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Abstract 

To describe the spread of virus diseases with contact rate that varies 
seasonally, the following delay integral equation has been proposed by K.L. 
Cooke and J.L. Kaplan 

:(*)=/    f(s,x(s))ds. 
Jt-T 

This model can also be interpreted as an evolution equation of a single 
species population. The purpose of this paper is to describe and improve 
recent results on this equation, obtained by the authors in the last decade. 
Our analysis is concerned with the existence, uniqueness, approximation 
and continuous dependence on data of the positive solutions of the initial- 
value problem, and of the periodic solutions. We use topological methods 
(fixed point theorems, continuation principle) and monotone iterative tech- 
niques. 

Keywords:  nonlinear integral equation,  positive solutions, periodic solutions, 
fixed point, continuation principle, monotone iterations, continuous dependence, 
population dynamics. 
AMS subject classification: 45G10, 45M15, 47H15. 

1    Introduction 

In this paper we are concerned with the following nonlinear delay integral equa- 
tion 

x(t)= f   f(s,x(s))ds. (1) 
Jt-T 
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This equation and similar others appear when investigating the spread of virus 
diseases or, more generally, the growth of single species populations. Delay equa- 
tions also arise from the study of materials with thermal- or shape-memory (see 
[28]). 

Several results regarding various mathematical aspects of Eq.(l), or of equa- 
tions of type (1), have been obtained by K.L. Cooke and J.L. Kaplan [1], H.L. 
Smith [2],[8], R.D. Nussbaum [3], J. Kaplan, M. Sorg and J. Yorke [4], S. Busen- 
berg and K. Cooke [5], R.W. Leggett and L.R. Williams [7],[9], A. Canada [11], D. 
Guo and V. Lakshmikantham [12], I.A. Rus [13], S.G. Hristova and D.D. Bainov 
[14], N.G. Kazakova and D.D. Bainov [15], A.M. Fink and J.A. Gatica [16], R. 
Precup [17],[20],[24], R. Torrejön [19], E. Kirr [21],[25], A. Canada and A. Zertiti 
[22],[23], Ait Dads, K. Ezzinbi and 0. Arino [26]. Eq.(l) also appears in the 
monographs [6],[10, Example 20.1] and [18]. 

Let us first describe the meaning of Eq.(l) in terms of epidemics. In this 
case, it is assumed that the total number of population members is constant; 
x (t) represents the proportion of infectives in population at time t, regarded as a 
continuous quantity; r is the length of time an individual remains infectious (du- 
ration of infectivity); f(t,x(t)) means the proportion of new infectives per unit 
time (instantaneous contact rate). Then, f (t,x(t))dt represents the proportion 
of individuals infected within the period t, t + dt. In consequence, the number of 
infectious individuals at time t equals the sum of all individuals infected between 
t — T and t. 

Let us now interpret Eq.(l) as a growth equation of a single species popula- 
tion when the birth rate varies seasonally. In this case, x (t) is the number of 
individuals of a single species population at time t, f (t, x (t)) is the number of 
new births per unit time, and r is the lifetime. It is assumed that each individual 
lives to the age r exactly and then dies. 

In this paper we report on two distinct problems on Eq.(l). In both cases, 
because of the biological interpretation, we shall be interested in positive solu- 
tions. 

(I) The initial-values problem (IVP) 
We look for positive continuous solutions x(t) of Eq.(l), for —r < t < T, when 
it is known the proportion <p (t) of infectives for —r < t < 0, i.e., 

x(t) = (p (t)   for - T < t < 0. (2) 

Obviously, we have to assume that <p (t) is a positive continuous function on 
[—T, 0] and satisfies 

<p(0) = J°J(a,<p(a))ds. (3) 

It is easy to see that, under assumption (3), problem (l)-(2) is equivalent with 
the following initial-values problem 
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x' (t) = / {t, x (t)) - f (t - T,X {t - T))   forO <t<T 

(4) 
x(t) = tp (t)   for - T < t < 0. 

(II) The periodic problem (PP) 

Because of seasonal factors, the rate f(t,x) may be a w-periodic function of t 
and, in such situations, one is interested in u;-periodic solutions of Eq.(l). 

