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0. I N T R O D U C T I O N  

IN THIS paper  we propose a generalization of  the topological transversality theorem of  Granas 
[1] (see also [2]). We show the implication of this theorem in the axiomatic theory of  the topo- 
logical degree due to Amann  and Weiss [3] (see also [4]) and its connection with the fixed point 
theory. Finally, as an application, we prove a continuation theorem for equations of  the form 

L(x) = N(x) 

where L is a linear Fredholm mapping of  index zero and N is a nonlinear mapping satisfying 
a compactness-like condition of  M6nch type. This theorem extends some continuation results 
due to Mawhin [5] (see also [6]) and Volkmann [7] and in a particular case reduces to a fixed 
point theorem of  M6nch [8]. 

1. G E N E R A L I Z E D  T O P O L O G I C A L  T R A N S V E R S A L I T Y  

Let X be a normal  topological space, A a proper closed subset of  X, Y a set and B a proper 
subset of  Y. Consider a nonvoid class of  mappings 

(~BA(X,Y) C IF:X--" Y; F-1(B) A A  = Q} 

whose elements are called admissible mappings and let 

d: [F-I(B);F~ (~](X, Y)] U [Q]  ~ A 

be any mapping with values in a nonempty set A. 
For each admissible mapping F, the value d(F-~(B)) stands as a " m e a s u r e "  of  the set F - I (B)  

of  all solutions x ~ X of 

F(x) ~ B. (1) 

Denote 0 = d ( O ) .  An admissible mapping F is said to be d-essential if 

d(F-~(B)) = d(F'-~(B)) ~ 0 

for any admissible mapping F '  having the same restriction to A as F, i.e. F]A = F ' ] A .  In the 
opposite case F is said to be d-inessential. Thus, F is d-inessential if d(F-I(B)) = 0 or there 
exists an admissible mapping F '  such that 

FIA = F'IA and d(F-I(B)) ~ d(F'-I(B)). 
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Also consider an equivalence relation ~ on 6tan(X, Y) such that 

(A) i fF lA = F'IA then F - -  F ' .  

We are interested in the case when the equivalence classes contain only d-essential mappings 
or only d-inessential mappings.  A sufficient condition to have such a case is the following one: 

(H) if F - - F '  then there is H : [ 0 ,  1] × X - - .  Y such that H ( 1 , - ) =  F, H ( 0 , . ) =  F ' ,  
cl((J[H(t,  -)-I(B); t ~ [0, 1]]) N A = Q~ and H(r/( .) ,  -) ~ 6tan(X, Y) for any continuous function 
r/: X ~ [0, 1] satisfying r/(x) = 1 for all x e A. 

In what follows we shall assume that conditions (A) and (H) hold. 
Using similar arguments to those in [2] we can prove the following lemma. 

LEMMA 1. Let F be an admissible mapping.  Then F is d-inessential if and only if d(F-~(B)) = 0 
or there exists an admissible mapping F '  such that 

F--- F '  and d(F-I(B)) ~ d(F'-~(B)). (2) 

Proof. The necessity follows by the definition of  d-inessential mappings and condition (A). 
Suppose now that F '  satisfies (2). Let H be a mapping associated with F and F '  as in 

condition (H). Denote 

Z = [,.)[H(t, ")-~(B); t ~ [0, 111. 

I f  Z = Q,  then H(1,  . )- l(B) = Q), i.e. F-l (B)  = Q) and so d(F-~(B)) = 0, which means that F 
is d-inessential. Next, assume Z ~ Q.  According to condition (H), the nonvoid closed subsets 
A and cl(Z) of  the normal  topological space X are disjoint. So, by Urysohn 's  theorem (see 
[2, theorem 7.4.1]), there exists a continuous function v/: X --, [0, 1] such that 

t/(x) = 1 for x e A and ~/(x) = 0 for x e cl(Z). 

The mapping F* = H(r/( .) ,  .) is admissible, 

FIA = F*[,4 and F'-I(B)  = F*-I(B). (3) 

Therefore,  

d(V-X(B)) ~ d(F'-~(B)) = d(F*-l(B)). (4) 

The relations (3) and (4) show that F is d-inessential. The proof  of  lemma 1 is complete. 

Our generalization of  the topological transversality theorem is the follow theorem. 

THEOREM 1. Let F and F '  be two admissible mappings such that 

F =  F ' .  

