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ABSTRACT: We develop continuation technique to obtain periodic solutions for

superlinear planar differential systems of first order with impulses. Our approach

was inspired by some works by Capietto, Mawhin and Zanolin in analogous problems

without impulses and uses instead of Brouwer degree the much more elementary

notion of essential map in the sense of fixed point theory.
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1. INTRODUCTION

In this paper we study the existence of periodic solutions for planar impulsive differ-

ential systems of first order




x′ = f(t, x) for a.e. t ∈ [0, 1],

x(t+k ) = ψk(x(tk)) for k = 1, ..., m,

x(0) = x(1),

(1.1)

where the points tk, k = 1, ..., m (m ∈ N∗), are fixed and such that 0 < t1 < ... <

tm < 1, and we assume

(h1) f : [0, 1]×R2 → R2 is a L1−Carathéodory function, while

ψk : R2 → R2, 1 ≤ k ≤ m, are continuous functions.

In particular, we are interested in the solvability of periodic boundary value

problems for impulsive second order differential equations of the form




u′′ = g(t, u, u′) for a.e. t ∈ [0, 1],

u(t+k ) = ψk
1(u(tk), u

′(tk)) for 1 ≤ k ≤ m,

u′(t+k ) = ψk
2(u(tk), u

′(tk)) for 1 ≤ k ≤ m,

u(0) = u(1), u′(0) = u′(1).

(1.2)



The literature on the problems of the above form is quite extensive, see the

monographs Bainov & Simeonov [3], Lakshmikantham et al [14] and their references.

For applications of the method of lower and upper solutions and monotone iterative

techniques we send to [1-2], [9-11], [15-17], while for existence results by means of

topological (fixed point, continuation) methods we refer to [7], [12] and [18].

Our approach is based on a Leray-Schauder type continuation principle. Such

a principle, namely the topological transversality theorem of Granas (see [6]), has

already been applied in the study of boundary value problems for impulsive second

order differential equations in [7], in case that one can prove the a priori boundedness

of all possible solutions of a family of problems connecting (1.2) to a simpler problem

corresponding to an essential map. However, there are examples where no a priori

bounds on solutions exist or can be obtained, see the discussion in [5]. To overcome

this difficulty, a variant of the Leray-Schauder continuation principle was introduced

in [4] in the frame of degree theory and was applied to periodic boundary value

problems without impulses. Recently, the second author has proposed in [18] (see

also [19]) a fixed point version of the continuation theorem by Capietto-Mawhin-

Zanolin, which does not use the Brouwer degree. For completeness we state this

version.

Let X be a real Banach space, K ⊂ X a convex set and H : K × [0, 1] → K a

completely continuous map. Denote

S = {(x, λ) ∈ K × [0, 1]; H(x, λ) = x}

and for any fixed x0 ∈ K, let

S(x0) = {(x, 0) ∈ K × [0, 1]; (1− µ)x0 + µH(x, 0) = x for some µ ∈ [0, 1]}.

For any set U ⊂ X × [0, 1] we denote by Uλ = {x ∈ X ; (x, λ) ∈ U}, the section of

U at λ. Also consider a continuous functional Φ : K × [0, 1] → R. Then we have the

following theorem [18] :

Theorem 1.1 Assume there are constants c− and c+, c− < c+, such that, if we

denote U = Φ−1(]c−, c+[), the following conditions are satisfied:

(i1) S ∩ U is bounded;

(i2) Φ(S) ∩ {c−, c+} = ∅;
(i3) there is x0 ∈ K such that S(x0) is bounded and S(x0) ⊂ U.

Then, for each λ ∈ [0, 1], there exists at least one fixed point in Uλ for H(·, λ).



The proof of Theorem 1.1 is based on an extension of Granas’ topological transver-

sality theory to maps H(·, λ) having different domains (see [18, Proposition 2]). Next

we state a simple consequence of Theorem 1.1 which is more suitable in applications.

Before, recall that a map between two metric spaces is said to be proper provided

that the pre-image of any compact set is also compact.

Corollary 1.2 Assume

(i1′) the restriction of Φ to S is proper;

(i2′) Φ is lower bounded on S and there is a sequence (cj) of real numbers such

that cj →∞ and cj /∈ Φ(S) for all j ∈ N;

(i3′) there is x0 ∈ K such that S(x0) is bounded.

Then, for each λ ∈ [0, 1], there exists at least one fixed point in K for H(·, λ).

Corollary 1.2 was applied in [18] to solve (1.2) under the assumption that the

nonlinear function g satisfies a linear growth condition in the last two arguments.

