ON THE CONTINUATION PRINCIPLE FOR NONEXPANSIVE MAPS

RADU PRECUP

Abstract. In this note the continuation principle (nonlinear alternative) for nonexpansive maps on Hilbert spaces (see [5]) is extended in two directions: 1) to the case of uniformly convex Banach spaces; 2) for nonexpansive maps on a not necessarily convex set of a Hilbert space. In the proofs we use the Leray-Schauder continuation principle for condensing maps [7], [9] (we can also use Granas' continuation principle for contractions on complete metric spaces [6]).

In [5], the following nonlinear alternative for nonexpansive maps was proved by means of the Banach fixed point theorem.

Theorem A [5]. Let H be a Hilbert space and C the closed ball $\{x \in H; |x| \le c\}$. Then each nonexpansive map $T: C \to H$ has at least one of the following properties:

- .(a) T has a fixed point.
- (b) There is $x \in \partial C$ and $\lambda \in]0,1[$ such that $x = \lambda T(x)$.

In what follows we shall prove the following two generalizations of Theorem A:

Theorem 1. Let E be an uniformly convex Banach space and U a bounded open convex set of E with $0 \in U$. Then each nonexpansive map $T: \overline{U} \to E$ has at least one of the following properties:

- (a) T has a fixed point.
- (h) There is $x \in \partial U$ and $\lambda \in]0,1[$ such that $x = \lambda T(x)$.

Theorem 2. Let H be a Hilbert space and U a bounded open set of H (not necessarily rower) with $0 \in U$. Then each nonexpansive map $T : \overline{U} \to H$ has at least one of the following properties:

- (a) T has a fixed point.
- (b) There is $x \in \partial U$ and $\lambda \in]0,1[$ such that $x = \lambda T(x)$.

Received by the editors: December 11, 1995.

Recall that a Banach space E is said to be uniformly convex provided that ω each $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that $||x + y|| \le 2(1 - \delta)$ for every $x, y \in E$ satisfying ||x|| = ||y|| = 1 and $||x - y|| \ge \varepsilon$.

Each uniformly convex Banach space is reflexive (see, for example, [4]), and each Hilbert space is uniformly convex as follows from the parallelogram equation $|x-y|^2 + |x+y|^2 = 2(|x|^2 + |y|^2)$. For example, the spaces $L^p(\Omega)$ with $\Omega \subset \mathbb{R}^N$ measurable are uniformly convex for 1 (see [4]).

For the proofs we need some lemmas essentially due to Browder.

Lemma 1. Let E be an uniformly convex Banach space, D a bounded convex set of B and $T:D\to E$ a nonexpansive map. Then, for each $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that if $x_0,x_1\in D$, $\parallel x_0-T(x_0)\parallel \leq \delta$ and $\parallel x_1-T(x_1)\parallel \leq \delta$, it follows $\parallel x-T(x)\parallel \leq \delta$ for any x of the form $x=(1-\lambda)x_0+\lambda x_1$ with $\lambda\in]0,1[$.

For the proof see [2] or [8, Teorema 1.4.2].

Lemma 2. Let E be an uniformly convex Banach space, D a bounded closed convex set of E and $T: D \to E$ a nonexpansive map. If $(x_n) \subset D, x_n \to x_0$ weakly and $x_n - T(x_n) \to y_0$ in norm, then $x_0 - T(x_0) = y_0$.

For the proof see the proof of Teorema 1.4.3 a) in [8].

Proof of Theorem 1. Suppose (b) does not hold. Then, $x \neq \lambda T(x)$ for all $x \in \partial U$ and $\lambda \in [0,1[$. For each fixed $\lambda \in]0,1[$, the map λT is a contraction and so, it is condensing. Then, by the Leray-Schauder continuation principle for condensing map (see [7], [9]), there exists $x_{\lambda} \in U$ such that $x_{\lambda} - \lambda T(x_{\lambda}) = 0$. Let us denote by x_n such an electric x_{λ} for $\lambda = 1 - 1/n$, $n \in \mathbb{N}^*$. Then, passing if necessarily to a subsequence, we may suppose that (x_n) converges weakly to some x_0 . On the other hand, from $x_n - (1 - 1/n)T(x_n) = 0$, it follows that $x_n - T(x_n) \to 0$ in norm. Then, from Lemma 2, we get $x_0 - T(x_0) = 0$. Thus, (a) holds and the proof is complete.

