NOTE ON AN ABSTRACT CONTINUATION THEOREM

RADU PRECUP*

Received: December 15, 1992 AMS subject classification: 47H10, 47H11, 54H25

REZUMAT. -Notă asupra unei teoreme abstracte de continuare. În această notă se arată că teorema de transversalitate topologică a lui Granas și proprietatea de invarianță la omotopie a indexului de punct fix, pot fi deduse dintr-o teoremă abstractă de continuare demonstrată în [6], [8]. Aceste aplicații ca și aplicația privind proprietatea de omotopie a aplicațiilor zeroepi în sensul lui Furi-Martelli-Vignoli [9] arată că teorema noastră de continuare permite o abordare unitară a unor principii de bază ale analizei neliniare. În context, teorema de transversalitate topologică a lui Granas pentru aplicații cu valori într-o submulțime inchisă și convexă a unui spațiu Banach E, este extinsă la cazul aplicațiilor cu valori într-un retract al lui E.

1. Introduction. In this note our general continuation theorem given in [6], [8] is used in order to derive two useful principles in nonlinear analysis, namely, the topological transversality theorem of A.Granas [2] and the homotopy invariance property of the fixed point index. These applications, together with that in [9] concerning the homotopy property of zero-epi maps in the sense of Furi-Martelli-Vignoli, show that our continuation theorem permits an unified approach to some basic principles in nonlinear analysis. In context, Granas transversality theorem for maps with values into a closed convex subset of a Banach space E is extended to maps with values into a retract of E.

For other consequences of the abstract continuation theorem, several applications and related topics we send to [3], [4], [5] and [7].

^{*&}quot;Babeş-Bolyai" University, Faculty of Nathematics, 3400 Cluj-Napoca, Romania

2. The abstract continuation theorem. Let X be a normal topological space, A a proper closed subset of X, Y a set, B a proper subset of Y,

$$H: [0,1] \times X \rightarrow Y$$

a map and let d be a certain function which is defined at least on the following family of subsets of X:

 $\{H(\mathbf{a}(.),.)^{-1}\ (B);\ \mathbf{a}\in C(X;\ [0,1])\ \text{constant on }A\}\cup\{\phi\}.$ The nature of the values of d is not important.

THEOREM 1. Assume that the following conditions are satisfied:

- (i) $cl(\cup \{H(t,.)^{-1}(B); t \in [0,1]\} \cap A = \phi;$
- (ii) the map F = H(0,.) satisfies $d(H(a(.),.)^{-1}(B)) = d(F^{-1}(B)) \neq d(\phi)$ (1)

for any function a ϵ C(X; [0,1]) constant on A and such that

$$H(a(.),.)|_{A} = F|_{A}.$$

Then there exists at least one $x \in X \setminus A$ solution to $H(1,x) \in B$. Moreover, F = H(1,.) also satisfies condition (1) and

$$d(H(1,.)^{-1}(B)) = d(H(0,.)^{-1}(B)).$$
 (2)

The proof of the first part was given in [6]. For the last part, formula (2), we use the same argument as in the proof of the second part of Theorem 1 in [8].

The meaning of Theorem 1 is that property (1), which is stronger that $F^{-1}(B) \neq \phi$, is invariable to homotopy. In applications, Theorem 1 ensures the solvability of the inclusion $H(1,x) \in B$ when it is known that H(0,.) satisfies (1).

A map f in the class of all maps of the form H(a(.),.), where $a \in C(X; \{0,1\})$ is constant on A, is said to be d-essential

if it satisfies condition (1). Therefore, Theorem 1 saies t_{nat} the d-essentiality property is invariable to homotopy.

3. Applications. Let E be a real Banach space and K a retract of E (this means that there is a continuous map R: $E \rightarrow K$ such that R(x) = x on K). All topological notions referring to subsets of K will be understood with respect to the topology induced on K.

Let U be an open bounded subset of K and $h \colon \{0,1\} \times \overline{U} \to K$ be compact.

a) A first application depends upon the concept of fixed point index. For a compact map $f: \overline{U} \to K$ such that $\text{Fix}(f) \cap \partial U = \phi$ the fixed point index is the integer number $D_{LS}(I - fR, R^{-1}(U), 0)$ where D_{LS} is the Leray-Schauder degree.

COROLLARY 1 (Leray-Schauder). Assume that the following conditions are satisfied:

- (i) $h(t,x) \neq x$ for all $t \in [0,1]$ and $x \in \partial U$;
- (ii) $i(h(0,.),U,K) \neq 0.$

Then there exists at least one fixed point of h(1,.) in U. Moreover,

$$i(h(1,.),U,K) = i(h(0,.),U,K).$$

We shall denote it by i(f,U,K) (see [1, pp 238]).

