Proceedings of the Scientific Communications Meeting of "Aurel Vlaicu" University, Third Edition, Arad, 16th - 17th May 1996, Vol. 14A, pg. 105 - 108

MONOTONE ITERATIONS FOR DECREASING MAPS IN ORDERED BANACH SPACES

Radu Precup

Abstract. In this paper we propose a version of the monotone iterations method for decreasing maps in ordered Banach spaces. In some particular cases, this principle has been already applied in (3) and (4), to solve a nonlinear integral equation from biomathematics. Our theorem is new and complements the existing results for increasing maps (see (2, Chapter 6)).

<u>Key words</u>: ordered Banach space, increasing or decreasing map, compact map, fixed point.

1 Introduction

Let X be a real Banach space. By a cone $K \subset X$ we understand a closed convex set such that $\lambda K \subseteq K$ for all $\lambda \ge 0$ and $K \cap (-K) = \{0\}$.

Given a cone $K \subseteq X$, one defines a partial ordering \le with respect to K by $x \le y$ iff $y-x \in K$. We shall write x < y to indicate that $x \le y$ and $x \ne y$. It is easily seen that: $x \le y$ and $\lambda \ge 0$ imply $\lambda x \le \lambda y$; if $x_i \le y_i$, i = 1, 2, then $x_1 + x_2 \le y_1 + y_2$; if $0 \le x_n$ and $x_n \to x$ as $n \to \infty$, then $0 \le x$. Conversely, if for some partial ordering \le on X the above three properties hold, then the set $K = \{x \in X; 0 \le x\}$ is a cone and relation \le is exactly the partial ordering with respect to K.

We use the standard terminology concerning concepts connected with \le . Thus, for example, if $x_0 \le y_0$, we denote by (x_0, y_0) the order interval, i.e. the set $\{x \in X; x_0 \le x \le y_0\}$. Obviously, (x_0, y_0) is a closed convex subset of X.

Let X be a Banach space, K \subset X a cone and \leq the partial ordering with respect to K. We say that the norm on X is monotone if $0 \leq x \leq y$ implies $||x|| \leq ||y||$, and semimonotone if $||x|| \leq y$, ||y|| for some $y \geq 1$ and all x,y such that $0 \leq x \leq y$. It is known (see, for example, (1, Propozitia II 1.1.2)) that the norm is semimonotone iff K is normal, i.e. $0 \leq x_n \leq y_n$ and $y_n + 0$ as $n + \infty$ imply $x_n + 0$ as $n + \infty$. There is no difficulty in verifying that every order interval is bounded (with respect the norm) iff K is normal.

A map T: D \subset X \rightarrow X is said to be increasing (decreasing) if $T(x) \le T(y)$ ($T(y) \le T(x)$) whenever $x,y \in D$ and $x \le y$.

The following theorem is known as the monotone iterations principle for increasing maps in ordered Banach spaces with normal cone (see, for example, (1, Propozitia V 2.1.1) or (2, Theorem 6.19.1)):

Theorem 1. Let X be a Banach space partially ordered by the normal cone K. Let (x_0, y_0) be an order interval and T: $(x_0, y_0) + (x_0, y_0)$ be increasing and compact (i.e. continuous and with $T((x_0, y_0))$ relatively compact). Then the sequences $(T^n(x_0))$ and $(T^n(y_0))$ are increasing, respectively decreasing, and converge to the fixed points of T, x^* and respectively y^* . In addition, $x_0 \le x^* \le y^* \le y_0$, x^* is the minimal fixed point of T in (x_0, y_0) while y^* is the maximal fixed point of T in (x_0, y_0) .

The goal of this paper is to obtain a similar result in case that \boldsymbol{T} is decreasing.

2 Main result

Theorem 2. Let X be a Banach space partially ordered by the normal cone K. Let (x_0, y_0) be an order interval, $0 < x_0 \le y_0$, such that

(1) for every x,y with $x_0 \le x \le y \le y_0$ there is $\mu \in (0,1)$ such that $\mu y \le x$.

Suppose T: $(0,y_0) \rightarrow X$ is decreasing on $(0,y_0)$, continuous on (x_0,y_0) with $T((x_0,y_0)) \subset (x_0,y_0)$ and $T((x_0,y_0))$ relatively compact. Also suppose that

(2) there is $\alpha \in (-1,0)$ with $T(\mu x) \le \mu^{\alpha} T(x)$ for all $\mu \in (0,1)$ and $x \in (x_0,y_0)$.

Then T has a unique fixed point x^* in (x_0, y_0) ,

(3)
$$x_0 \le T(y_0) \le T^2(x_0) \le \dots \le T^{2n}(x_0) \le T^{2n+1}(y_0) \le \dots \le x^* \le \dots$$

 $\le T^{2n+1}(x_0) \le T^{2n}(y_0) \le \dots \le T^2(y_0) \le T(x_0) \le y_0$

and $T^{n}(x)$ converges to x^{*} for any $x \in (x_{0}, y_{0})$.

<u>Proof.</u> Since (x_0,y_0) is a bounded closed convex subset of X, $T((x_0,y_0)) \subseteq (x_0,y_0)$ and T is compact on (x_0,y_0) , by the Schauder fixed point theorem, there exists at least one fixed point of T in (x_0,y_0) .