Then F and F '  are both d-essential or both d-inessential and in the first case one has 

d(F-X(B)) = d(F'-X(B)) ~ O. (5) 

Proof. Assume F is d-inessential. I f  d(F'-I(B)) = 0 then, clearly, F '  is d-inessential. Thus, 
we may assume d(F'-1(B)) ~ 0. 
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In the case d(F-I(B)) = 0, the d-inessentiality of  F '  follows f rom lemma 1 and the symmetry 
of  relation --. Suppose now that d(F-I(B)) ~ 0 too. Then, lemma 1 implies that there exists an 
admissible mapping F" such that 

F ~ F" and d(F-I(B)) ~ d(F"-l(B)). 

Using the symmetry and the transitivity of  relation - ,  f rom F = F '  and F ~ F", we obtain that 

F '  ~ F". 

Now, if d(F'-~(B)) ~ d(F"-I(B)), then lemma 1 applied to F '  and F" implies that F '  is 
d-inessential, while if d(F'-~(B)) = d(F"-~(B)), we deduce that d(F'-I(B)) ~ d(F-I(B)) and the 
d-inessentiality of  F '  follows once again f rom lemma 1, this time applied to F '  and F. There- 
fore, F' is also d-inessential. 

Now suppose that F and F '  are d-essential mappings.  Clearly, d(F-~(B))~ 0 and 
d(F'-I(B)) ~ 0. Since F --- F ' ,  we can construct, as in the proof  of  lemma 1, an admissible 
mapping F* such that 

FIA = F*IA and F'-I(B) = F*-l(B).  

Consequently, 

d(F'-l(B)) = d(F*-I(B)). 

On the other hand, since FIA = F*IA and F is d-essential, we must have 

d(F-I(B)) = d(F*-~(B)). 

Now (5) follows f rom (6) and (7). 

(6) 

(7) 

2. C O N N E C T I O N  W I T H  T H E  T O P O L O G I C A L  D E G R E E  T H E O R Y  

In addition to the assumptions made in Section 1 we shall suppose here that 

if FIA = F'IA then d(F-I(B)) = d(F'-I(B)). (8) 

Then, obviously, an admissible mapping F is d-essential if and only if d(F-I(B)) ~ 0 and it is 
d-inessential if and only if d(F-I(B)) = O. 

Under assumption (8), theorem 1 says that the equivalence classes contain mappings F having 
the same " m e a s u r e "  d(F-~(B)) for the counter-image F - I (B)  of  B. Therefore,  

if F -- F '  then d(F-~(B)) = d(F'-~(B)). (9) 

Now suppose that no equivalence relation is known on 6tan(X, Y) and introduce the follow- 
ing natural question: if F and F' are admissible mappings,  when can we say that d(F-I(B)) = 
d(F'-I(B))? An answer to this question is the following theorem. 

THEOREM 2. Assume that d satisfies condition (8) and let F and F '  be two admissible mappings.  
I f  there exists a mapping H :  [0, 1] × X --, Y such that 

(i) H(0,  .) = F '  and H ( I , - )  = F; 
(ii) H(q ,  ")tA # H(t2,  ")la for t I # t2; 

(iii) H(qx( ' ) ,  ") is admissible for each r/x e C(X; [0, 1]) with qx(x) = 2 for all x e A, and 
every 2 e [0, 1]; 
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(iv) c l (UlH(t ,  ")-l(B); t ~ [0, 11}) n A = Q,  
then 

d(F-~(B)) = d(F'-I(B)). 

Proof. Consider 

~_~B(X, Y) = {G: X -~ Y; G(x) = H(q×(x), x) for x ~ X, 2 e [0, 1], r/x ~ C(X; [0, 1]), 

qx(x) = 2 for x ~ A}. (10) 

By (i) and (iii) we have 

F, F '  e ~_~n(X, Y) C (in(X, V). 

Also, for G = H(r/×(.), .) and G '  = H(r/×,(-),-), say 

G -- G '  if and only if 2 = 2'  or [2, 2'] = [0, 1}. 

Obviously, = is an equivalence relation on the set (10) which, by (ii), satisfies condition (A). 
Moreover,  if for G = G '  we set 

_H(t, x) = H((1 - t)r/x,(x ) + tr/×(x), x) 

then, since 

U h H ( t , - ) - I ( B ) ;  t ~ [0, 111 C U l H ( t ,  .)-~(B); t E [0, 111, 

by (iv), we see that the relation = also satisfies condition (H) with _H in place of  H and with 
respect to the class (10). Thus, theorem 1 is applicable and since F = F ' ,  the conclusion follows 
by (8). 

