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ON THE CONTINUATION PRINCIPLE FOR NONEXPANSIVE M 4PS
RADU PRECUP

Abstract. In this note the continuation principle (nonlinear alternative) for nonexpan-
sive maps on Hilbert sp;u:es.(see [5]) is extended in two directions: 1) to the case of
uniformly convex Banach spaces; 2) for nonexpansive maps on a not necessarly ‘convex
set of a Hilbert space. In the proofs we use the Leray-Schauder continuation principle for
condensing maps [7], [9] (We can also use Granas’ continuation principle for contractions

on complete metric spaces [6]).

In [5], the following nonlinear alternative for nonexpansive maps was proved by

means of the Banach fixed point theorem.

Theorem A [5]. Let H be a Hilbert space and C the closed ball {z € H;|z|<c}. Then
each nonexpansive map T: C — H has at least one of the following properties.;

(a) T has a fized point.

(b) There is z € AC and X €)0,1] such that z = AT(z).

In what follows we shall prove the following two generalizations of Theorem A:

Theorem 1. Let E be an uniformly convez Banach space and U a bounded open convez
sl of E with 0 € U. Then each nonezpansive map T : U — E has at least onz of the

following properties:

{a} T has a fired point.
(h) There is z € QU and A €]0,1[ such that z = AT (z).

'Theorem 2. Let H be a Hilbert space and U a bounded open set of H (not necessarily
conver ) with 0 € U. Then cacﬁ nonezpansive map T : U — H has at least one of the
Jollowing properties:

ia) T hus a ficed point.

() There is ¢ € QU and X €0, 1] such that £ = AT (z).

7
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Recall that a Banach space E is said to be uniformly conver provided that for'
each € > 0 there exists § = d(¢) > 0 such that || z +y ||< 2(1 — §) for every z,y €k
satisfying | z l=|| y ||=1 and || z -y ||I> e.

Each uniformly-convex Banach space is reflexive (see, for example, [4]), and esd
Hilbert space is uniformly convex as follows from the parallelogram equation |z -y['4
+|z+y?>=2(z|* + ]y |*). For example, the spaces L?(2) with @ C R measurable
are uniformly convex for 1 < p < oo (see [4]). ‘

|

For the proofs we need some lemmas essentially due to Browder. ‘.

Lemma 1. Let E be an uniformly conver Banach space, D a bounded convez set of .
and T : D — E a nonezpansive map. Then, for each € > 0 there exists § = §(¢) > 0 suck ¥
that if zo,, € D, || 7o — T(xo) [|< § and || 21 — T(z1) ||< 8, it follows || z — T(z) <}
for any z of the form z = (1 — A)zo + Az, with X €]0,1].

For the proof see [2] or [8, Teorema 1.4.2]. t

Lemma 2. Let E be an uniformly conver Banach space, D a bounded closed convex sel of
Eand T : D = E a nonezpansive map. If (z,) C Dz, — xo weakly and z,—T(z,) -y

in norm, then o — T'(z0) = yo.

For the proof see the proof of Teorema 1:4.3 a) in [8}.

Proof of Theorem 1. Suppose (b) does not hold. Then, « # AT(:x) for all « ¢ JU
and A € [0,1[. For each fixed A €]0,1[, the map AT is a contraction and so, it is
con(iensing. Then, by the Leray-Schauder - untinuation principle for condensing nrap fsee
[7], [9]), there exists z) € U such that 2y—AT(x») = 0. Let us denote by z, such an ele ut
5 for A =1- 1/n , n € N*.Then, passing if necessarily to a subsequence, we may supj. se
that (z,) converges weakly to some zg. On the other hand, from x, — (1 —1/n)T'(x,) =0,
it follows that x, — T'(zn) — 0 in norm. Then, from Lemma 2, we get xy ~ T'(:ta) 0.
Thus, (a) holds and the proof is complete.

Revﬁark. If in particular, T(U) C U, then (b) in Theorem 1, clearly, does not hold.
In this case, conclusion (a) follows directly by the following theorem of Browder-Kirk:
If E is an uniformly conver Banach space, D is a bounded closed conver sct of I and
T : D — D is nonexpansive, then there exists € D with T'(z) = z.