I. THE INITIAL-VALUES PROBLEM 

2    Existence results 

A. Positive solutions in space. 
We are looking for solutions of (l)-(2) in the space C of all continuous functions 
x (t) satisfying x(t) > a for — T < t < T, where a > 0 is a given number. 

Let us list our assumptions: 

(al) / (t, x) is nonnegative and continuous for —r < t < T and x > a. 

(a2) ip (t) is continuous, satisfies (3) and <p{t)> a for — T < t < 0. 

(a3) There exists a continuous function g (t) such that 

/ (t, x) > g (t)   for — T < t < T and x > a 

and 

)ds > a for 0 < t < T. 
Jt-T 

(a4) There exists a positive continuous function h (x) on [a, co) such that 

/ (t, x) < h (x)   for 0 < t < T and x > a 

and ,oo 
T< (l/h(x))dx. 

Ju>(0) 

Denote b = <p (0) and let R0 be given by 

fRo 

Jb 

/•Ho 
T=        (l/h(x))dx. (5) 

Jb 

Theorem 2.1 ([17]).  Suppose (al)-(a4) are satisfied.  Then the problem (l)-(2) 
has at least one solution x (t) £ C. Moreover, any solution in C satisfies 

x{t)<RoforO<t<T. (6) 
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Proof. Let E be the Banach space of all continuous functions x (t) defined 
on [0,T], endowed with the uniform norm. Consider the closed convex set of E, 
K = {x € E; x (<) > a for 0 < t < T}, and let 

X = {x € E\ x(0) = bzndx(t)>afoTO<t<T}. 

Also consider the homotopy 

H:Kx[0,l]->X, 

H (x, A) (t) = (1 - A) b + X //_T / {a, x (s)) ds, 

where x(t) = x (*) for 0 < * < T and x (t) = tp (t) for -r < t < 0. By (a3) and 
b>a,H is well-defined, i.e., H (K x [0,1]) C X, while by means of Ascoli-Arzela 
theorem, it is completely continuous. 

Next we establish the a priori boundedness of the set of all solutions of equa- 
tions H (x, A) = x, A € [0,1]. Let x be such a solution. Then, for each t € [0,T], 
we have 

x'(t) = \f(t,X(t))-\f(t-T,x(t-T)). 

Since / is nonnegative, we get 

x' («) < A/ (t, x (*)). 

Further, by (a4), 
x' (t) < Xh (x (<)). 

It follows that 
f lx' is) fh (x (a))) ds<Xt<XT< T, 

Jo 

for all* € [0,T]. Hence 

rx(t) 
fX    {l/h{u))du<T forO <t<T 

Jb 

whence, by (5), we see that x satisfies (6). 
Therefore, if we choose any R > Ro, we have that H is an admissible (fixed 

point free on boundary) homotopy on the closure of the open bounded set of X, 

U = {x 6 X; x{t)<R for 0 < * < T} . 

On the other hand, the constant map if (.,0) = b is essential (see [27, Theorem 
2.2]). Consequently, by the topological transversality theorem ([27, Theorem 
2.5]), the map A = H (., 1) is essential too. It follows that A has at least one 
fixed point x G U. Clearly, a; is a solution of (l)-(2). □ 

Remark 2.1. Let us assume that instead of (a4) one has 
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(a4')   lim sup / (£, x) /x = 11 (t) uniformly in t € [0, T] and \i —  sup  ix (t) < oo. 

Then, choosing a > /x, we get ß > 0 such that 

/ (*, x) < ax + ß for 0 < t < T and x > a. (7) 

Hence (a4) is fulfilled by h (x) = ax + ß, and 

P (l//i (u)) du = oo. 

If in addition, in (a4'), we suppose // < 1/r (this is assumption (H5) in [12]), 
then taking LI < a < 1/T we can choose R > b such that 

aR + ß< R/T, (8) 

in order that A maps U into itself and so, in this situation, Theorem 2.1 follows 
directly by Schauder's fixed point theorem. Next we show that this is also true 
for an arbitrary value of ft. 