Remark 1. Theorem 2 can be used in order to derive the homotopy  invariance of  the topological 
degree f rom the axiom of  boundary  value dependence and the axiom of  solution. In fact, 
condition (8) corresponds to the axiom of  boundary  value dependence of  the topological 
degree, while the condition d(Q3) = 0, or equivalently 

d(F-l(B)) # 0 implies F-~(B) # Q~, 

corresponds to the axiom of  solution. This permits an axiomatic treatment of  the topological 
degree based on the following axioms: (1) axiom of normalization; (2) axiom of  additivity; 
(3) axiom of  boundary value dependence; (4) axiom of  solution; and (5) axiom of  invariance to 
translations. In this approach,  contrary to the papers [3, 4], the homotopy  invariance will be a 
theorem and not an axiom. 

Remark 2. In theorem 1 no compatibility between the " m e a s u r e "  d and the class of  admissible 
mappings is assumed. In fact, for that theorem 1 becomes useful, we need that simple d-essential 
mappings can be identified. 

Remark 3. When we only deal with the existence of  solutions to (1) and we do not have to 
" m e a s u r e "  the set of  all solutions, it is sufficient to take as d the simplest indicator function 

d ( O )  = 0 and d(C) = 1 for C # O (11) 
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taking A = [0, 1] and 0 = 0. In this case, theorem 1 was proved in our previous paper  [9]. 
When d is given by (11), we concisely speak about  essentiality instead of  d-essentiality. 

In the next sections we shall assume that d is given by (11). 

3. C O N N E C T I O N  W I T H  F I X E D  P O I N T  T H E O R Y  

Using theorem 1 and a fixed point theorem for mappings leaving invariant a subset of  X, 
we can prove, under some suitable conditions, the existence of fixed points for mappings 
f :  X -~ E, X C E, which generally do not leave X invariant. 

Let E be a normal  topological space, X and A two proper closed subsets of  E, A C X, 
A ;~ X. Consider a nonvoid class of  mappings 

(~A(X,E)  C [ f : X  ~ E; Fix( f )  A A  = Q ]  

where F ix( f )  stands for the set of  all fixed points o f f .  The mappings in t2A(X, E)  are called 
admissible.  An admissible mapping f is said to be essential if 

f '  ~ (~A(X, E) ,  f lA = f ' [ a  imply F ix ( f ' )  ;~ Q .  

Otherwise, f is said to be inessential. 
Also consider an equivalence relation - on (~A(X, E )  and assume that the following condi- 

tions are satisfied for f and f '  in t~A(X, E): 

(a) if f [  A =f'[A, t h e n f - f ' ;  

and 

(h) if f - i f ,  then there is h:[O, 1 ] × X ~ E  such that h ( 1 , . ) = f ,  h ( 0 , - ) = f ' ,  
cl(U[Fix(h(t,  .)); t ¢ [0, 1]}) n A = Q and h(q(-), -) ~ (~A(X, E )  for any continuous function 
17: X ~ [0, 1] satisfying r/(x) = 1 for all x ~ A. 

It is easy to see that if we put 

Y = X x E,  B = [ ( x , x ) ; x  e X] ,  

(~SA(X, Y )  = [ F : X  ~ Y; F(X) = ( x , f ( x ) )  for all x ~ X ; f  ¢ ~ A ( X , E ) ]  and 

F = F '  if and only i f f  - f '  

where F(x)  = ( x , f ( x ) )  and F' (x )  = ( x , f ' ( x ) ) ,  then F is essential (inessential) in the sense of  
Section 1 if and only if its corresponding m a p p i n g f  is essential (inessential) in the sense of  this 
section. Moreover,  condition (a) is equivalent to condition (A) and condition (h) on - implies 
condition (H) on --, where 

H( t ,  x)  = (x, h(t, x)). 

Consequently, theorem 1 yields the following proposition. 

PROPOSITION 1. I f f  a n d f '  are in (~A(X, E )  a n d f  - f ' ,  t h e n f  a n d f '  are both essential or both 
inessential. 

The next proposit ion gives us a scheme to establish the essentiality of  some admissible 
mappings.  This is done in terms of  fixed point structures. 
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By a fixed point structure on a certain space E we mean a pair (S, M) ,  where S is a class of  
nonvoid subsets of  E(S C P(E)) and M is a mapping attaching to each set D e S, a family 
M(D) of  mappings f rom D into D having at least one fixed point each. 