Proof. Apply Theorem 1 to: $X=\overline{U}$, $A=\partial U$, Y=E, $B=\{0\}$, H(t,x)=x-h(t,x), $d(\phi)=0$,

$$d(H(a(.),.)^{-1}(B)) = i(h(a(.),.),U,K).$$

In this case, condition (1) is satisfied and its equality part expresses just the boundary value dependence of the degree.

Remark. Condition (ii) in Corollary 1 clearly holds if $h(0,x) = x_0 \text{ for all } x \in \bar{U} \text{ (recall } x_0 \in U).$

b) The next application depends upon the concept of **essential map**. A compact map $f: \overline{U} - K$ is said to be admissible if it is fixed point free on ∂U . An admissible map is essential if each admissible extention g of $f|_{\partial U}$ has at least one fixed point in U.

COROLLARY 2 (Granas). Assume that the following conditions are satisfied:

- (i) $h(t,x) \neq x$ for all $t \in [0,1]$ and all $x \in \partial U$;
- (ii) h(0,.) is essential.

Then there exists at least one fixed point of h(1,.) in U. Moreover, the map h(1,.) is essential too.

Proof. The conclusion follows from Theorem 1 if for each admissible extension g of $h(1,.)|_{\partial U}$ (in particular for g=h(1,.)) we set: $X=\overline{U}$, $A=\partial U$, Y=E, $B=\{0\}$,

$$H(t,x) = x - h(2t,x) for t \in [0,1/2]$$

$$= x - 2(1-t)h(1,x) - (2t-1)g(x) for t \in [1/2,1]$$
and $d(\phi) = 0$, $d(C) = 1$ for $C \neq \phi$.

Remark 2. Condition (ii) in Corollary 2 also holds for $h(0,x)=x_0,\ x\in \widetilde{U}.$ This follows by Schauder's fixed point theorem.

Remark 3. Recall that every closed convex subset is a retract and that every retract is closed but not necessarily convex; for instance, $\partial B_1(0)$ is a retract of E if dim $E=\infty$.

Remark 4. There are examples of compact maps having null index but which are essential. Here is one from [10]: Let E be

a real Hilbert space, U a bounded open subset of E with $0 \in U$ and let $f: \overline{U} \rightarrow E$ be compact such that $f(x) \neq x$ on ∂U and

$$(f(x),x) \geq (x,x)$$
 for all $x \in \partial U$.

If E is infinite dimensional, one has

$$D_{I,S}$$
 $(I - f, U, 0) = 0$

and f is essential. Therefore, such a map can stand for h(0,.) in Corollary 2, but not in Corollary 1 if E is infinite dimensional.

Remark 5. The main ingredient in the proof of Theorem 1 is Urysohn's extension theorem in normal (T_4) topological spaces. Using the extension argument in a way adequated to the separation properties, we are able to prove Theorem 1 even for more general T_n spaces (n < 4); in particular, for Hausdorff locally convex spaces.

Remark 6. Note that the properties in Corollary 1 and Corollary 2 can be derived from Theorem 1 even for more general maps.

REFERENCES

- 1. K.Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985.
- A.Granas, Homotopy extension theorem in Banach spaces and some of its applications to the theory of non-linear equations, Bull. Acad. Polon. Sci. 7(1959), 387-394.
- R.Precup, Topological transversality, perturbation theorems and second order differential equations, Preprint Nr. 3(1989), "Babes-Bolyai" Univ., Fac. of Math., 149-164.
- R.Precup, Generalized topological transversality and mappings of monotone type, Studia Universitatis Babes-Bolyai 35(1990), 44-50.
- R. Precup, Generalized topological transversality and existence theorems, Libertas Mathematica 11(1991), 65-79.
- R.Precup, Sur un principe topologique, Preprint Nr. 6(1991), "Babeş-Bolyai" Univ., Fac. of Math., 163-168.
- R.Precup, Topological transversality and boundary problems for second order functional differential equations, in Differential Equations and Control Theory (V.Barbu ed.), Longman Scientific & Technical, 1991, 283-288.
- 8. R.Precup, On the topological transversality principle, Nonlinear Analysis, Theory, Methods & Applications, 20(1993), in print.

RADU PRECUP

- 9.
- R.Precup, On a topological principle II, Preprint Nr. 6(1992), "Babes Bolyai" Univ., Fac. of Math., in print.
 V.Lakshmikantham, Yong Sun, A theorem on the existence of two fixed points, Journal of Mathematical and Physical Sciences 25(1991), 281 286. 10.