Indeed, let us use an equivalent norm on E, namely 

IMIs = 0
m^(lx (01 exP (-0*)) 

with a suitable positive number 6. By (8), we get 

A (x) (t) < T7 + /0* (ax (s) + ß)ds = 

T^ + ßt + a /„' x (s) exp (-0s) exp (6s) ds < r7 + ßT + a \\x\\$ ft exp (6s) ds < 

Tf + ßT + (a/e)\\x\\eexp{0t), 

where 7 =   max f (t,(p(t)). Thus 

A (x) (t) exp (-6t) < (a/6) \\x\\g + r7 + ßT. 

Now, if we choose 9 > a and R > b such that 

(a/6) R + Tf + ßT<R, 

we see that A maps {x € X; ||x||# < R} into itself and so Schauder's fixed point 
theorem applies. 

Let us now consider instead of (a4) a more restrictive condition than (a<T), 
namely 

(a4") There exists L > 0 such that 

\f(t,x)-f(t,y)\<L\x-y\ (9) 

for all t € [—T, T] and x, y 6 [a, 00). 
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Theorem 2.2 ([17]). Suppose (al)-(a3) and (a4") are satisfied. Then the problem 
(l)-(2) has a unique solution x (t) € C. Moreover, 

xn (t) -> x (t)   asn -»■ oo, uniformly in t € [0, T], 

wfrere z0 (*) = & and xn (t) = A (a;n_i) (<) /or n = 1,2,.... 

Proof. Similar arguments as in Remark 2.1 yield to the conclusion that the 
map A : X —> X is a contraction with respect to a suitable norm ||.||e. Thus, 
Banach's fixed point theorem is applicable. □ 

B. Positive solutions in a ball. 
Suppose we are interested in solutions x (t) € C of (l)-(2), in a given ball of E, 
sa,y of ray R. Obviously, in this situation, the contact rate / (t, x) may be known 

only for a < x < R. 
Let us list the hypotheses corresponding to this case. 

(hi) / (t, x) is nonnegative and continuous for — r < t < T and a < x < R. 

(h2) ip (t) is continuous, satisfies (3) and a < <p (t) < R for -T < t < 0. 

(h3) There exists a continuous function g (t) such that 

f(t,x)>g{t)   for - r < t < T and a < x < R 

and 
g(s)ds>a  for 0 < * < T. (10) 

/' Jt— 

(h4) There exists a positive continuous function h(x) on [a, R] such that 

f{t,x)<h(x)   for 0<i<Tand a<x <R (11) 

and 

T< I     (l/h{x))dx. (12) 
•M0) 

Theorem 2.3. Suppose (hl)-(h4) are satisfied. Then the problem (l)-(2) has at 
least one continuous solution x (t) such that a < x(t) < R for —T<t<T. In 
addition, any such solution satisfies (6). 

Proof. The proof is the same as for Theorem 2.1. There is only one difference, 
the fact that the homotopy H can be defined only on(/x [0,1]. D 

Let us now suppose that instead of (h4) the following condition is satisfied: 

(h4*) There exists L > 0 such that (9) holds for all t £ [-r, T\ and x, y € [a, R] ■ 

Theorem 2.4. Suppose (hl)-(h3) and (h4*) are satisfied. Then there exists T0, 
0 < T0 < T, such that (l)-(2) has a unique continuous solution x{i) on [-T,T0] 

satisfying a < x(t) < R for —r < t < T0. 
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Proof.      By (9), we obtain 

/ (^> x) < L (x — a) + max / (t, a) —: h (x)   for a < x < R. 

So (11) holds. Now we choose T0 <T such that 

T0< [     (l/h{x))dx, 
-Mo) 

and we apply Theorem 2.3 with Jo instead of T. Thus the existence of solutions 
is proved. To show the uniqueness, suppose x\ (t) and x2 (t) are two solutions on 
[—r, T0]. Then, by (9), we have 

MO-MOI</,UI/(s>M*))-/(*,M*))l<fe< 
LIt-T l5i(s) -x2(s)\ds < Lfo\x1(s) -x2(s)\ds, 

for 0 < t < T0- This, by GronwalFs inequality, implies xi (t) = x2 (t). □ 

3    Continuous dependence on data 

Suppose the data /, <p and r satisfy (hl)-(h4) and that the corresponding IVP, 
(l)-(2), has a unique continuous solution x (t) satisfying a < x (t) < R for — r < 
t <T. 