In the case of Hilbert spaces, we may renounce at the assumption that U is convex

and also give a much simpler proof:
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Proof of Theorem 2. Also suppose (b) does not hold. The sequence (z,) obtained

in the proof of Theorem 1 satisfies:

(n =120 = (m = 1) 200, 2 — ) = (T(x0) — T(;,,.),z,. —Zp)— | Tp — Tm °<0

for all n,m > 1. Denote r, = (n — 1)~! and use the equality
2rnTn — rmZTmy Tn = Tm) = (Tn +Tm) | Tn — Tm I2 +(ra = rm)(] 2a l2 ~Tm Iz)

Then, we obtain -
0< (ra+7m) |20~ 2m IS (rn —rm)(| 2w |* - | za ).

Since (r,) is a decreasing sequence, we get that (| z, |) is an increasing sequence. In

addition, U being bounded, (| z, |) is also bounded and thus, convergent. Next, from
| 20 = 2m 'S (|@m P = | @0 ) = 7m)/(Ta + "),

it follows that (z,) is convergent. It is clear that its limit is a fixed point of T and the
.proof is complete.

Ezample. Let H be a Hilbert space and let us consider the boundary value problem

u’' = f(t,u,u') for0<t<1
flt,u,u)  for0 < )
u(0) =u(l)=0

where f : [0,1] x H? — H satisfies
(i) f(:,u,v) is measurable for any fixed u,v € H; there exist 1 < p < oo and
h € L>(0,1) such that f(-,0,0) € L?(0,1; H) and

| £(t, w1y 01) = f(t,uzyva) IS AE)(| ws — v | + | o1 —wa )

for all uy,ua,v;,v3 € H and a.e..t € {0,1). _

We look for a weak solution u € Wy*(0,1; H) N W*?(0,1; H) to problem (1).

Let G(t,s) be the Green function, i.e. G(t,s) = (1 —t)s for s < t and G(t,s) =
(1 — s)t for s > t. Also, denote by C the smallest coustant in the Wirtinger-Poincaré

inequality:
1 1 .
/ |u|”dt$C’/ | u'|P dt, u e WyP(0,1; H)
0 0

(see [1]).
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Theorem 8. Let (i) holds. Also assume

(ii) there is r > 0 such that
(u, f(t,u,v))+ v ?>0 for ae. te0,1]

and whenever | u |> r and (u,v) = 0;
/
(i) (C+ 1) fy {Jo (1Gult, ) | -h(s)) ds} " dt < 1.

Then (1) has at least one solution.
Proof. Problem (1) is equivalent with
u(t) = — /0 LGt o) (s u(s)ul(s) ds,  0<t<1.
We shall apply Theorem 1 to E = .Wol *(0,1; H) and T E-E,
T@0) = = [ Gl,9)1 (5,u(0) () do

By the uniform convexity of L?(0, 1; H), it easily follows that W,"*(0, L; H) endov.cd

1 1/p
= (/ |u'|ﬂdt) ,
0

with norm

is also uniformly convex.

Next we have
p

| T(u) - T(v) |P= /O /0 Gult, ) F(s,u(s),u(s)) — (s, 0(s), o'(5))) s el
1 1 , .
S/o {/o L Gi(t,8) | -h(s) (] u(s) —v(s) | + | u'(s) — v'(s) I)ds} dt <

rly

< [au@ w1+ 1w -vo ras [{ [ e aera) @

where 1/p + 1/¢q =1, by Hélder’s inequality.

Further, since

/01 (| u(s) = v(s) | + | w'(s) = v'(s) |)'ds <

< {([ | u(s) = v(s) P ds)l/p + (/: [ w'(8) = v'(8) | ,L,)'/p} ¢

SE@+ 1) [lu=v]P
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we obtain

I T(u)~T@) IS(C+1)B||lu-v]

where B = [fo { S Git,s) | h(a))ws}”' ] "

Thus, by (iii), T is nonexpansive.
Finally, by a standard reasoniement, from (ii), we get a number R > 0 such that | u ||l< R
for each u € Wy™*(0,1; H) solution to u = AT(u) for some A €]0, 1[. Therefore, (b) does
not hold and so T has a fixed point.
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