

The P A M M's periodical BULLETINS for APPLIED & COMPUTER MATHEMATICS

(B A M)

Editorial board

at the Technical University, H-1111 Budapest, Müegyetem rkp.7

PAMM-Centre: Z.IV.01

(This is the address for letters, etc.)

Prof. Dr. F. FAZEKAS

(TU-Budapest)
Editor in chief

Prof. Dr. A.TAKACI (U-Novi Sad) Prof. Dr. R.FOLIC (U-Novi Sad) Prof. Dr. N. BOJA (TU-Timisoara) Prof. Dr. I. ZOBORY (TU-Budapest) Prof.Dr. MADARÁSZ (TU-Kosice) Prof. Dr. J. BRNIC (U-Rijeka)

Co - editors

B A M 1510-1566/'98 – LXXXVI-A Lectured at the PC – 122/'98 – ARAD

ISSN 0133 - 3526

-Manuscript-

Prepared for the publication at the

"Aurel Vlaicu" University of Arad
University-Enterprises Center, branch of Arad
by

Dr. GABRIELA CRISTESCU and Dr. MARIANA NAGY

ARAD, July 1998

(BULLFEDH)

MONOTONE APPROXIMATION FOR AN INTEGRAL EQUATION MODELING INFECTIOUS DISEASE

Radu Precup

"Babeş-Bolyai" University of Cluj, Romania Faculty of Mathematics and Informatics E-mail: r.precup@math.ubbcluj.ro

Abstract

Monotone technique is used to approximate the periodic solutions of a delay integral equation modeling epidemics and population growth. Both cases of nondecreasing and nonincreasing contact rate are considered.

Keywords: population dynamics, nonlinear integral equation, periodic solution, fixed point, continuation principle, monotone iterations.

In this paper we are concerned with the following nonlinear delay integral equation

$$x(t) = \int_{t-\tau}^{t} f(s, x(s)) ds.$$
 (1)

This equation and similar others appear when investigating the spread of virus diseases or, more generally, the growth of single species populations [2].

Let us first describe the meaning of Eq.(1) in terms of epidemics. In this case, it is assumed that the total number of population members is constant; x(t) represents the proportion of infectives in population at time t, regarded as a continuous quantity; τ is the length of time an individual remains infectious (duration of infectivity); f(t, x(t)) means the proportion of new infectives per unit time (instantaneous contact rate). Then, f(t, x(t)) dt represents the proportion of individuals infected within the period t, t + dt. In consequence, the number of infectious individuals at time t equals the sum of all individuals infected between $t - \tau$ and t.

Let us now interpret Eq.(1) as a growth equation of a single species population when the birth rate varies seasonally. In this case, x(t) is the number of individuals of a single species population at time t, f(t, x(t)) is the number of new births per unit time, and τ is the lifetime. It is assumed that each individual lives to the age τ exactly and then dies.

We are interested in periodic continuous solutions x(t) of Eq.(1), such that $0 \le a \le x(t) \le R$ for all $t \in \mathbf{R}$. Our hypotheses are as follows:

- **(H1)** f(t,x) is nonnegative and continuous for $t \in \mathbf{R}$ and $a \leq x \leq R$.
- **(H2)** There is $\omega > 0$ such that $f(t + \omega, x) = f(t, x)$ for $t \in \mathbf{R}$ and $a \le x \le R$.
- (H3) There exists a continuous function g(t) with period ω such that

$$f(t,x) \ge g(t)$$
 for $0 \le t \le \omega$ and $a \le x \le R$,

and

$$\int_{t-\tau}^{t} g(s) ds \ge a \text{ for } 0 \le t \le \omega.$$

(H4) There is a positive continuous function h(x) for $a \le x \le R$, and a number b such that a < b < R, $f(t, x) < h(x) \quad \text{for } 0 \le t \le \omega \text{ and } a \le x \le R,$

$$\int_{h}^{R} (1/h(x)) dx \ge \omega$$

and

$$f(t,x) < b/\tau \text{ for } 0 \le t \le \omega \text{ and } b \le x \le R.$$
 (2)