The purpose of this paper is to establish existence results for (1.1) and (1.2) in the

superlinear case. The proofs will be achieved by means of Corollary 1.2 and of some

ideas from [4] and [18] adapted to the present setting.

The functional Φ will be that introduced in [4] as a modification of the classical

map which counts the number of rotations around the origin of the continuous integral

curves of a planar system (see [13]). The main impediment we have to overcome

when we work with impulses is that on however large discontinuous solutions of such

problems, the values of Φ may be no integers. Nevertheless, we can find sufficient

conditions on the functions ψk for that Φ takes values in some disjoint intervals

and, by this, condition (i2′) is fulfilled. Our results give such conditions on ψk and

generalize to impulses the analogous existence theorems from [4]. They are new and

complement the existing literature in impulsive differential equations.

We end this introduction with some notations and definitions.

We denote by 〈·, ·〉 and | · | the euclidean scalar product and the norm in R2. We

shall use the following usual functions on R2 \ {0} :

1) arg : R2 \ {0} → [0, 2π[ where for z = (z1, z2),

arg(z1, z2) =





arctan
(

z2

z1

)
if z1 > 0 and z2 > 0;

π/2 if z1 = 0 and z2 > 0;

arctan
(

z2

z1

)
+ π if z1 < 0;

3π/2 if z1 = 0 and z2 < 0;

arctan
(

z2

z1

)
+ 2π if z1 > 0 and z2 < 0.



2) Arg : R2 \ {0} → 2R, Arg z = {arg z + 2kπ; k ∈ Z }.
For any real function u we denote by u− = −min{0, u} its negative part, by

u+ = max{0, u} its positive part and if u ∈ L1(0, 1), by u =
∫ 1
0 u(t)dt, its mean value

on [0, 1].

For a continuous function Q : R2 → R∗
+ we denote by

Q̂ =
1

2π

∫ 2π

0

dθ

Q(cos θ, sin θ)
,

the integral average of 1/Q on the unit circle, and by

q = min{Q(z); z ∈ R2, | z |= 1},

the minimum of Q on the unit circle. In case that Q depends on some index j , i.e.

Q = Qj, we write

qj = min{Qj(z); z ∈ R2, | z |= 1}.
Finally, we recall that a continuous function Q : R2 → R is said to be positively

homogeneous of second degree and positive definite, if

Q(tz) = t2Q(z) > 0

for all t > 0 and z ∈ R2 \ {0}.

2. AN EXISTENCE PRINCIPLE

The operator form of (1.1)

We are looking for solutions of (1.1) in the following space of functions

CT = {x : [0, 1] → R2; x is everywhere continuous except

at most points (tk)1≤k≤m of discontinuity of first type ,

at which x is left continuous},

endowed with the usual C−norm, ‖ x ‖= sup{| x(t) |; t ∈ [0, 1]}. Notice that CT can

be identified with the Banach space
m∏

k=0
C[tk, tk+1] (t0 = 0, tm+1 = 1). Thus, CT is a

Banach space too. Also denote L1 = L1(0, 1;R2) and

W 1,1
p = {x ∈ CT ; x is absolutely continuous on each

]tk , tk+1[, k = 0, 1, . . . , m and x(0) = x(1)}.

Clearly, if x ∈ W 1,1
p , then x belongs to the Sobolev space W 1,1(tk, tk+1;R

2) for k =

0, 1, . . . , m.



Now we consider the linear map

L : W 1,1
p → L1 × (R2)m

L(x) = (x′, {x(t+k )}1≤k≤m).

This map is invertible and to get its inverse

L−1 : L1 × (R2)m → CT

we have to solve m initial value problems:





x′ = y for a.e. t ∈ [tk, tk+1],

x(tk) = uk

for 1 ≤ k ≤ m− 1, and





x′ = ỹ for a.e. t ∈ [tm, 1 + t1],

x(tm) = um,

where ỹ(t) = y(t) on [tm, 1], ỹ(t) = y(t−1) on [1, 1+t1], y ∈ L1 and u = {uk}1≤k≤m ∈
(R2)m. Thus, the unique solution x ∈ CT to L(x) = (y, u) is the function :

x(t) = uk +
t∫

tk

y(s)ds for tk < t ≤ tk+1, 1 ≤ k ≤ m− 1,

x(t) = um +
t∫

tm

y(s)ds for tm < t ≤ 1,

x(t) = um +
1+t∫
tm

ỹ(s)ds for 0 ≤ t ≤ t1.

