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REZUMAT. - Metoda iteratiilor monotone pentru problema cu valori
inifiale relativii la o. ecuatie integrald din biomatematica. fn lucrare este
prezentat3 o matod# constructivi de rezolvare a problemei (1) - (2) in ipotezele
(i) - (iv) presupunénd ci functia f{z,x) este monoton in raport cu x. Un aspect
nou continut in acest articol il constituie adaptarea metodei iteratiilor monotone
la cazul operatorilor anti-izotoni, in particular, la cazul ciand f{z,x) este o
functie necrescitoare in x.

1. Introduction. The following delay integral equation

'

xt) = [fGs,x(s)ds__ ()
is a model for the spread of certain'h:fectious diseases with a contact rate that
varies seasonally. In this equation x(¢) is the proportion of infectives in the
population at time ¢, T is the length of time an individual remains infectious andf (¢, x(¢))
is the proportion of new infectives per unit time.

In [1], [2], [4], [5], [6] sufficient conditions were given for the existence

of nontrivial periodic nonnegative and continuous solutions to equation (1) in
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case of a periodic contact rate: f(¢t + w,x) = f(¢,x), f(¢,0) = 0. The tools were
Banach fixed point theorem [5], topological fixed point theorems [1], [2], [4],
[6], fixed point index theory (the additivity property) [2] and monotone
technique [2], [4].
In [3] we dealt with positive and continuous solutions x(#) for equation
(1), on a given interval of time —t < ¢ < 7, when it ; known the proportion ()
-of infectives in. the population for t < <0, i.c.
x(f) = ¢(), for -t st < 0. (2)
Clearly, we had to assume that ¢ satisfies the following condition:
0
b = 9(0) = [ f(s,0(s), ds. 3)
Under this condition problem (1)-(2; is equivalent with the initial values
problem:
x'(0) = ft,x(®) - ft-t,x(t-1)),0 st s T (4)
x(®) =¢(), T=st=sO
The existence of at least one solution to problem (4) was established in
[3] under the following assumptions:
(1) f(,x) is nonnegative and continuous for —t < < 7" and x = 0;

(11) ¢(?) 1s continuous, 0 < a < ¢(7) for —t < ¢ < 0 and satisfies condition
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@)
(iii) there exists an integrable function g(f) such that
f(t,x) zg(t)for t st<sTand x 2 a 5)
and
t
Ig(s)dszaforOstsT; (6)
=%

(iv) there exists a positive function A(x) such that 1/h(x) is locally
integrable on [a, +©),
ft,x) sh(x)for0 st<Tand x =z a )
and
T< ] (1/h(x)) dx. (8)
THEOREM 1 [3]. Suppose that assumptions (i)-(iv) are satisfied. Then
equation (1) has at least one continuous solution x(f), x(t) z a, for t st < T,
which satisfies condition (2).
Moreover, as follows from the proof, each continuous solution x(¢) to (1)-
(2) satisfying x(f) = a for -t < t < T, also satisfies
x() sRfor0 <t =T, 9

where R is so that

R
T = 1[(1/}:(1:))@:. (10)
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The proof of Theorem 1 was given by using the topological transversality
theorem of Granas and can also be done by using Leray-Schauder continuation
theorem. A constructive scheme to solve (1)-(2), namely the successive
approximations method, was described in [3] only for the particular case where
condition (iv) is replased by the more restrictive Lipschitz condition

(iv") there exists L > 0 such that

|f@.x) - f@, )] = Llx-y]
for all t € [—t,7] and x,y € [a, +»).

The aim of this paper is to give a constructive scheme to solve (1)-(2)
under assumptions (i)-(iv) provided that f(z, x) is .nonotone with respect to x.
Uniqueness will be also discussed. In case f(¢,x) is nondecreasing in x, our

results are somewhat similar with those in [2] referring to peniodic solutions of

(D).

2. Main results. Let E be the Banach space of all continuous functions
x(f), 0 < t < T with norm

Ixl = max |x(r)].
O0st<T

Consider the closed subset of E:
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X={x€E;x(0)=band x(t) zafor 0 st < T}
and the d.lay integral operator
A E— X, Ax(t) = jf(s,f(s))ds
where %(s) = x(s) for 0 < s < T and f(;) =¢(s) for t < s 0. 4is
completely continuous as an operator from X into X
THEOREM 2. Let (i)-(iv) be satisfied Suppose that f(t,x) is
nondecreasing in x for a < x s R. Denote
U@ =afor0<stsT
U@ =AU, (O for0stsT (n=1,2,.)
Then, U (t) — x(t) uniformly in t € [0,T] as n — o, x.(t) is the minimal
solution to (1)-(2) in X and
asU()s..sU(t)s..sx(t)sRforO0stsT
Proof. By Theorem 1 there exists at least one solution in X to (1)-(2). Let
x,(?) be any solution to (1)-(2). We have
a=U((t)sx(t)sRfor0 st =T
Consequently, since 4 is nondecreasing on interval [a,R] of £
U(t) = AU(t) s Ax(1) = x(1).

On the other hand, by (iii), we have a = Uy(t) s U,(¢). Hence
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Uf(t) s U((t) s x(t) for 0 st < T
Now we inductively find that
asUM)sUM)s..sU()s..sx(t)for0stsT

A being completely continuous on X, the sequence (AU, ) , must contain a

=1
subsequence, say (AUn') r=1 > CONVeErgent to some x. € X. But4AU, (¢) = U, , (1)

and taking into account the monotonicity of | / (1))

nal ?

we obtain that
U(t) — x,(t) uniformly in ¢ € [0,7] as n — o and
U()sx(t)sx()for0st=<T (n=0,1,.).