Theorem 1 ([6]). Suppose (H1)-(H4) are satisfied. Then Eq.(1) has at least one continuous solution x(t) with period ω satisfying

$$a \le \min_{0 \le t \le \omega} x(t) < b \text{ and } \max_{0 \le t \le \omega} x(t) < R.$$

Proof. Let E be the Banach space of all continuous ω -periodic functions x(t) on R, endowed with the uniform norm $||x|| = \max_{0 \le t \le \omega} |x(t)|$. Let

$$K = \{x \in E; \ a \le x (t) \text{ for } 0 \le t \le \omega\}$$

and

$$U = \left\{ x \in K; \min_{0 \le t \le \omega} x(t) < b \text{ and } ||x|| < R \right\}.$$

Obviously, K is a closed convex set of E, and U is bounded and open in K. We consider the homotopy

$$H: \overline{U} \times [0,1] \to K, \quad H(x,\lambda)(t) = (1-\lambda)a + \lambda \int_{t-\tau}^{t} f(s,x(s)) ds.$$

By (H1)-(H3), H is well-defined and completely continuous. We claim that, for each $\mathcal{H}(.,\lambda)$ is fixed point free on the boundary ∂U of U with respect to K. Assume, by contradiction, that there would exist $\lambda \in (0,1]$ and $x \in \partial U$ such that $H(x,\lambda) = x$, that is

$$x(t) = (1 - \lambda) a + \lambda \int_{t-\tau}^{t} f(s, x(s)) ds \text{ for } t \in \mathbf{R}.$$

Since x is on ∂U , we have either

$$||x|| = R$$
 and $\min_{0 \le t \le \omega} x(t) < b$,

$$||x|| \le R$$
 and $\min_{0 \le t \le \omega} x(t) = b.$ (5)

First, suppose (4). Then, by differentiating (3), we get

$$x'(t) = \lambda f(t, x(t)) - \lambda f(t - \tau, x(t - \tau)).$$

It follows

$$x'(t) \le \lambda f(t, x(t)) \le \lambda h(x(t)) \le h(x(t))$$
.

Let $t_{0} \in [0, \omega]$ be such that $x(t_{0}) = \min_{0 \leq t \leq \omega} x(t)$. Integration from t_{0} to t yields

$$\int_{t_0}^{t} (x'(s)/h(x(s))) ds \le t - t_0 \le \omega \text{ for } t_0 \le t \le t_0 + \omega.$$

Thus,

$$\int_{x(t_0)}^{x(t)} (1/h(u)) du \le \omega \text{ for } t_0 \le t \le t_0 + \omega.$$

Since $x(t_0) < b$, by (H4), we deduce that x(t) < R for $t_0 \le t \le t_0 + \omega$, equivalently for all $t \in \mathbf{R}$. Therefore, ||x|| < R, a contradiction. Next, suppose (5). Let $0 \le t_0 \le \omega$ be such that $x(t_0) = \min_{0 \le t \le \omega} x(t) = b$. Then, by (3) and (2), we obtain

$$b = x(t_0) = (1 - \lambda) a + \lambda \int_{t_0 - \tau}^{t_0} f(s, x(s)) ds < (1 - \lambda) b + \lambda b = b,$$

again a contradiction. Thus, H is an admissible homotopy on \overline{U} . On the other hand, the constant map $H(.,0) \equiv a$ is essential because $a \in U$. Consequently, by the topological transversality theorem, H(.,1) is essential too.

Denote

$$P = \{x \in E; \ a \le x(t) \le R \text{ for } 0 \le t \le \omega\}.$$

Under the above assumptions, consider the completely continuous map from P into K,

$$A(x)(t) = \int_{t-\tau}^{t} f(s, x(s)) ds, \quad t \in \mathbf{R}, \ x \in P.$$