Let (rn) be a nonincreasing sequence of positive numbers and let (<pn) and 
(/„) be two sequences of nonnegative continuous functions denned on [—T„, 0] and 
[—T„, T] X [a, R], respectively. We suppose that 

a<¥n<R,     <fn(0) = J_Tnfn(s,tpn(s))ds,     Tn -> T, 

ifn —> ip  and fn—*f uniformly, 

i.e., for each e > 0 there is nc > 1 such that, for every n > ne, one has 

|r„ - r\ < e,   \Vn (t) - tp (t)\ <e  for - r„ < t < 0 

and 
|/n (<, x) - f (t, x)\<£  for - rn < t < T and a < x < R. 

Finally, let us consider the IVP corresponding to /„, tpn and rn : 

Xn (t) = f     fn (s, xn (s)) ds    for 0 < t < T, 
Jt-T„ 

Xn {t) = •■Pn {t)     for    - Tn  < t < 0, 
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denoted by (ln)-(2n). 
If inequality in (10) is strict, by Theorem 2.3, it follows that for sufficiently 

large n, say n > n0, (ln)-(2n) has at least one continuous solution xn (t) satisfying 

a<xn(t)<R for -rn<t<T. (14) 

The question is: if for each n we choose an arbitrary continuous solution xn (t) 
of (ln)-(2n) satisfying (14), does the sequence {xn (t)) converge to x (i) uniformly 
in t E [0,T]? The answer is positive as shows the following theorem essentially 

established in [25]. 

Theorem 3.1. Suppose (hl)-(h4) are satisfied and that (l)-(2) has a unique 
continuous solution x (t) such that a<x(t)<Ron [-r, T]. // the sequences (T„) , 
{tpn) and (/„) satisfy (13), and {xn (<)) is any sequence of continuous solutions of 

(ln)-(2n) satisfying (14), then 

xn (t) -> x (t) asn-> oo, uniformly in t 6 [0, T]. 

Proof. From (14) we have that (*„ (*)) is bounded in C [0, T]. On the other 

hand, by (13) and 

x'n(t) = fn(t,xn(t))-fn(t-r,xn(t-r))   torO<t<T, 

we easily see that the sequence «(<)) is also bounded in C [0, T]. Thus, the 
sequence (xn (f)) is equibounded and equicontinuous on [0,T]. By Ascoli-Arzela 
theorem, there is a convergent subsequence (xkji (t)) of (xn (t)). Suppose xkn (t) -* 
x(t) as n -» oo, uniformly in t G [0,T]. Now taking the limit as n -► oo in 
(lfc„) - (2fcn), we obtain that x{t) is solution of (l)-(2). Finally, the uniqueness 
of the solution implies x(t) = x (t) and that the entire sequence {x„ (i)) converges 

uniformly to x (t). □ 

4    Minimal and maximal solutions 

Theorem 4.1 ([24]). Suppose (al)-(a4) are satisfied.  In addition assume that 

f (t, x) is nondecreasing in x for a < x < Ro- Denote 

u0(t) = a,   Un{t) = A{un-1){t)   forO<t<T, n = l,2,.... 

Then, un(t) ->■ x* (t) as n -» oo, uniformly in t € [0,T], s. (t) is <Äe tnt'ntma/ 

solution of (l)-(2) m C, and 

a < «i (*) < - < un (t) < .» < *. (*) < #o  for 0 < t < T. 
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Proof. By Theorem 2.1, there exists in C at least one solution of (l)-(2). 
Moreover, any such solution x (t) satisfies a < x (t) < RQ for 0 < t < T. Let 
xi (t) £ C be an arbitrary solution. Then, a = uQ (t) < x, (t) < RQ for 0 < t < T. 
Since / (t, x) is nondecreasing in x for a < x < R0, it follows that the map A is 
nondecreasing on the interval [a, R0] of E. Thus, Ul (t) = A (u0) (t) <A(xx) (t) = 
xi (t). On the other hand, since A (K) C X, we have ux (t) = A (u0) (/) > a = 
u0 (t). Hence w0 (t) < Ul (t) < Xj (<) for 0 < t < T. Further, we inductively find 

a < U! (<) < u2 (<) < ... < Un (i) < ... < Xl (t)   for 0 < t < T. 

