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RRZUMAT. - Selutli periedics pentrw o scusfie intogrull din biomatematich vie

principinl Wi Loray-Schander. Rozuliatele stabilitc In accasth lucrare se referk la oxistonn,

uniciiates ¢l aproximarca monoton-esativil & solujitlor periodice netrivisle peniry scuajia

intograli (1). Demonstinfiilc s¢ bansazd pe peinciphl de continuere al lui Losuy-Schauder ¢l

po tehnlcs itorafiilor monotone.

Abstract. The main results of this paper concern the existence, the uniquencss and the
monotone iterative approximation of periodic nontrivial solutions for the delay integral
equation x(f) -L/(:,x(:))ds. The proofs are achieved by the Lersy-Schauder

continuation principle and the monotone iterative technique.

1. Introduction. The delay intogral equation
5(1) = ["Sta. x(s))ds (1)
is a model for the sproad of certain infectious disoases with a contact rete that varies
seasonally. In this equation x(/) represents the fraction of infectives in the total population at
time #, t© is the loangth of time an individual is infective and (1, x(7)) is the proportional of
new infectives per unit of time.
In [1-4, 6-11] sufficient conditions were given for the existence of nontrivial w-

periodic continuous solutions to Eq. (1) in case of a w-periodic contact rate
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S +w,x) = f(t,x), f(1,0) = 0.
The tools were Banach’s fixed point theorem, topological fixed point principles, fixed
point index theory, monotonicity technique.
In {7] we used the Leray-Schauder continuation principle (in Granas’ approach) to
prove the existence of positive continuaus solutions x(r) for Eq. (1) on a given interval [-t,7],
when it is known the proportion ¢(7) of infectives for x s 1 & 0, i.e.

x(1) = ¢(t) forxat1s0 Q@)
Cloarly, we had 10 sssume that ¢ satisfies the following condition
4= 4@ - [/, 00 ds. 6)
Under condition () the problem (1)2) is equivalent with the initial values problem
W = . x(0) -t ~%,%(1-%)) (xOatuaT 4)

(O =) forsurs0.
We made uee of the following hypotheses:
(i) 7(¢.x) is nonnegative and continuous for s« /' & Tuu;x-o.
() (1) is continuous, 0 < @ = ¢(7) for -t u 1 = 0 snd sstisfies (3).
(iii) there exists an integrable function g(/) such that
Je.x)ng() frxsiaTondxma

L:g(.v)da ag forOsral
(iv) there exists a positive function Ax) such that 1/A(x) is locally intograble on {a,%),

J(.x) s A(x) forOsraTandxna

T < L.(l/h(x))dx.
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PERIODIC SOLUTIONS FOR AN INTEGRAL EQUATION

THEOREM A [7]. Suppose that (i)(iv) are satisfied. Then Eq. (1) hay at least on-
continuous solution x(¢), x(f) = a, for -«  t < 1, which satisfies (2).

Approximation schema to solve (1)~(2) uader assumptions (i)-(iv), based on the
monotone iterative method of Lakshmikantham (see {5]), were described in [8] for the cases
where (7, x) is nondecreasing or nonincreasing with respect to x.

In this paper we shall use a similar technique based upon the Leray-Schauder
continuation principle, to establish a new existence result for the periodic solutions of Eq. (1).
Finally, the monotone iterative technique if used to prove the uniqueness of the solution and
to approximate it, in case f(#,x) is nonincreasing with respect to x.

In [4] (see also [6]) the following conditions are used:

th)) S, x) is nonnegative and continuous for -0 < ¢ < w and x = 0.

(h) f{t,0) =0 for -w < ¢ < o and there exists w > O such that
S(t+rw, x) = f(t,x) for - <¢f<wand x= 0.

(h,) there exist 0 < a < R and a nonnegative locally integrable function g(/)
with period w such that

S, x) mg(t) fr0stswandasxxR,
and

I‘lg(s)ds xqg forO0stsw

(h) fe.x) s Rk forO0srsweandasxs R

One of the rosults in [4] is the following theorem whose proof is bused on Schauder’s
tixed point theorem.

