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MONOTONE APPROXIMATION FOR AN INTEGRAL
EQUATION MODELING INFECTIOUS DISEASE
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Abstract

Monotone technique is used to approximate the periodic solutions of a delay integral
equation modeling epidemics and population growth. Both cases of nondecreasing and
nonincreasing contact rate are considered.

Keywords: population dynamics, nonlinear integral equation, periodic solution, fixed point,
continuation principle, monotone iterations.

In this paper we are concerned with the following nonlinear delay integral equation

()= /, I (s, (s))ds. (1)

=T
This equation and similar others appear when investigating the spread of virus diseases or,
more generally, the growth of single species populations [2].

Let us first describe the meaning of Eq.(1) in terms of epidemics. In this case, it is
assumed that the total number of population members is constant; z (t) represents the
proportion of infectives in population at time 1, regarded as a continuous quantity; 7 is the
length of time an individual remains infectious (duration of infectivity); f (t,z (t)) means the
proportion of new infectives per unit time (instantaneous contact rate). Then, f (¢, (t)) dt
represents the proportion of individuals infected within the period ¢, t + dt. In consequence,
the number of infectious individuals at time ¢ equals the sum of all individuals infected
between ¢ — 7 and ¢.

Let us now interpret Eq.(1) as a growth equation of a single species population when
the birth rate varies seasonally. In this case, z (¢) is the number of individuals of a single
species population at time ¢, f (¢, z (t)) is the number of new births per unit time, and 7 is
the lifetime. It is assumed that each individual lives to the age 7 exactly and then dies.

We are interested in periodic continuous solutions z (t) of Eq.(1), such that 0 <a<
2 (t) < R for all ¢ € R. Our hypotheses are as follows:




(H1) f(t,z) s nonnegative and continuous fortc Randa<z < R
(H2) There is w >0 such that f (t +w,z) = f(t,z) for t € Randa<z <R
(H3) There cxists a continuous function g (t) with period w such that

Ft,x) = g@) - for 0<t<wanda<z <R,

and y
/ g(s)ds>a for0 <t < w.
Ji=T

(H4) There is a positive continuous function h (z) for a <z < R, and a number b such that

a <b<R,
f(t,x) < h(z) for0<t<wanda<z <R,

[E/h(z)de 2w

and
f(t,z) < b/t for0<t<wandb<z <R (2)

Theorem 1 ([6]). Suppose (H1)-(H4) are satisfied. Then Eq.(1) has at least one continuous
solution x (t) with period w satisfying

o < min x(t) <b and max (t) < R.
0<i<w 0<t<w

Proof. Let E be the Banach space of all continuous w-periodic functions z (t) on R.
endowed with the uniform norm \z|| = Inax |z (¢)| . Let
_/_LA)

K={zcE; a<z(t) for 0 <t <w}

and i3 1
U= {1: e K; min z(t) <band llz|l < R} .
0<t<w

Obviously, K is a closed convex set of E, and U is bounded and open in K. We consider ths
homotopy

. ' -t
H:TUx[0,1 =K, Hixz, A ) =(1=Na+A f(s,2(s))ds.
=7
By (H1)-(H3), H 1s well-defined and completely continuous. We claim that, for each
H (., ) is fixed point free on the boundary 0U of U with respect to K. Assume, by contra-
diction, that there would exist A € (0,1} and = € OU such that H (z,\) = z, that is

ct)=(1-Nat+A tt_ f(s,x(s))ds fort e R.

Since z is on OU, we have either

|z}l = R and olgzignw z (t) < b,

422




lz]| < R and min z (t) = b.
0<t<w
First, suppose (4). Then, by differentiating (3), we get
2 () = Af Lz @) = Af(t—Ta(t—T1)).

It follows
' (t) < Af (¢, z (8) < AR (z (1) < h(z(1).
Let ¢y € [0,w] be such that x (ty) = mm T( ) . Integration from t, to t yields

T
/( (8) /h(a(s)))ds <t —tg <w forty <t <ty + w.

S g

-z (t)
/ (1/h(uv))du <w fortg <t < ty+ w.

:(to)
Since z (tp) < b, by (H4), we deduce that z (t) < R for t, < ¢ < g + w, equivalently for all

t € R. Therefore, |z|| < R, a contradiction. Next, suppose (5). Let 0 < #, < w be such that
s fp} = Omm x (t) = b. Then, by (3) and (2), we obtain

b= gty )y= (1—/\)a+/\ftoT( z(s))ds <
(I1=X)b+ Ab=b,

again a contradiction. Thus, H is an admissible homotopy on U. On the other hand, the
constant map H (.,0) = « is essential because a € U, Consequently, by the topological
transversality theorem, H (., 1) is essential too. B
Denote
P ={wehB a<z(t)<Rfor0<t<uw}.

Under the above assumptions, consider the completely continuous map from P into K,

A ) {t). = /LT f(s,2(s))ds, teR, z€P.