Since A is completely continuous, the sequence (un)n^ = A ((u„)„>0) must con- 

tain a subsequence, say (ufcJ, convergent to some x, £ X. Now taking into 
account the monotonicity of (un (*)), we easily see that the entire sequence (un) 
converges to x», uniformly on [Q,T], and 

«n (0 < a;* (0 < X! (t)   for 0 < t < T, n = 0,1,.... 

Letting n -► oo in A («„) (t) = wn+1 (t), we get A (x.) (<) = x» (i), i.e., x» (<) is a 
solution of (l)-(2). Finally, since inequality x, (t) < Xl (t) holds for any solution 
xi (t) e C, we see that x* (t) is the minimal solution in C of (l)-(2). Ü 

The next result deals with the existence and approximation of the maximal 
solution in C of (l)-(2). 

Theorem 4.2 ([24]). Suppose (al)-(a4) are satisfied. In addition assume that 
there is R> RQ such that 

f(t,R)<R/Tfor-r<t<T (15) 

{i.e., f (t, ip (<)) < R/T for-r<t<0 andf(t, R) < R/T for 0 < t < T), and 
f (t, x) is nondecreasing in x for a < x < R. Denote 

v0(t) = R,   vn(t) = A(vn-1)(t)   forQ <t<T,n = 1,2,.... 

Then, vn (t) -► x* (t) as n -» oo, uniformly in t £ [0,T], x* (/) is the maximal 
solution in C o/(l)-(2), and 

"<x* OO < ... < vn (t) < ... < Vl (t) < R forO<t< T. 

Proof. By (15), we have vx (t) < v0 (t) = R for 0 < t < T. Further the proof 
is analog with that of Theorem 4.1. □ 

Theorem 4.3. Suppose the assumptions of Theorem^.l are satisfied. In addition 
assume a > 0 and that there is a function x : [a/R0,1) -► R such that for all 
p £ [a/R0,1), t G [0,T] and x 6 [a, Ro] with px > a, one has 

1>X(P)>P   andf(t,px)>x(p)f(t,x). (16) 

Then (l)-(2) has a unique solution in C. 
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Proof. Let n (t) € C be any solution of (l)-(2). We will show that xi (t) = 
x. (t). Let Po = min (x. (i) /an (*)) • Since a < a;* (t) < i, (i) < i?o, we then 

have a/ßo < Po <~1~ Now we snow that /°o = 1- Suppose p0 < 1. Since a;» (i) > 
max {a, p0x1 (<)} = />0max W/>o,*i (t)} > a for 0 < * < T, by (16), we get 

x» (t) = A (x,) (t) > A ('po max {a/p0, xx (<)}) > 

x (po) A (max {a//>0, *i (*)}) > X (/*>) ^ (*i) (*) = X (/*>) Zi (*) • 

It follows po > X (Po), a contradiction. Therefore p0 = 1 and so z, (<) = Xi (t). O 

Remark 4.1. For x {p) = Pa-> a € (0,1), Theorem 4.3 becomes Theorem 4 in [24]. 
An other example of function x satisfying (16), is x (/>) = log (1 + ap) / log (1 + a), 
for / (t, x) of the form q (t) log (1 + x) (see [26, Example 17]). • 

Corollary 4.1. Suppose the assumptions of Theorems 4.2 and 4-3 are satisfied. 
Then, (l)-(2) has a unique solution x, (t) in C, and for any x0 (t) € E with 
a <x0(t) < RforO <t <T, one has xn (t) -» x, (t) asn-+oo, uniformly in 

t€ [0,T], wÄcrc »»(*) =-A(s„_i)(i)in = li2,-. 

Proof. From a = u0 (t) < x0 (t) < «0 (*) = R, one gets u„ (*) < i„ (i) < «„ (t) 
for n = 1,2,.... On the other hand, Theorems 4.2 and 4.3 imply that un{t) -> 
z, (t) and vn (t) -* i» (t) as n -» oo, uniformly in * G [0, T]. O 

The last result of this section refers to functions / (t, x) which are nonincreas- 

ing in x. 