THEOREM B {4] If (h))(h,) are satisfed, then Eq (1) has af least one positive and
continuous solution x(t) with period o and
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as .i:i;o x(1) s ‘::lg. x(1) = R.

Let us remark that for & given function f(r, x) satisfying ¢h;) and (h,) could exist
severs! intorvals [a.R] such that (h,) and (h,) hold. If thess intervals are disjoint, then
Theorem: P ensures that the corresponding solutions are distinot. Fouxnmpl‘o, iff(t,x) = xh
for - < (< = and ¥ » 0, we may take abitrary @ > 0, @ > 0 and R > a. Clearly, in this case,
any nonnegative consiant is a solution.

Assumption (h,) is essential for the domain invariance in Schauder’'s fixed point
theorem. We shall replace (h,) by another condition which guarantos that the Leeay-Schauder

boundary condition is satisfied.

Weo shall see that there are casss whers our main existence result, Theorem 1, applies
and Theorem B doss not, snd conversely.

2. Main caistonce resuit. Wo use instead of (b)) the following hypothesis:
(h,) shere axists & positive function A(x) such that 1/A(x) is integrable for a «
x 2 R ond a sumber b such that a < d < R,

JU.x) 8 h(x) frOstswandasxsi &)
[fumG)de s ©

sad
JU.x) <bh frO0astswmdbursR m

THEOREM 1. Supposs that (h,)-(h,) and (h,) are sonighed. Then, Bq. (1) has at least
one conlinuous solwtion 1) with period « and

as inf x(f)<band wp x(1)<R ®)

—ah €4 <» ~m<{<n

Proof. Let E be the real Banach space of all continuous and w-periodic functions x(/),
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f(x’(.v)/h(x(s)))dr si-t,sw for ;&¢I +w
'm(l/k(u))du sw for 1, 8184+
)
Since x(4,) < &, by (6), we deduce that x(#) <R for all 4, = 1 % 1, + w, equivalently for all

—o < ¢ < » Therefore, §x§ < R, s contradiction. Next, suppose (11). Let 0 = ¢, s w be such
that x(4,) = min x(¢) = & Thon, by (9) and (7), we obtain

Sstae

b= x(1)~(1 -N)a+ kf J(s,x(s))ds <
<{1 =AYb +Ab=b,

(12)

again a contradiction. Thus, H is an admissible homotopy on (/. On the other hand, the
mapping /K0,°) is essential (its fixed point index A/RO,"), U, K) equals 1) because H(0,)ma
and the constant function @ belongs to U/. Consequently, by the Leray-Schauder principle,
1.’} is cssential 100. Theretire, thers exists at least cae fixed point of A1) in U, that is
a continuous solution with period @ for Eq. (1) satiefying (8). Thus, Theorem 1 is proved.

M:.M:mﬂumumdmmm}mmmmm
« locally integreble function §(/) with period w such that

J.x)aH{t) for Ostaw andbsxs R

Ll(.v)do*ib for Osisw
Indeed, under this more genorsl assumption, the strict inequatity (12) also holds.
Remark 2. Here is an exampile for which Theorem 1 applies but Theorem B does not.

Letvs=w~=1and et f(1,x) = A(x) (- <t <) where

h(x) = 3x for 0= x sl
= -4x+9for | s x =2
=] for 2sxx3

“3x-8 for 3axsx$
52 -x+2 for 3= x.
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Conditions (h,)-(h;) and (h,) are fulfilled witha =1, b =2, R=3, g(!) = | and Mx) = h(x),
but for any R > 0 there is no @ < R such that (h;)~(h,) be satisfied.