Remark. If in particular, $T(\bar{U}) \subset \bar{U}$, then (b) in Theorem 1, clearly, does not hold. In this case, conclusion (a) follows directly by the following theorem of Browder Kirk: If E is an uniformly convex Banach space, D is a bounded closed convex set of E and $T: D \to D$ is nonexpansive, then there exists $x \in D$ with T(x) = x.

In the case of Hilbert spaces, we may renounce at the assumption that U is convex and also give a much simpler proof:

ON THE CONTINUATION PRINCIPLE FOR NONEXPANSIVE MAPS

Proof of Theorem 2. Also suppose (b) does not hold. The sequence (x_n) obtained in the proof of Theorem 1 satisfies:

$$\langle (n-1)^{-1}x_n - (m-1)^{-1}x_m, x_n - x_m \rangle = \langle T(x_n) - T(x_m), x_n - x_m \rangle - |x_n - x_m|^2 \le 0$$

for all n,m > 1. Denote $r_n = (n-1)^{-1}$ and use the equality

$$2\langle r_n x_n - r_m x_m, x_n - x_m \rangle = (r_n + r_m) | x_n - x_m |^2 + (r_n - r_m)(|x_n|^2 - |x_m|^2).$$

Then, we obtain

$$0 \le (r_n + r_m) |x_n - x_m|^2 \le (r_n - r_m)(|x_m|^2 - |x_n|^2).$$

Since (r_n) is a decreasing sequence, we get that $(|x_n|)$ is an increasing sequence. In addition, U being bounded, $(|x_n|)$ is also bounded and thus, convergent. Next, from

$$|x_n-x_m|^2 \le (|x_m|^2-|x_n|^2)(r_n-r_m)/(r_n+r_m),$$

it follows that (x_n) is convergent. It is clear that its limit is a fixed point of T and the proof is complete.

Example. Let H be a Hilbert space and let us consider the boundary value problem

$$\begin{cases} u'' = f(t, u, u') & \text{for } 0 < t < 1 \\ u(0) = u(1) = 0 \end{cases}$$
 (1)

where $f:[0,1]\times H^2\to H$ satisfies

(i) $f(\cdot, u, v)$ is measurable for any fixed $u, v \in H$; there exist $1 and <math>h \in L^{\infty}(0, 1)$ such that $f(\cdot, 0, 0) \in L^{p}(0, 1; H)$ and

$$| f(t, u_1, v_1) - f(t, u_2, v_2) | \le h(t)(| u_1 - u_2 | + | v_1 - v_2 |)$$

for all $u_1, u_2, v_1, v_2 \in H$ and a.e. $t \in [0, 1]$.

We look for a weak solution $u \in W_0^{1,p}(0,1;H) \cap W^{2,p}(0,1;H)$ to problem (1).

Let G(t,s) be the Green function, i.e. G(t,s) = (1-t)s for $s \le t$ and G(t,s) = (1-s)t for s > t. Also, denote by C the smallest constant in the Wirtinger-Poincaré inequality:

$$\int_0^1 |u|^p dt \le C^p \int_0^1 |u'|^p dt, \qquad u \in W_0^{1,p}(0,1;H)$$

(see [1]).

Theorem 3. Let (i) holds. Also assume

(ii) there is r > 0 such that

$$\langle u, f(t, u, v) \rangle + |v|^2 > 0$$
 for a.e. $t \in [0, 1]$

and whenever $|u| \ge r$ and $\langle u, v \rangle = 0$;

(iii)
$$(C+1)^p \int_0^1 \left\{ \int_0^1 (|G_t(t,s)| \cdot h(s))^q ds \right\}^{p/q} dt \le 1.$$

Then (1) has at least one solution.