Theorem 2. Suppose (H1)-(H4) are satisfied. In addition suppose that o > 0, f(t,z) is
nonincreasing wn x for a < x < R and there exists a function x : [a/R, 1) = R such that

1< x(p)<1/p and f(t,pz) < x(p) f (¢, z)
for all t € [0,w], p € [a/R,1) and z € [a, R] with pz > a. If

A*(R)(H) <R for 0<t < w,

then Eq.(1) has a unique solution x* € P. Moreover, the sequence vy = R, v
L,2,..., converges to x*, uniformly on [0,w], and

@SV <Sv3< .Sy <. <2 <
Svy < ... Sy <wvy <y = R.
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Proof. By Theorem 1, there exists at least one solution in P. Let # € P be any solution
of Eq.(1). Since f (¢, x) is nonincreasing in z for a <o < R, froma < (t) < R=w(t),
we get a < A(R) (t) < A(z) (t) = 2 (t). Then,
a<A(R)(t) Sz (t) < AHR) (1)
This, by (7), yiclds
a<A(R) () <A*(R)(t) <z (t) <A*(R) () < R.

We successively obtain

a<wv(t) Lus(t) <. SUgppr (B) <00 < % (t) < i

- (8)

< gy (1) < o S g (8) Swa () < wo (t) = R.

Since A is completely continuous, there are two subsequences of (vany1) and (vg,) uniformly
convergent to some z, € P and z* € P, respectively. By (8) we see that the entire sequences
(vant1) and (vg,) converge uniformly to z, and z*, respectively, and

a<z,(t)<z(t)<z"(t) <R

Obviously,
2, (1) = A(z*) (t) and z*(t) = A(=z.) (1)

Now we prove that (6) implies 2, (t) = 2*(t) for all ¢t € R. To this énd,:let Py =
01}12(11 (2, (t) Ja* (t)) . Clearly, 0 < a/R < po < 1. We have to show that py = 1. Suppose

po < 1. Since =z, (t) > max {a, poz* ()} = po max {a/po,z* (t)} > a, by (6), we get
2* = A(x,) < A(po max {a/po,z*}) < X (po) A (max{a/po,2*}) <
X (po) A (z*) = x (po) s

It follows that x (pg) > 1/po, a contradiction. Thus pp = 1 as claimed. Consequently,
7, (t) = 2 (t) = 2* (t) and the proof is complete. B

Corollary 3. Suppose the assumptions of Theorem 2 hold with
A@(®) <R for0<t<w | (0

instead of (7). Then Eq.(1) has a unigue solution 2* € P and A" (z0) (t) — x*(t) as
n — oo, uniformly in t € [0,w], for any xo € %

Proof. Let us remark that (9) implies (7). Indeed, from a < A (R) (t) < A (a) (t), we get
A% (a)(t) S A*(R) (1) < A(a) () < R,

whence (7). Thus, Theorem 2 applies.
Further, if 2, is any function in P, then from a < zg (t) < R, we obtain

a < (t) < Az) () <Aa)(t) S R=1(t).
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This yields
a < {t) < A* (w0) (t) < vy )< A (a)(t) <R,

and, in general,
e () <) <. < Vatn—1) /2141 (t) <

A" (20) (1) < Uzl (8) < ... < g (t) <wo(t) = R,
forn=1,2,... Since v, (t) = 2 (2), it follows that A" (o) () = 2* (), as claimed. |
Remark. A sufficient condition for (9) is that f (¢, a) < R/t for all t € R.
For the next result, let us replace (H4) by the following assumption used in [4]:
(H4) f(tz) < R/7 forOStSwandanSR.
The next theorems complement the results in [4].

Theorem 4. Suppose (H1)-(H3) and (H4’) are satisfied. In addition suppose ¢ > U =)
IS monincreasing in 1 for a <z < R, and there 18 a function X : [a/R, 1) 5 R satisfying
(6) for all t € [0,w], p € [a/R, 1) and = € [a, R] with pr 2 a. Then Eq.(1) has q unique
solution x* € P and A" (o) (t) = 2* (t) as n — 00, uniformly in t ¢ [0,w], for any Ty € P.

Theorem 5. Suppose (H1)-(H3) and (H4’) are satisfied. In addition suppose ¢ > 0, filt, z)
18 nondecreasing in 2 Jor a <z < R, and there is 4 function y [a/R,1] - R such that

L>x(p) >p and J (& p7) > X () £ (¢, 2)

ferallt € [0,w], p e [a/R,1) and z € la, R] with px > a. Then Eq.(1) has a unigue solution
2" in P and A (20) (1) — g* (t) as n — oo, uniformly in t € [0, w], for any z, € P.

Proof.  The proofs are similar with that of Theorem 2, s0 we omit the details. |

Remark. For y (P) = p*, a € (-1, 0), Theorem 2 and Theoremm 4 have been established in
[6]. Also, in [6], several examples can be found.

The monotone iterative approximation of periodic solutions of Eq.(1), for the case when
f(tz)is nondecreasing in x, was discussed in [4].

Related topics can be found in (1], [3], [5] and [7].
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