Remark 3. For & given function f(/,x) satisfying (h )-(h,) there could exist several
intervals [a, K] such that (hy) and (h,) hold. If theas intervals are disjoint, then the
corresponding solutions by Thearsm 1 are distinct. Hees is an sxample: Let ¥ and 4,(x) be as
in Remark 2 and let

J@.x) = g(h(x) for -~ <g<w 4(n-1)mxadn n=112, .,
where h_(x) = 4(n - 1) + A (x - 4(n - 1)) and g,(1) i» any continuous nonnegative function
with a period > 0 such that
f"n(')d' nifr0stsaw
It is casy to see that ifw'::): g1 s (4(n-1) + 1), all the sssumptions of Theorom 1
are fulfilled for a=4(m-1)+1, b=4(m-1)+2, R=d(n-1)+3, g(1) =(4(n-1)+1)g(0)
and A(x) = max g(1)h(x). Therefore, for each nonnull netwrel number » so that

ddlse

4 - 1) + 1 = (w max g(1))", Bq (1) has st least one contimuous solution x (1) with
Ost6w
period w, such that
4n-1)+1 2 inf x(1)<4(n-1)+2
~mL<t<.

and

“wg xf{t) <4n-1)+3
For example, in case g,(f) = l,uwhl&uﬁmmlhofnlmwm
x{t)w4(n-1)+9/5 ne=}2 .
Notice that none of these constant solutions can be obtained by means of Theorom B.
Ixample 1. Let us give another function which satisfles the assumptions of Theorem 1:
J(t,x) = g ()h(x), -~-®» <y<ow xa0,
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where A(x) = (x - 1/2)(x -2)(x -3) + 3 and g,(?) is a continuous function with period
w = f"(i/h(x))dx
£
and satisfies the following conditions
O0sg()sifor0sisw,

L:,,(s)a: a2 1a((11+J19)/6) for 0 s 1 5 .
For this function we take v = 1, @ =1, =26, R=27 andg(#) = A((11 + /19 )/6)g(1),
whore A((11 + /19 )/6) > 1 is the minimum of Kx) for 1 = x = 2.7.

3. Uniqueness and monctons lterative approximation schema. Under the
assumptions of Theorem 1, denote by A the completely continuous operator from
Pe{x€FE, Oax(t)for 0=t s o) imbo P,

Ax(1) = L’f(.,x(.))d., w<f<w xEP
Also define the following sequence of functions in P :
V() =R, vit)=~Av, (0),n=12

THEOREM 2. Let (h,)-(h,) and (h) hold and suppose that f(1, x) is nonicreasing in
x for a & x o R and there exists a & (-1, 0) such that

. (. vx) s Yf(1,7) 13)
Jorall t€ {0, w), yE (0, )l x & [a R)withyx E [a, R} lf
A(R) (N sR fr0sssw, (14)

then Eq. (1) has a wnigque continuous solution x'(f) of period o such that a % x'(1) s R for
0 < 1 s w. Moreover,
asv()sv(f)s. . sv, (s sx°()=..

sv, (s vt s v(i) s v(1) = Rfort € [0, w], (15)
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v (1) = x*(1) uniformly for 0 & 1 s w as n —> .
Proof By Theorem |, there exists at least one continuous solution x{/) of period w for
Eq (1), such that a = x(7) s R for 0 = 1 s . Now let x(/) be any solution of this type for Eq.
(1). Since f(¢, x) is nonicreasing in x for a s« x = R, from
asx({)sR=v(1)for0 s s w,
we get
as AR () sx()for0atsw
It follows that
as AR s x(1) s AX(R) (1) for 0 s 1 s @
By (14), this yields
a s A(RY1) s A(RY (1) a x(1) s AX(R) (1) s Rfr 0 s 1 s .
Finally, weo obtain

asv(sv()s sv, (s «sx(t)s .

(16)
sv, (s sv()sv(l)~Rfor 0 s (s .

By the complete continuity of A7, the sequonce (v,,.,(¢)),,, contains & subsequence
uniformly convergent to some x.(/) in K and, similarly, (v, (1)), ., comains a subsequonce
convergeing uniformly to some x'(f) in X From (16), we see that the entier sequencos
Vot (D, and (v, (4)),,, converge uniformly 1o x.(7) snd x°(¢), respoctively, for 0 = 1 =
w, and that

agsx{t) s x(1)sx"({)s R for Ot Qan
Obviously, we have

x(1) = A x'(1) and x*(¢) = Ax(1).