Theorem 4.5. Suppose (al)-(a4) are satisfied. Denote 

R = max I Ro, max |ui (t)\ \ 
{      O<KT' J 

and suppose f (t, x) is nonincreasing inxforO<a<x<R. Also suppose that 
there is a function x : [a/R, 1) -► R such that for all p € [a/R, 1), t G [0,T] and 

a; G [a, i?] with px > a, one has 

l<x(?)<l//>  andf{t,px)<X(p)f{t,x)- (17) 

TTien, (l)-(2) has a unique solution x,(t) in C, 

a = u0 (t) < vx (t) < ... < u2n (t) < v2n+i (*) < - < *. (0 < - 

< «2n+l (t) < V2n (*) < - < «1 (*) < V0 (t) = R   for0<t< T, 

and un (t) -> xt (t), un (t) -+ z» (i) as n -» oo, uniformly in t € [0,T]. 
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Proof. By Theorem 4.1, there is in C at least one solution xx (t) of (l)-(2), and 
a < xx (i) < R0 for 0 < t < T. We have a = u0 (i) < xx (t) < v0 (t) = R, whence 
«i(*) < *i(*) < «!(<). By (a3), a < Vl(t). Also Ul(t) < max luJOl < R- 
Hence 

"o(0<«i(0<a;i(0^"i(')<«o(*). 

We then have successively, 

ß = WO (<) < Ui (*) < ... < U2n (<) < V2n+1 (0 < ... < X! (t) < ... 

(18) 
< u2n+1 (t) < v2n (t) < ... < Ul (t) < v0 (t) = R. 

Since A is completely continuous, there are two subsequences of (A (u2n-i)) and 
(A(v2n-i)), convergent to some y„{t) G X and y* (t) G X, respectively. Then, 
by (18), it follows that 

(19) 
"2n (<) -» ». (*) ,        U2„+l (<) ~> 2/* (t) , 

U2n+l{t)^y*{t),     V2n{t) ^ y* (t) , 

uniformly in t G [0, T], and 

y*{i) < xi (<) < 2/* (t) - 

By (19), we obtain 

Vm(t) = A(y,)(t)    aady.(t) = A{y*){t). 

Next we show that (17) implies y% (t) = y* (t). To do this, let 

/?o = omm(j/»(t)/j,*(f)). 

Obviously, a/R < p0 < 1. We will show that p0 = l. Suppose p0 < 1. Then (17) 
yields 

y* = A (y.) < A (po max {a//»0, y*}) < 

X (po) 4 (max {a/p0, y*}) < X {po) A (y*) = x (Po) y„. 

Thus, x (po) > l/po, a contradiction. Therefore, p0 = 1 as claimed. □ 

Remark 4.2. For x(p) = Aö£ (-1,0), Theorem 4.5 becomes Theorem 6 in 
[24]. 



II. THE PERIODIC PROBLEM 

5    Existence of periodic solutions 

We axe interested in periodic continuous solutions x (t) of Eq.(l), such that 0 < 
a < x (t) < R for all t G R. Our hypotheses are as follows: 

(HI) / (t, a;) is nonnegative and continuous for t £ R and a<x<R. 

(H2) There is u > 0 such that /(t + w,x) = /(*,*) for t € R and a < x < R. 

(H3) There exists a continuous function g (t) with period w such that 

/ {t, x)>g(t)   for 0 < t < u and a < x < R, 

and t 

/    g(s)ds>a for 0 < < < w. 

(H4) There is a positive continuous function h (i) for a < i < Ä, and a number 

b such that a < b < R, 

f (t, x)<h{x)   for 0 < t < u and a < x < R, 

fb
R(l/h(x))dx>u; 

and ,    , 
f(t,x)<b/T for 0 < t < w and b < x < R. U°) 

Theorem 5.1 ([20]). Suppose (H1)-(H4) are aafis/icd. ITien (1) Äas ai /easr one 
continuous solution x (t) with period u satisfying 

a < min x (t) < b  and   max x (t) < R. 
- 0<t<u> 0<Ko; 