Now, let $x_1 \in (x_0, y_0)$ be any fixed point of T. Then, since T is decreasing and $T((x_0, y_0)) \subset (x_0, y_0)$, we have $x_0 \le T(y_0) \le x_1 \le T(x_0) \le y_0.$

Next

 $x_0 \le T(y_0) \le T^2(x_0) \le x_1 \le T^2(y_0) \le T(x_0) \le y_0.$

(4)
$$x_0 \le T(y_0) \le T^2(x_0) \le \dots \le T^{2n}(x_0) \le T^{2n+1}(y_0) \le \dots \le x_1$$

 $\dots \le T^{2n+1}(x_0) \le T^{2n}(y_0) \le \dots \le T^2(y_0) \le T(x_0) \le y_0.$

T being compact on (x_0,y_0) , the sequence $T^{2n}(x_0) = T(T^{2n-1}(x_0))$ contains a subsequence convergent to some $x*\in X$. Similarly, the sequence $T^{2n}(y_0) = T(T^{2n-1}(y_0))$ contains a subsequence convergent to some $y*\in X$. Obviously, $x_0 \le x* \le x_1 \le y* \le y_0$ and $T^{2n}(x_0) \le x*$, $y* \le T^{2n}(y_0)$ for all n. Further, by (4), we can show that

(5)
$$T^{2n}(x_0) \rightarrow x^*, \quad T^{2n+1}(y_0) \rightarrow x^*,$$

 $T^{2n}(y_0) \rightarrow y^*, \quad T^{2n+1}(x_0) \rightarrow y^*.$

Let us prove, for example, that $T^{2n}(x_0) \rightarrow x^*$. Suppose x^* is the limit of the subsequence $T^{2k(n)}(x_0)$. Then, for each $\epsilon > 0$ there is $n_0 \in \mathbb{N}$ with

$$|| x^* - T^{2k(n_0)}(x_0) || \le \varepsilon.$$

For $m \ge k(n_0)$ we have $0 \le x^* - T^{2m}(x_0) \le x^* - T^{2k(n_0)}(x_0)$, and since the norm is semimonotone, we deduce

$$||x^* - T^{2m}(x_0)|| \le \gamma ||x^* - T^{2k(n)}(x_0)|| \le \gamma \epsilon$$

for all $m \ge k(n_0)$. Thus the enter sequence $T^{2n}(x_0)$ converges to x^* . From (5) we obtain

$$x* = T(y*), y* = T(x*).$$

Now we prove that under assumptions (1) and (2) we have indeed

 $\begin{array}{l} x^*=y^*. \text{ According to (1), let } \mu_0 = \sup \{\mu \in \{0,1\}; \ \mu y^* \leq x^*\}. \text{ Clearly,} \\ \mu_0 y^* \leq x^*. \text{ We have to prove that } \mu_0 = 1. \text{ Suppose, by contradiction,} \\ \mu_0 < 1. \text{ Then, by (2), } y^* = T(x^*) \leq T(\mu_0 y^*) \leq \mu_0^\alpha T(y^*) = \mu_0^\alpha x^*. \text{ Consequently,} \\ \mu_0^{-\alpha} \leq \mu_0, \text{ that is } -\alpha \geq 1, \text{ a contradiction. Thus, } x^* = y^* = x_1. \end{array}$

Finally, let x be any element of (x_0, y_0) . Then $T^{2n}(x_0) \le T^{2n}(x) \le T^{2n}(y_0)$ and $T^{2n+1}(y_0) \le T^{2n+1}(x) \le T^{2n+1}(x_0)$. By using (5), these imply that $T^n(x) \to x^*$.

Example. Consider the nonlinear integral equation

(6)
$$u(t) = \int_{0}^{1} f(t,s,u(s))ds, 0 \le t \le 1,$$

with f: $(0,1) \times (0,1) \times (0,b) \rightarrow \mathbb{R}$ continuous and f(t,s,.) decreasing on (0,b) (b > 0) for every t,s \in (0,1). Suppose $0 \le a \le b$,

$$a \le \int_0^1 f(t,s,b) ds$$
 and $\int_0^1 f(t,s,a) ds \le b$

for t \in (0,1). Also assume that there is $\alpha \in (-1,0)$ such that $f(t,s,\mu u) \leq \mu^{\alpha} f(t,s,u)$ for all $t,s \in (0,1)$, $u \in (a,b)$ and $\mu \in (0,1)$. Then (6) has a unique solution $u \in C(0,1)$ with a $\leq u(t) \leq b$ for all $t \in (0,1)$. In particular, the equation

(7)
$$u(t) = \int_0^1 g(t,s)u^{\alpha}(s)ds, 0 \le t \le 1,$$

has a unique solution $u \in C(0,1)$ with $a \le u(t) \le b$, where $0 \le a \le b$, provided that g is continuous and nonnegative on $(0,1)^2$, $\alpha \in (-1,0)$ and $ab^{-\alpha} \le \int_0^1 g(t,s)ds \le a^{-\alpha}b$. For other examples see (3) and (4).

References

- Cristescu, R., Structuri de ordine in spații liniare normate, Ed.Şt.Enc., București, 1983.
- Deimling, K., Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
- Precup, R., Periodic solutions for an integral equation from biomathematics via the Leray-Schauder principle, Studia Univ. Babeş-Bolyai 39 (1994), No. 1, 47-58.
- 4. Precup, R., Monotone technique to the initial values problem for a delay integral equation from biomathematics, Studia Univ. Babes-Bolyai 40 (1995), No. 2, 63-73.

University Babes-Bolyai Faculty of Mathematics 3400 Cluj, Romania