Theorem 2. Suppose (H1)-(H4) are satisfied. In addition suppose that a > 0, f(t,x) is nonincreasing in x for $a \le x \le R$ and there exists a function $\chi : [a/R, 1) \to \mathbf{R}$ such that

$$1 \le \chi(\rho) < 1/\rho \text{ and } f(t, \rho x) \le \chi(\rho) f(t, x)$$
 (6)

for all $t \in [0, \omega]$, $\rho \in [a/R, 1)$ and $x \in [a, R]$ with $\rho x \ge a$. If

$$A^{2}(R)(t) \leq R \text{ for } 0 \leq t \leq \omega, \tag{7}$$

then Eq.(1) has a unique solution $x^* \in P$. Moreover, the sequence $v_0 \equiv R$, $v_n = A(v_{n-1})$, n = 1, 2, ..., converges to x^* , uniformly on $[0, \omega]$, and

$$a \le v_1 \le v_3 \le \dots \le v_{2n+1} \le \dots \le x^* \le \dots$$

$$\leq v_{2n} \leq \ldots \leq v_4 \leq v_2 \leq v_0 = R.$$

Proof. By Theorem 1, there exists at least one solution in P. Let $x \in P$ be any solution of Eq.(1). Since f(t,x) is nonincreasing in x for $a \le x \le R$, from $a \le x(t) \le R = v_0(t)$, we get $a \le A(R)(t) \le A(x)(t) = x(t)$. Then,

$$a \le A(R)(t) \le x(t) \le A^2(R)(t).$$

This, by (7), yields

$$a \le A(R)(t) \le A^3(R)(t) \le x(t) \le A^2(R)(t) \le R.$$

We successively obtain

$$a \le v_1(t) \le v_3(t) \le \dots \le v_{2n+1}(t) \le \dots \le x(t) \le \dots$$

$$\le v_{2n}(t) \le \dots \le v_4(t) \le v_2(t) \le v_0(t) = R.$$
(8)

Since A is completely continuous, there are two subsequences of (v_{2n+1}) and (v_{2n}) uniformly convergent to some $x_* \in P$ and $x^* \in P$, respectively. By (8) we see that the entire sequences (v_{2n+1}) and (v_{2n}) converge uniformly to x_* and x^* , respectively, and

$$a \le x_*(t) \le x(t) \le x^*(t) \le R.$$

Obviously,

$$x_*(t) = A(x^*)(t)$$
 and $x^*(t) = A(x_*)(t)$.

Now we prove that (6) implies $x_*(t) = x^*(t)$ for all $t \in \mathbf{R}$. To this end, let $\rho_0 = \min_{0 \le t \le \omega} (x_*(t)/x^*(t))$. Clearly, $0 < a/R \le \rho_0 \le 1$. We have to show that $\rho_0 = 1$. Suppose $\rho_0 < 1$. Since $x_*(t) \ge \max\{a, \rho_0 x^*(t)\} = \rho_0 \max\{a/\rho_0, x^*(t)\} \ge a$, by (6), we get

$$x^* = A(x_*) \le A(\rho_0 \max\{a/\rho_0, x^*\}) \le \chi(\rho_0) A(\max\{a/\rho_0, x^*\}) \le \chi(\rho_0) A(\max\{a/\rho_0, x^*\})$$

$$\chi\left(\rho_{0}\right)A\left(x^{*}\right)=\chi\left(\rho_{0}\right)x_{*}.$$

It follows that $\chi(\rho_0) \geq 1/\rho_0$, a contradiction. Thus $\rho_0 = 1$ as claimed. Consequently, $x_*(t) = x(t) = x^*(t)$ and the proof is complete.

Corollary 3. Suppose the assumptions of Theorem 2 hold with

$$A(a)(t) \le R \text{ for } 0 \le t \le \omega$$
 (9)

instead of (7). Then Eq.(1) has a unique solution $x^* \in P$ and $A^n(x_0)(t) \to x^*(t)$ as $n \to \infty$, uniformly in $t \in [0, \omega]$, for any $x_0 \in P$.

Proof. Let us remark that (9) implies (7). Indeed, from $a \leq A(R)(t) \leq A(a)(t)$, we get

$$A^{2}(a)(t) \leq A^{2}(R)(t) \leq A(a)(t) \leq R,$$

whence (7). Thus, Theorem 2 applies.

Further, if x_0 is any function in P, then from $a \le x_0(t) \le R$, we obtain

$$a \le v_1(t) \le A(x_0)(t) \le A(a)(t) \le R = v_0(t)$$
.