Proof.      Let E be the Banach space of all continuous w-periodic functions x (t) 
on R, endowed with the uniform norm ||a;|| = max^ \x (t)\. Let 

•      K = {xeE; a<x (t)   for 0 < t < w} 

and . \ 
U=\xeK;   min x{t) < 6 and ||z|| < R\ ■ 

(_ 0<(<u' i 
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Obviously, K is a closed convex set of E, and U is bounded and open in K. We 
consider the homotopy 

H : 77 x [0,1] - K,   H(x,\)(t) = (l-\)a + \ft   f(s,x(s))ds. 
Jt — T 

By (H1)-(H3), H is well-defined and completely continuous. We claim that, for 
each A, #(., A) is fixed point free on the boundary dU of U with respect to K. 
Assume, by contradiction, that there would exist A G (0,1] and x € dU such that 
H (x, A) = x, that is 

x(t) = (l-\)a + \J    f(s,x(s))ds  iorteR. (21) 

Since x is on dU, we have either 

||a;|| = R  and    min x (t) < b, (22) 

or 

||i|| < R  and    mbi(i) = b. (23) 

First, suppose (22). Then, by differentiating (21), we get 

x'(t) = \f(i,x(t))-\f(t-T,x(t-T)). 

It follows 

*' (<) < A/ (*, x (*)) < \h (x (t)) <h(x (t)). 

Let t0 6 [0, u] be such that a; (t„) = ^n^ a; (*). Integration from *0 to t yields 

/ (a'(«)/A(*(s)))ds<<-io<w  fort0<t<t0+uj. 

Thus, 
/■*(*) 

/ ,  4 (1/h (u)) du<u>  foi t0<t<t0 + u. 

Since x (t0) < b, by (H4), we deduce that x(t) < R for t0<t< t0+u, equivalently 
for ah t € R. Therefore, ||x|| < R, a contradiction. Next, suppose (23). Let 
0 < t0 < u be such that * (*0) = mm x(t) = b. Then, by (21) and (20), we 
obtain 

b = x (to) = (1 - A) a + A //o°_T / (s, x (s)) ds < 

(1-X)b+Xb = b, 

again a contradiction. Thus, H is an admissible homotopy on 77. On the other 
hand, the constant map H(.,0) = a is essential because a € U. Consequently, 
by the topological transversality theorem, H (., 1) is essential too. D 

- 190- 



6    Monotone iterative approximation 

Under the assumptions of Theorem 5.1, denote by A the completely continuous 
map from P = {x e E\ a < x (<) < R for 0 < t < w} into K, 

A{x)(t)= f f{s,x{s))ds, ten,xeP. 
Jt—T 

Theorem 6.1. Suppose (H1)-(H4) are satisfied. In addition suppose that a > 
0, f(t, x) is nonincreasing in x for a < x < R and there exists a function 
X : [a/R, 1) -» R satisfying (17) for all t € [0,w], p € [a/R, 1) and x € [a, R] 

with px > a. If 

A2 (R) (t)<R for0<t< w, (24) 

then (1) has a unique solution x* (t) e P. Moreover, the sequence v0(t) = 
Ä, un (t) = A («B_i (0), n = 1,2,..., converges to x* {t), uniformly in t € [0,w], 

a < V, (*) < «3 (<) < ». < «2n+l (*) < ••■ < ** (0 < - 

< l>2n (*) < ... < »4 (*) < «2 (*) < UO (*) = R- 

Proof. By Theorem 5.1, there exists at least one solution in P. Let x (t) € P 
be any solution of (1). Since f(t,x) is nonincreasing in x for a < x < R, from 
a < x{t) < R = v0(t),we get a < A{R) (i) <A(x)(t) = x (i). Then, 

a<A(Ä)(t)<x(*)<A2(i?)(i). 

This, by (24), yields 

a < A(Ä) (t) < A3(Ä) (t) <x(t)< A2(R) (t) < R. 

We successively obtain 

a < V! (t) < v3 (t) < ... < v2n+1 (<) < ••• < x (t) < ... 
(25) 

< v2n (t) < ... < v4 (t) < v2 (t) < v0 (t) = R. 

