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For the proof, apply Theorem 1 with € = 1/2 to get y € M such that
(1/2)d(y, T(y)) 2 o(y) — o(T(y))-
This, by (1), yields (1/2)d(y, T(y)) > d(y,T(y)) whence T(y) = y.
Remark 1. If T : M — M is a contraction, that is
d(T(z), T(y)) < ad(z,y)

for some a € [0,1] and all z,y € M, then T satisfies (1) with p(z) = (1=a) td(z,T(x)).
Thus, Caristi’s theorem is a generalization of Banach’s fized point theorem. Nevertheless,
a mapping satisfying (1) can be not continuvous. For an ezample, take M = R, () = r,

T(z)=z for0<z <landT(z)=2z -1 forl <z < +00.

Recently, Granas [3] and Frigon-Granas [2] proved some continuation theorems of
Leray-Schauder for contractions in complete metric spaces. Also, in [5], we have obtained
some improvements of the continuation principle for nonexpansive mappings, while in {6},
we have presented a very general continuation principle. Motivated by these results, in

this paper we shall state and prove continuation theorems for mappings of Caristi tyge

2. Main results

Theorem 3. Let M be a complete metric space, X C M a closed nonempty set. 4 :
X x [0,1] = R; a lower semicontinuous function and N : X x [0,1} » M a mappmy.
Let X be the biggest subset invariated by Ny = N(., ), i.e.

Xy = N{(N)N(X); k=1,2,..}.

Suppose that

(l) d(Z,N,\(:lI)) S ‘(I))‘(z) - 'l/},\(N,\(:L')) fOT‘ all ¢ € X,\ and A & [U.:], e
Ya= d’(v A);

(ii) there is a closed nonemply set S C {(x,A) € X x [0,1], x & X\} such that

if (zo,do) € S and Ao < 1, then there erists (x,A) « & such thaf

’\“" < A) d(IOaw) S d’/\o(‘ro) - "p,\(l‘)) i\-)‘
{N\{xq),1) € S5 whenever (g, 1) € 5. (4
Then, if Ng has a fired o0 rounth {2,0) € 5, Ny also has e fired pouni.
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Proof. We define an order relation on S, namely

(z,2) X (y,n) if A <nand d(z,y) < ¥a(z) — P,(y).

Let us show that Zorn’s lemma is applicable. Suppose Sy C S is a totally ordered set and

denote
¥ = inf{¥a(z); (z,)) € So}.

Consider a sequence (Zn,An) € So such that ¥,,(z,) decreases to ¥* as n — oco. Then,

since Sy is totally ordered, we have
(.‘L‘[,/\;) j (22, /\g) j ves j (.’l:,,, /\,.) j oo o

From
d(:c,., $n+p) < '/)/\n(x") - 1/)'\n+p(z"+P) —+0as n — oo,

uniformly with respect to p, it follows that there exists z* € X such that z,, = z*. Denote
A. =lim A,. Since ¢ is lower semicontinuous, we then have ¥, (z*) = ¥*. S being closed,
(z*,A.) € S. In addition, (Z4, An) < (2*,A.). Two cases are possible:

Case 1. There is no (z,A) € S with (z*,A) < (x,A). Then (z*,).) is a upper
bound for Sp. Indeed, let (z, A) be any element of Sp.

a) if (z,A) X (za, As) for some n, then, since (z,, A,) X (2%, A), it clearly follows
(z,2) X (=%, 20).

b) if (zn,An) < (x,A) for some n, then obviously, ¥x(z) = ¥* and A, < A If we
would have A, < A, then (z*,A.) < (z,A), which has been excluded by the beginning.
Hence A. = A. On the other hand, d(z,,z) < ¥a.(.) — ¥a(x) = 0, and so 2 = .
Therefore (z,)) = (z”, \.).

Case 2. There is (2. A) € Sp with (2%, A.) < (z,A). Then, z = z*. Let

X = sup{X; (2",)) € So, (2%, M) < (", M)}

We have A, < A* < 1. Let us consider a sequence (27, A) € Sy such that A increases
to A" and (z°,).) X (z°,A,). The element (z*, A7) is an upper bound for Sy. Indeed, let
{z,A) € So.

a) if (x,A) < (z°, X)) for some n, then clearly, (x,A) < (2%, 7).

b) if (z°,M) < {z,A) for every n, then ¢ = 2~ and A > A, whence A > A”.