PROPOSITION 2. Let (S, M)  be a fixed point structure on the normal  topological space E and let 
fo ~ (iA(X, E). I f  for e v e r y f  e (iA(X, E) satisfyingf[A = f0[A, there exist Df ~ S a n d r e  M(Df)  
such that 

and 
f lxn~f  = flxno~ 

Fix( f )LX = O ,  

then fo is essential. 
The p roof  of  proposit ion 2 is immediate and can be found, together with several examples and 

applications, in the paper  [9] (see also [10]). Another  example is described in the next section. 

4. M O N C H  T Y P E  P E R T U R B A T I O N S  O F  L I N E A R  F R E D H O L M  M A P P I N G S  

O F  I N D E X  Z E R O  

Let E be a real Banach space, E 1 a real normed space and let L: D(L) C E --, E1 be a linear 
Fredholm mapping of  index zero, i.e. 

dim ker L = codim R(L) < ~ and R(L) is closed. 

I f  X is a metric space and N:  X ~ E 1 , we say that N is L-compact (L-completely continuous, 
L-condensing, L-continuous) on X, if there exists a linear continuous mapping ~ :  E ~ E 0, 
E1 = R(L) e Eo, such that L + ~ :  D(L) ~ El is bijective and (L + ~ ) - l N :  X ~ E is compact  
(completely continuous, condensing, continuous, respectively) on X. Also, we say that N is a 
L-M6nch mapping o n X  i f X  C E and there exists a linear continuous mapping ~ :  E ~ Eo such 
that: L + • is bijective; (L + O ) - l N  is continuous; if E0 # {01, then (L + ~ ) - l N ( X )  is 
bounded; and there is x e X such that 

C C c--6-fi-q(lx} U (L + ~)-IN(C))  + K implies C is compact ,  (12) 

whenever C C X is countable and K C ker L is compact .  
These definitions do not depend on ~ .  This easily follows by using the formula 

(L + ( I ) I ) - I N  = (L + ( I ) 2 ) - I N  + (L + (I)1)-1((I) 2 - ( I ) l ) (Z  + ( I ) 2 ) - I N  (13) 

and the complete continuity of  

(L + *1 ) -1 ( .2  - *1): E --, ker L C E (see [6, p. 123]). 

Obviously, we have that 

L-compact  ~ L-completely continuous = L-condensing ~ L-continuous and if 
X C E and X is bounded, then L-condensing = L-M6nch = L-continuous.  

THEOREM 3. Let fl C E be an open set and Xo ~ D(L) tq G. Let g/: E --, E o be a linear mapping 
which is L-completely continuous on E and L-compact  on ~ and with ker(L + g/) = [0}. Also, 
consider N:  ~ --, El an L-M6nch mapping and assume that 

L(x) + (1 - t)(~u(x) - z) - tN(x) # 0 
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for  all x ~ D(L)  N Of~ and t e [0, 1], where z = (L + ~')(x0). Then,  the equat ion 

L(x)  = N ( x )  (14) 

has at least one solut ion in D(L)  n if2. 

Proof .  Recall that,  since ~u is linear, ker(L + ~,) = 101 and ~, is L-complete ly  cont inuous ,  the 
mapping  L + g~ is bijective and 

I + (L + q~)-~(~ - ~ ) : E  --* E 

is a linear h o m e o m o r p h i s m  o f  E,  for  each linear cont inuous  mapping  q~: E -~ Eo for which 
L + @ is bijective (see [6, p. 124]). Further ,  using the L-compactness  o f  ~ on ~ and formula  
(13), we easily see that  the mapping  

(L + ~v)-~g~ 

is compac t  on ~ .  Similarly, (L + g0-~N is cont inuous  on ~ .  
Now,  equat ion (14) is equivalent to 

x = (L + ~g)-X(N + ~v)(x). (15) 

We shall first prove the existence o f  a solution to (15) in the case ~) # E,  i.e. 0 ~  # Q .  The 
p r o o f  will be divided into two steps. 

