,—r nnd ""f‘;-’ﬂ' P

?

The velalion ~ defined in Lhis vav is an equivalence relation on class (10).

Suppnse Lhat grlﬂn:”ﬁ'!}' Theny, by the injectivity of (F+T)-Y, one has
-'Htilﬂ:”ﬁﬂ‘ Now if we sct AL )=(1-t}f'+tf, then it §s casily séen (see [1],

Proposition 13) that g'~y. Thus, condition (u) is satvis[icd,

Denoting by A=(J+1)"Y0 h*) we =hall prove that (h,) implies [h).
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Cleaply, aineca B (T o h* (4000880 for way tena], we hiwes Lhant
£ = u{Fix(brgne e i)} ail 00 sre disjoint. In widition, £ §s closed. Indesd,
let frj-] be a =wpuence in £ such Lhat rpos. then, there is a4 sequeace [l'jl in
[0,1) such that Ml‘;.:_’}=1l]. ar egquivalently, Fr*l{tj,:;-}:ﬂ. Passing, if neocessacy,
ti o subsegnence, we may assune Lhat !_;_" and by (h;) we whuain A%(L2)—=8, that
is hit,s)=x. So, re¥. twa. Mence of{ZINE0=0. Let 3 =[0.1] be continuous and
nlek=1 for all zeMM.  We wish to =how that Wgl).) is adunissible in class
(10). Firsy, since G@{r+ M), ve see that bfm.).) is Tixed point (eee on 00
Next, let (r)) e a sequence in 0 such that 2j-1 and

Tim < h*tatajha e~ 2> <0,
Wo may supposc, without loss of genevality, Uhat .-,||:J-j—-.l in f0,1]. Then by (K},

i

class (¥}, and dembeontimimus. Thus, (h,) inplies (4}, as claimed,

&=, ir'{uhj].:j}—-h'{l.::l ane since g is continuans, A=plz). Nence K*5l).) Is of

Therefore, Proposition L Is applicable and ~» we way spesk about a
topolegical tLransversaliry theorem for mappings of class (10), ks amn

application, we have

CORALLARY q. Lel L be a reflexive Banach space whivh 1s normed an that E

awidl E® arc Tocal ly wniformly convex, T:E E* a hesioonnt® inuous monotane ||ulppiu;

with O=T), RNcE an open lwunded sohset with fir:ﬂ and !c:ﬁ B a

demicontinuons mapping of class (§),. Assume that

(1= 0z} + 1 (£) + T(e) 0 for all te[0,1] . vd 2 a0, {11y

Thew Lhere exists al least one salublion 0 tn_.aqllalhm T +f:j{1}=ﬂ,

BEronf. Bhseive that O={L ¢TI~ WISy~ YJ- La)s Tuebeenl,  the
mapping A%, A"(A)=0-00+0f, For (ei0t), satiafivs Lhe reguirements of
eondition (hy).  Mence, taking into account Propesition 1. one has only to show

that the constant wapping B—{F+7) YT J) is esdentisl ia class {10), Ta do
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this; let g be any admissible mapping satisfying g, =0, Ve hiave
g=[J+T}_1{J—_ﬂ. vhere [ is demicontinuous, of class (§)p, O0g{T+[)HHN anl
flz)=J{g) for all sedfl., We want to' show thal g las a Fixed point, i.s. there
exists refl such that {Tf){r)=0, We shall proceed as in the proof of Theorem 4
in [1]: Let & be the partially ardered sct of [inile-dimensional subsprces Ky
of & ordered by inclusion and denote |w .'..; the projection mapping of £% onto
EE. For each A, ‘the mapping I_-,I:‘ﬁ';fT+f]:ﬁ_\—rH;, where [ = 0N E, is conlinuois
aml  fHr—fyfeli#F 2 For all 1e(0,l] and 2 g iy, Indoed, if we asaume that
![r—fﬁ{:]}_-r for asome t£[0,1] and rEﬂiil. then =zince. flzl=J(z) we obtain that
teTlzhe =+ [ e|*=0. But <P{zlz = >0 becawse 0=T(0) and T is monotonc.
Hence r =1, which is imppazible beocause red and Defl, Now by Corellary 1, the
mapping I—f, from ﬁ}' to £} =E, has a fixed point £y €8y, that is [l ) =0, or
equivalent Ly, <iT | i)y = =0 for all e £y, lhus, the. ‘set
Vi=deeth <(T+fiche> 20, <[T+flehp>=0 [or all wpg E'_.lll is nonompty.
Clearly, the fammily {FJ.]' has the [inite [nlersectbloa property. [t follows
that the family of weakly wcompact sets {w—cf{i3}} his noncmply intcrsection,
Let r, be a point of this intersectinn. For an arbitrary point ye E chaoose Ky
in A such that =, FEEy Let 1;j} he s sequence in ¥y such that E =z, Since
rjEVJI.‘ we have

all ' i J-_F}[l';.'.l.zj:: <0, <{'J"+”frjj,.:gl> =0 and < (T 1'”“;]‘-3} =0 (12}
It [ollows Lhat <[T+f}{zj},:j-—rﬂ> <0, ar equivalsntls

<I{rj},zj—.tﬂ> - ﬁT{z}-},:j—:ﬂ}

Since -::'I'{zjj.:j—z., Foz <T{:n],zj—rb;=- sl -::T{:.uj.J:j- £y, wo deduce that
ms’,‘_flzj}.:j—:ﬂ} <0 and since [ ia of class (§), and demiconlinvous, we infer
that £ =, Al _j]" flrg). By (12) we also deduce q'j'[:j]‘;a;- - flzahE, > and
d]!'{zjj.y —— < fleghs> . Now, from O£ c?'{zj}—'!'{yl,lj-—y} = TIJ:J-]-—T{y',I,z,,—y}-

T‘:T‘IJ-J..EJ_-} - {'J"{rjj.ra; - {T[y}.::j—:ﬂ} = {szj]—'r'[y}..rd—y} - ‘:”‘j}"'j}
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- {Tliji.-tgﬁ - rfk_!.lj—lnli 7 prssing o limit jeoo, wve ohrain
g 2 —fle,)=Tlghss—n5.
Siove y wag arhitracy and ¥ is maximal menetone, we may conclde that

—I{tﬂI=Tfso} s oA we wished,

Remark 4. In the =ame terms of cssential mappings one can prove Uhe
existence of a solution for OE{T + fi(z), where T is wsre gencrally a multivalued

maximal mopolope mappiog {see Remark 23,
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