Since A is completely continuous, there are two subsequences of (u2n+i) and (v2„) 
uniformly convergent to some z* € P and x* € P, respectively. By (25) we 
see that the entire sequences (v2n+i) and (v2n) converge uniformly to x* and x*, 

respectively, and 
a<x.(t)<x (t) < x* (t) < R. 

Obviously, 
x» (t) = A {x*) (t)   and x* (*) - A (a;.) (t). 
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Now we prove that (17) implies ar, (t) = x* (t) for all t € R. To this end, let p0 = 

o<?<L, (X* ® lX* W • Clearly' ° < alR ^ Po < 1- We have to show that p0 = 1. 

Suppose £0 < 1. Since z„ (t) > ma,x{a, p0x* (t)} = p0max {a/p0,x* (t)} > a, by 
(17), we get 

x* = A(z.) <A(pomax{a/p0,x*}) < X{po) A(m&x{a/p0,x*}) < 

x(po)A(x") =x(p0)xt. 

It follows that x(po) > 1/Pa, a contradiction. Thus p0 = 1 as claimed. Conse- 
quently, x* (t) = x (t) = x* (t) and the proof is complete. D 

Corollary 6.1. Suppose the assumptions of Theorem 6.1 hold with 

A (a) (t)<R forO<t<u> (26) 

instead of'(24). Then (1) has a unique solution x* (t) € P and An (x0) (t) -> x* (t) 
as n —> oo, uniformly in t € [0, u], for any x0 (t) e P. 

Proof. Let us remark that (26) implies (24). Indeed, from a < A(R) (t) < 
A (a) (t), we get 

A2(a)(t)<A2(R)(t)<A(a)(t)<R, 

whence (24). Thus, Theorem 6.1 applies. 
Further, if x0 (t) is any function in P, then from a < x0 (t) < R, we obtain 

a<v1(t)<A{x0)(t)<A(a)(t) <R = vo(t). 

This yields 

a < V! (t) < A2 (x0) (t) < v2 (t) < A (a) (t) < R, 

and, in general, 

a<vi (t) < v3 (t) < ... < ü2[(n_1)/3]+1 (t) < 

An (x0) (t) < v2[n/2] (t) < ... < v2 (t) < v0 (*) = R, 

for n = 1,2,.... Since vn(t) -► x* (t), it follows that An (x0) (t) -» x* (t), as 
claimed. □ 

Remark 6.1. A sufficient condition for (26) is that f(t,a) < R/T for all t G R. 

For the next results, let us replace (H4) by the following assumption used in 
[12]: 

(H4')  / (t, X)<R/T  for 0 < t < u and a < x < R. 
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The following theorems complement the results in [12]. 

Theorem 6.2. Suppose (H1)-(H3) and (H4') are satisfied. In addition suppose 
a > 0, f(t,x) is nonincreasing in x for a < x < R, and there is a function 
X ■■ [a/R, 1) -> R satisfying (17) for all t G [0,w], p G [a/R, 1) and x G [a,R] 
with px > a. Then (1) has a unique solution x* (t) G P and An (x0) (t) —> x" (t) 
as n —*■ oo, uniformly in t € [0,o>], /or arc?/ a;0 (£) G P. 

Theorem 6.3. Suppose (H1)-(H3) and (H4') are satisfied. In addition suppose 
a > 0, f(t,x) is nondecreasing in x for a < x < R, and there is a function 
X : [a/R, 1) -> R satisfying (16J /or a// f G [0,w], /j G [a/R,l) and x G [a, R] 
with px > a. Then (1) has a unique solution x" (t) G P and An (x0) (t) -* x* (t) 
as n —> oo, uniformly in t G [0,w], /or arey x0 (£) 6 P. 

The proofs of Theorems 6.2 and 6.3 are similar with that of Theorem 6.1, so 
we omit the details. 

Remark 6.2. For X(p) = Pa, a G (-1,0), Theorems 6.1 and 6.2 have been 
established in [20]. Also, in [20], several examples can be found. 

The monotone iterative approximation of periodic solutions of Eq.(l), for the 
case when f (t, x) is nondecreasing in x, was discussed in [12]. 

Finally, for similar results by means of more subtle conditions than (a4) and 
(H4), we send to [21] and [25]. 
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