Step 1. Appl ica t ion o f  propos i t ion  1. Consider  the class o f  mappings  

(~oe(~), E )  = { f ; f ( x )  = x o + r/×(x)(L + ~v)-l(N(x) + ~g(x) - z), ~ ~ [0, 1], 

r/x ~ C ( ~ ;  [0, 1]), gx(X) = 2 for  x ~ Of~l (16) 

and define an equivalence relation on the set (16): 

f - f '  i f f 2  = ,~' or  [2,,;t '] = 10, 11, in c a s e N  + ~ , z o n O f ]  

f l o e  = f ' l o e ,  otherwise. 

H e r e f  = x 0 + r/×(L + ~,)-~(N + V - z) a n d f '  = x 0 + ~/x,(L + ~u)-~(N + ~' - z). 
N o w  i f f l 0 e  = f ' 10n ,  then obviously f - f '  in case N + ~, - z on  0~ .  In the opposi te  case, 

we deduce 2 = 2 '  and so f - f ' ,  as well. Thus,  condi t ion (a) is satisfied. 
On  the other  hand,  i f f -  f '  and we set 

h(t, x) = t f (x)  + (1 - t ) f ' ( x )  

= Xo + [tr/×(x) + (1 - t)rlx,(x)](L + ty)-~(N(x) + gt(x) - z), 

we easily see that  condi t ion (h) also holds. Therefore ,  proposi t ion  1 applies and since 

(L + ~,)-I(N + ~,) - Xo, 

it remains only to prove that  the constant  mapping  xo is essential. 

Step 2. Appl ica t ion o f  propos i t ion  2. We shall use M6nch ' s  fixed point  structure (S, M )  on the 
Banach space E,  where S is the class o f  all nonempty  closed convex subsets o f  E and for  each 
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D ~ S, M(D) is the set of  all continuous mappings f :  D ~ D for which there is some x ~ D 
such that 

= c~-fiV([x} U f ( C ) )  implies C is compact ,  (17) 

whenever C C D is countable (see [8, theorem 2.1]). 
In order to show that the constant mapping x 0 is essential in the class (16) we have to prove 

that any mapping f in (16) satisfying f i an  -- Xo, has a fixed point. Suppose 

f ( x )  = x o + vl(x)(L + ~)- l (m(x)  + ~t(x) - z) for x ~ ~ (18) 

where v/~ C(~ ;  [0, 1]) is constant on 0ft. Let 

Df = c--0-fi~f(~) and f :  Df-~  Dr, 

f (x )  = f (x )  if x ~ ~ and f (x)  = Xo if x ¢ ~ .  

Clearly, Df ~ S and f is continuous. 
Now we show t h a t f ~  M(Df),  i . e . f  satisfies condition (17). For this, let C C Dfbe  countable 

so that 

= c--0--~(Ixol u f ( c ) )  = c~-n-v(lx0} u f ( c  n (~)). 

Since, by (18) 

we deduce that 

f ( x )  = (1 - vl(x))x o + q(x)(L + q/)-l(N(x) + ~(x)), 

C C c-6~([xo] U (L + u/)- l(N + ~,)(C n ~)).  (19) 

On the other hand, the set 

(L + ~,)- i qJ(C n ~ )  c ker L 

is relatively compact .  Consequently, f rom (19) we obtain 

C C c~fi-q(lXol U (L + qJ)-1N(C n 0))  + K, (20) 

where K C ker L is a compact  set. Since N is an L-M6nch mapping,  relation (20) implies that 
C A  ~ is a compact  set. Further, the continuity of  (L + ~,)- lN implies that (L + ~ , ) - IN(CN ~)  
is relatively compact  and Mazur ' s  lemma that the second member  in (20) is also compact .  Hence 
(~ is compact  and consequently, f satisfies condition (17), as claimed. 

Finally, since the two conditions on f in proposit ion 2 are obviously satisfied, the constant 
mapping xo is essential and the proof  is complete in the case ~ # E. 

In the case ~ = E it is easily seen that the mapping f :  E ~ E, 

f ( x )  = (L + g/)-I(N + Iff) 

satisfies condition (17) and consequently, it has a fixed point. The proof  of  theorem 3 is thus 
complete. 

Remark 4. I f  in theorem 3 the set f~ is bounded, then the L-compactness of  ~, on ~ follows from 
its L-complete continuity on E. For ~ bounded, q/ L-completely continuous on E and N 
L-condensing on (2, theorem 3 reduces to a result of  Volkmann [7]. 

Remark 5. If  we take E 1 = E and L = I,  the identity of  E, then theorem 3 reduces to a fixed 
point result due to M6nch [8, theorem 2.2]. 
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