This yields

$$a \le v_1(t) \le A^2(x_0)(t) \le v_2(t) \le A(a)(t) \le R$$

and, in general,

$$a \le v_1(t) \le v_3(t) \le \dots \le v_{2[(n-1)/2]+1}(t) \le$$

$$A^{n}(x_{0})(t) \leq v_{2[n/2]}(t) \leq ... \leq v_{2}(t) \leq v_{0}(t) = R,$$

for n=1,2,... Since $v_{n}\left(t\right)\to x^{*}\left(t\right)$, it follows that $A^{n}\left(x_{0}\right)\left(t\right)\to x^{*}\left(t\right)$, as claimed.

Remark. A sufficient condition for (9) is that $f(t, a) \leq R/\tau$ for all $t \in \mathbb{R}$.

For the next result, let us replace (H4) by the following assumption used in [4]:

(H4')
$$f(t,x) \leq R/\tau$$
 for $0 \leq t \leq \omega$ and $a \leq x \leq R$.

The next theorems complement the results in [4].

Theorem 4. Suppose (H1)-(H3) and (H4') are satisfied. In addition suppose a > 0, f(t, x) is nonincreasing in x for $a \le x \le R$, and there is a function $\chi : [a/R, 1) \to \mathbf{R}$ satisfying (6) for all $t \in [0, \omega]$, $\rho \in [a/R, 1)$ and $x \in [a, R]$ with $\rho x \ge a$. Then Eq.(1) has a unique solution $x^* \in P$ and $A^n(x_0)(t) \to x^*(t)$ as $n \to \infty$, uniformly in $t \in [0, \omega]$, for any $x_0 \in P$.

Theorem 5. Suppose (H1)-(H3) and (H4') are satisfied. In addition suppose a > 0, f(t, x) is nondecreasing in x for $a \le x \le R$, and there is a function $\chi: [a/R, 1] \to \mathbf{R}$ such that

$$1 \ge \chi(\rho) > \rho$$
 and $f(t, \rho x) \ge \chi(\rho) f(t, x)$

for all $t \in [0, \omega]$, $\rho \in [a/R, 1)$ and $x \in [a, R]$ with $\rho x \ge a$. Then Eq.(1) has a unique solution x^* in P and $A^n(x_0)(t) \to x^*(t)$ as $n \to \infty$, uniformly in $t \in [0, \omega]$, for any $x_0 \in P$.

Proof. The proofs are similar with that of Theorem 2, so we omit the details.

Remark. For $\chi(\rho) = \rho^{\alpha}$, $\alpha \in (-1,0)$, Theorem 2 and Theorem 4 have been established in [6]. Also, in [6], several examples can be found.

The monotone iterative approximation of periodic solutions of Eq.(1), for the case when f(t,x) is nondecreasing in x, was discussed in [4]. Related topics can be found in [1], [3], [5] and [7]

References

- [1] A. Cañada, A. Zertiti, Method of upper and lower solutions for nonlinear delay integral equations modelling epidemics and population growth, Math. Models Methods Appl. Sci. 4 (1994), 107-120.
- [2] K.L. Cooke, J.L. Kaplan, A periodicity threshold theorem for epidemics and population growth, Math. Biosci. 31 (1976), 87-104.
- [3] Aid Dads, K. Ezzinbi, O. Arino, Positive almost periodic solution for some nonlinear delay integral equation, Nonlinear Studies 3 (1996), 85-101.

- [4] D. Guo, V. Lakshmikantham, Positive solutions of nonlinear integral equations arising in infectious diseases, J. Math. Anal. Appl. 134 (1988), 1-8.
- [5] D. Guo, V. Lakshmikantham, X. Liu, Nonlinear Integral Equations in Abstract Spaces, Kluwer, Dordrecht, 1996.
- [6] R. Precup, Periodic solutions for an integral equation from biomathematics via Leray-Schauder principle, Studia Univ. Babeş-Bolyai Math. 39, No. 1 (1994), 47-58.
- [7] R. Precup, Monotone technique to the initial values problem for a delay integral equation from biomathematics, Studia Univ. Babeş-Bolyai Math. 40, No. 2 (1995), 63-73.