Proof. Problem (1) is equivalent with

$$u(t) = -\int_0^1 G(t,s)f(s,u(s),u'(s)) ds, \qquad 0 < t < 1.$$

We shall apply Theorem 1 to $E = W_0^{1,p}(0,1;H)$ and $T: E \to E$,

$$T(u)(t) = -\int_0^1 G(t,s)f(s,u(s),u'(s)) ds.$$

By the uniform convexity of $L^p(0,1;H)$, it easily follows that $W_0^{1,p}(0,1;H)$ endowed with norm

$$||u|| = \left(\int_0^1 |u'|^p dt\right)^{1/p},$$

is also uniformly convex.

Next we have

$$\| T(u) - T(v) \|^{p} = \int_{0}^{1} \left| \int_{0}^{1} G_{t}(t,s) \left(f(s,u(s),u'(s)) - f(s,v(s),v'(s)) \right) ds \right|^{p} dt$$

$$\leq \int_{0}^{1} \left\{ \int_{0}^{1} |G_{t}(t,s)| \cdot h(s) \left(|u(s) - v(s)| + |u'(s) - v'(s)| \right) ds \right\}^{p} dt \leq$$

$$\leq \int_{0}^{1} \left(|u(s) - v(s)| + |u'(s) - v'(s)| \right)^{p} ds \cdot \int_{0}^{1} \left\{ \int_{0}^{1} \left(|G_{t}| \cdot h(s) \right)^{q} ds \right\}^{p/q} dt$$

where 1/p + 1/q = 1, by Hölder's inequality.

Further, since

$$\int_{0}^{1} (|u(s) - v(s)| + |u'(s) - v'(s)|)^{p} ds \le$$

$$\le \left\{ \left(\int_{0}^{1} |u(s) - v(s)|^{p} ds \right)^{1/p} + \left(\int_{0}^{1} |u'(s) - v'(s)|^{p} ds \right)^{1/p} \right\}^{p} \le$$

$$\le (C + 1)^{p} ||u - v||^{p},$$

ON THE CONTINUATION PRINCIPLE FOR NONEXPANSIVE MAPS

we obtain

$$||T(u)-T(v)|| \le (C+1)B ||u-v||$$

where
$$B = \left[\int_0^1 \left\{ \int_0^1 (|G_i(t,s)| h(s))^q ds \right\}^{p/q} dt \right]^{1/p}$$
.

Thus, by (iii), T is nonexpansive.

Finally, by a standard reasonement, from (ii), we get a number R > 0 such that ||u|| < R for each $u \in W_0^{1,p}(0,1;H)$ solution to $u = \lambda T(u)$ for some $\lambda \in]0,1[$. Therefore, (b) does not hold and so T has a fixed point.

References

- [1] Brezis, H., Analyse fonctionnelle, Masson, Paris, 1983.
- [2] Browder, F.E., Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54, 1041-1044 (1965).
- [3] Browder, F.E., Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proceedings Symposium on Nonlinear Functional Analysis, Amer. Math. Soc., Chicago, 1968.
- [4] Diestel, J., Geometry of Banach Spaces, Lecture Notes in Mathematics, Vol. 485, Springer, Berlin, 1975.
- [5] Dugundji, J., Granas, A., Fixed Point Theory I, Monografie Mathematyczne, PWN, Warsaw, 1982.
- [6] Granas, A., Continuation method for contractive maps, Topol. Methods Nonlinear Anal. 3, 375-379
- [7] Krawcewicz, W., Contribution à la théorie des équations non linéaires dans les espaces de Banach, Dissertationes Math. 273, 1988.
- [8] Pavel, N., Ecuații diferențiale asociate unor operatori neliniari pe spații Banach, Ed. Acad. R.S.R, București, 1977.
- [9] Precup, R., Nonlinear boundary value problems for infinite systems of second-order functional differential equations, Seminar on Differential Equations (Editor I.A. Rus), pp. 17-30, University Babes-Bolyai, Cluj, 1988.

[&]quot;Babes-Bolyai" University, Faculty of Mathematics and Computer Science, 3406 Cluj-Napoca, Romania