Consequently, A = A*,
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Therefore we can apply Zorn’s lemma and obtain a maximl element (zq, Ao) € S.
According to (ii), Ao = 1 and zo € X,. Now, using (i) and (3), we get (zo, 1) < (Ny(z0),1)

whence, due to the maximality of (zo,1), zo = Nyi(z0)- O

Theorem 3 together with Theorem 2 immediately yield the following result for

continuous mappings N.

Corollary 1. Let M be a complete metrit; space, X C M a closed set, 1 : X x[0,1] = Ry
a lower semicontinuous function and N : X x [0,1) = M a continuous mapping. Suppose

1) d(z, Na(z)) < ¥a(x) — Pa(Na(z)) for all z € X, and X € [0,1};

2) if Nx(z0) = zo and Ao < 1, there ezists A €)Ao, 1] such that zo € X, and
V(o) < ¥ao(20)-

Then, if Xo # 0, each mapping Ny, X € [0,1], has at least one fized point.

Proof. In order to apply Theorem 3, take
S ={(z,)) € X x[0,1]; Ni(z) = z}.

Since N is continuous, the sets S and X are closed. Hence X is a closed nonempty
subset of M. In addition, No(Xo) C Xo. Consequently, by Theorem 2, there exists = with
No(z) = z. It remains to show (2). For this, suppose (z¢,Ao) € S and Ao < 1. By 2),
zo € X, for some A €]\, 1[. Further, by 1), the sequence (N¥(xo)) is fundamental and so
convergent to some z. Clearly, (z,A) € S and

d(zo,7) < Pa(20) — ¥Ya(x) < ¥ao(T0) — P2 ().

0O

Remark 2. For X = M, Ny =T continuous and ¢y = ¢ for all X € {0,1], Corollary-{

reduces to Caristi’s theorem for continuous mappings.
A simple consequence of Corollary 4 is the following result by Granas.

Corollary 2. ([3]) Let M be a complete metric space, U C M an open set, and N :
U x [0,1) =+ M a mapping such that the following conditions hold:

(h1) N(z,)) # z for ali z € DU and X € [0,1];

(h2) there is a € [0, 1] such that

d(N(va), N(y) ’\)) < ad("’» y)
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for all z,y € U and X € [0,1);
(b3) there is a nondecreasing lower semicontinuous function w : [0,1] = R such

that
d(N(z,}), N (z,1)) <|w(}) —w(n) |

forall A\ ne[0,1] andz e T.
Then N, has a fized point if and only if Ny has one.

Proof. Apply Corollary 4 to X = U and
¥a(z) = (1 = @) [d(z, Na(2)) + (1) = w(})] .
O

We finish with a continuation theorem for not necessarily continuous mappings of

Caristi type.

Theorem 4. Let M be a complete metric space, X C M a closed set, v : M x[0,1] = R,
a lower semicontinuous function, and N : X x [0,1] - M a mapping. Suppose that the
following conditions hold:

(i) Xy is closed for every X € |0,1];

(ii) d(z, Na(z)) < ¥a(z) — ¥a(Na(z)) for all z € X and X € [0,1];

(iii) ¥a(z) < d(z,0X) for all X € [0,1] and whenever N,(z) = z for somen € [0,1].

Then, tf Xo # 0, each mapping N, X € [0,1], has at least one fized point.

Proof. Since Xj is a closed nonempty set and Np(Xo) C Xo, by Theorem 2, there exists
zo € X such that No(zo) = zo. Further, by (ii) and (iii),

d(zo, Nx(20)) < ¥a(20) — ¥A(NX(20)) < ¥a(20) < d(20,0X),

whence N¥(zo) € X for all k € N. Consequently, zo € X, for every A € [0,1]. Hence, for
each X € [0,1], X # @ and we can apply Theorem 2. 0

Remark 3. In particular, if X = M, Ny =T and ¥ = ¢ for all A € [0,1], Theorem 6
reduces to Theorem 2. Indeed, in this case, we have X, = M, 0X = 0 and d(z,0X) =
+o00.
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