Now we prove that under assumption (13), we have indoed x (¢) = x*(/) forall O s 1 s @,
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To this ond, let
Yo = min (x ()/x"(4)).
From (17),w|mthu0<a/R‘y,:“:. Wo show thet v, = 1. Suppose y, < 1. Since
x (1) » max{a, y,x'(¢)) = y,max{a/y,,x"(1}} » a for 0 ¢ 1 s w, by (13), we get that
x°(t) = Axf1) s A(y, max {a/y,,x"}(1) =
s Yo A(max (aly, . x ")
One has x°(1) & max {a/y,,x ()} s R snd so,
A(max (aly,,x"})(1) & Ax*(1) = x ().
I follows x*(¢) & yox (f) for 0 = ¢ s @ Hence y," 5 y, of, equivalontly, a « -1, &
contradiction. Thus, v, = | as claimed. Consequently, 5 (1) = x(¢) = x*(7) for O ¢ s w and
the proof is complets.
Remark 4. A sufficiont condition for (14) ia that
AMaX}) s R for 0stse (18)
Indesd, from @ s A(R)(1) & A(a)(1), we got that
AXa)(1) s A(R)(1) s Aa)?r) s R,
whence (14).
If in Theorom 2 we use (18) instoad of (14), then we have in addition thet for any
continuous function x,(7) with period w setisfying @ & x{) « K, one has
x{0) —~ x°(¢) vniformly for O st s @ (19)
sn— wherex = Ax . # = 1,2, . Indeed, in this cass, from a & x,(¢) « R, we obtain
a s vis) s x(1) s Ha) « R = vi)

asv(r)sx(r) s vit)s Ma) s R =v(r1)
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and, in general,
asv()avt)a.. & v o ()=
5 x 1) & vy 1) 5.5 v (1) & v(0) = R,
n=12, ... Since v(1) — x*(1), it follows that x (1) — x'(¢), ss claimed.

Remark $_1If f(1, x) satiefies (h,) then (18) holds. Indeed, from f(s,a) s R/x for any
I, by integrating, we obtsin (18).

Conversely, if /(7. x) is constant in 1(f(1,¥) = A(x)) snd satisfios all assumptions
of Theorem 2 and (18), then (k) is fulfitied. Indesd, for any x, & {a, K], we have A(R) =
s A(x,) = A(@) & R Honce, h(x,) = v*A(x,) 1 RA.

The next theorem completes the results in [4).

THEOREM 3. Lot (h)<h,) hoki and supipose that 1(1, 5) is nowicreasing in % for
a5 x & R and thore exisis o € (-1, 0) suoh that (13) is sotigfied. Then Bq. (1) has o wwigue
continuons solwion X'(1) of period « sch that a & X'(f) % R for 0 « ( u w. Moreover, (19)
holds.

The proof is similar with that of Thearem 2, 50 we omit the details.

Example 2. Suppose that /{1, x) satisfies (h,)-(b,) sad

J6.%) = g(NHON) for ~@ <y <wand | s xu3,
whore g(1) is & contimons function with period w such that
0sg)ey) Mr0sisw

L:g(s)ds !l for0srsw
The assumptions of Theorem 3 are fulfilled witht =1, a =1, R=3 and « = -1/2.
We conclude with a simple examplo of functions which satisfy all assumptions of

»
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Theorem 2, but not (h,).

Example 4. Suppose that /{1, x) setisfies (h,)-(h,) and
f(t,%) = M(3/x)? for ~-@o <y<wand | = x = 3,

whmMiomymMmhﬁ<M< 5ﬁ0—112. All assuymptions of Theorem 2 are

satisfiod with t = 1, a= 1, b= 2.5, R = 3, provided that Mw = 2 - 5430 /18, while (h,)

does nat hold. Thersfore, there are cases where Theorem 3 fails snd Theorem 2 applios.
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