Letting n — o in AU(t) = U (¢) we get Ax (1) = x (1), i.e. x.(f) is a
solution to (1)-(2). Finally, by x () s x,(¢) where .,(f) was any solution to (1)-
(2), we see that x.(f) is the minimal solution to (1)-(2) in X.

The following result is concerning with the existence and approximation
of the maximal solution in X to (1)-(2).

THEOREM 3. Let (i)-(iv) be satisfied. Suppose that there exists R, = R

such that
fLRY <Rt for tstsld (\\)

(ie. f(t,0(f) s Ry/x for —t st <0 and f(t,R,) s Ry for 0 <t s 1) and

f(t, x) is nondecreasing in x for a s x s R,. Denote Vt) = R, forO st s 1T,
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Vi) =AYV, (@) for0stsT (n=1,2,.).
Then, V () — x°(t) uniformly in t € [0,T] as n — o, x'(¢) is the maximal
solution to (1)-(2) in X and
x*Os.sVO)=s..sVOsV(@®sRfor0stsT
Proof. By (11) we have
Vie)s V() =R, for 0<t =T

Next, the proof is analog to that of Theorem 2.

THEOREM 4. Let the conditions ;)f Theorem 2 be satisfied. Suppose that
there exists o € (0,1) such that

f@t,yx) 2 y°*f(t,x) for all y € (0,1), t € [0,7T], x € [a,R]. (12,

Then, (1)-(2) has a unique solution in X.

Proof. Let x,(t) be any solution in X to (1)-(2). We will show that x,(f) =

x.(f). Let

Yo = min (x,(£)/x,(1)).
0<tsT
Since a = x(t) = x,(t) s R, we have a/R < y, = 1. Now, we show y,=1.In

fact, if y, < 1, then (12) implies

x(t) = Ax(t) = Ay, x)(t) = ff f(s,75%;(s)) ds
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!

245 [ S5, 5N ds = 13450 = Vx50

1=t

Thus y, = Yo, which is impossible for 0 < a < 1. Therefore, y, = 1 and
x,() = x,(1).

THEOREM 5. Let the conditions of Theorem 3 and Theorem 4 be
satisfied. Then, (1)-(2) has a unique solution x.(t) in X and for any x(t) in E
satisfying a < x(t) s R, for all t € [0,T], we have (t) — x (1) um‘forml) in
t € [0,7T] as n —» x, where

x(t) = Ax,_ (1) (n=1,2,.)

Proof. We find from

a=U)(t) s x(t) s V() =R,

that
U)ysx()sva (n=1,2,.)

On the other hand, by Theorem 2 and Theorem 3, we have that

Uy(t) = x(t) and V(1) = x(1)
uniformly in ¢ € [0,T] as n — . Therefore, x (1) — x,(¢) uniformly in ¢ €
[0,7] as n — oo,

The following result refers to functions f(z, x) which are nonincreasiu,
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THEOREM 6. Let (i)-(iv) be satisfied. Denote R, = max (R, |U,l) and
suppose f(t,x) is nonincreasing in x for a s x < R, Also suppose that there
exists a. € (—1,0) such that

S, yx) s yf(t,x) fory € (0,1), t € [0,T], x € [a,R;]. (13)
Then, (1)-(2) has a unique solution x.(t) in X,
a=Uy()s V(1) s.. = U@ sV, (t)s. sx(t) s

s U ()sV,()s..sU@)sV(t) =R, forO0st=sT,
and U (1) = x(t), V(1) —= x (1) umformly int€[0,7] asn — .

Proof. By Theorem 1 there exists as least one solution x,(¢) to (1) - (2)
and a s x(t) = R for 0 st < T. We have

a=Uyt) = x(t) s V(1) = R,
whence
Vi(t) = x(t) s Uye).
But, by (iii), a < V,(¢). Also U(t) = |U,l s R,. Hence
U(t) = V(1) s x(t) s U(t) s V,(1).
It follows
Uy t) s V(1) s U(t) s x,(t) s V() s U(t) s V(1)

Finally
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a=Ut)sV(t)s..sU,(t)sV,, (1) s.
s x()s..sU, (D)sV,()s...sU®) s V(1) =R, (14)

A being completely continuous on X, the sequence (AU, (1)),., contains a

nal

subsequence convergent to some y.(f) in X and similarly, (4V,, ,(?)),,, contains

a subsequence converging to some y'(f) in .X. Now, from (14) we see that

Up(1) = Y00, V) = 20)

Uppi(8) = y7(2), V,,(t) = y°(1) (15)
uniformly ix; tE [0,'T] as n — o and

y.(1) = x(1) = y*(1). (16)
By (15), it follows that
y(t) = Ay (1) and y (1) = Ay*(s).
Now, we prove that under assumption (13), we have indeed y.(r) = y'(¢). To do
this, let
Yo = gn’mT (y.(8)/y™(1)).

Obviously, 0 < a/R; s y, = 1. We will show that y, = 1. In fact, if y, < I, then
(13) implies

t

' Ay, s Aay) = [ 677 ds s

-t
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t
% [f6.57°(5)ds = vody” = 1iy..
[ 1
Therefore, v, = v, or, equivalently, a < —1, a contradiction. Thus, y, = 1 as

claimed. Consequently, y. = y". The proof is complete.
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