(2.1)

We also define the nonlinear map

N : CT → L1 × (R2)m

N(x) = (f(·, x), {ψk(x(tk))}1≤k≤m).

Then, under assumption (h1) , N is well-defined, continuous and bounded. More-

over, by (2.1) and Ascoli-Arzela theorem, the map L−1N : CT → CT is completely

continuous.

Thus, (1.1) is equivalent with the following fixed point problem

x = L−1N(x), x ∈ CT (2.2)



The homotopy H

In order to apply a continuation argument we embed (2.2) into a one-parameter family

of equations

x = L−1Nλ(x), x ∈ CT (λ ∈ [0, 1]), (2.2λ)

with Nλ of the form

Nλ(x) = (F (·, x, λ), {Ψk(x(tk), λ)}1≤k≤m),

where

(H1) Ψk(x, λ), 1 ≤ k ≤ m, are continuous maps from R2 × [0, 1] into R2 and

Ψk(x, 1) = ψk(x);

F (t, x, λ) is a L1-Carathéodory function and F (t, x, 1) = f(t, x).

(Recall that F (t, x, λ) is a L1-Carathéodory function if F (·, x, λ) is measurable for

each (x, λ) ∈ R2 × [0, 1], F (t, ·, ·) is continuous for a.e. t ∈ [0, 1] and, for each r > 0,

there exists ηr ∈ L1(0, 1) such that | F (t, x, λ) |≤ ηr(t) for | x |≤ r, λ ∈ [0, 1] and a.e.

t ∈ [0, 1]).

Under assumption (H1), the homotopy

H : CT × [0, 1] → CT , H(x, λ) = L−1Nλ(x) (2.3)

is completely continuous.

In the fourth section we shall describe two such homotopies connecting H(·, 1) =

L−1N to a much simpler map H(·, 0) = L−1N0.

The functional Φ

We attach to each L1-Carathéodory function f(t, x) from [0, 1] × R2 into R2, the

continuous functional

ϕf : CT → R,

ϕf (x) =
1

2π
|

1∫

0

[x2(t)f1(t, x(t))− x1(t)f2(t, x(t))]ω(x(t))dt |,

where x = (x1, x2), f = (f1, f2) and ω(x) = min{1, 1/ | x |2}.
It is easy to see that on each continuous periodic solution of the system x′ =

f(t, x) large that | x(t) |≥ 1 for all t ∈ [0, 1], ϕf (x) reduces to the winding number

around the origin of the curve {x(t); t ∈ [0, 1]} (see [13]). Hence, on such functions,

the values of ϕf are integers. Our first step is to obtain estimates for ϕf (x) on large



periodic solutions x ∈ CT (with possible discontinuities on points (tk)1≤k≤m) to the

system x′ = f(t, x).

Let n ∈ N∗ be arbitrary fixed and x ∈ CT be any periodic solution of x′ = f(t, x)

satisfying | x(t) |≥ 1 for all t ∈ [0, 1]. For each k ∈ {1, . . . , m} we consider the

numbers γk
i = γk

i (x),

γk
i = 2πi/n + arg x(tk)− arg x(t+k ), −n ≤ i ≤ n,

and we denote ik that index for which

| γk
ik
|= min{| γk

i |; −n ≤ i ≤ n}.

Also, we concisely write γk instead of γk
ik

. Next we define the function θ : [0, 1] → R

such that:

1) θ is absolutely continuous on [0, t1] and on each interval ]tk, tk+1],

1 ≤ k ≤ m;

2) θ(0) = arg x(0), θ(t) ∈ Arg x(t) for t ∈ [0, t1];

3) θ(t+k ) = θ(tk)− γk , θ(t) ∈ Arg x(t)− 2π
n

k∑
j=1

ij for t ∈]tk, tk+1],

1 ≤ k ≤ m.

Since x(0) = x(1), by 3), we have

θ(1)− θ(0) = 2πν − 2π

n

m∑

k=1

ik (2.4)

for some ν ∈ Z.

Lemma 2.1 Assume f : [0, 1]×R2 → R2 is a L1-Carathéodory function and x ∈ CT

is a periodic solution to x′ = f(t, x) such that | x(t) |≥ 1 for all t ∈ [0, 1]. Then

| ν − 1

n

m∑

k=1

ik | − 1

2π
|

m∑

k=1

γk |≤ ϕf (x) ≤| ν − 1

n

m∑

k=1

ik | + 1

2π
|

m∑

k=1

γk | . (2.5)

Proof. Since

θ′(t) = [x′2(t)x1(t)− x′1(t)x2(t)]/ | x(t) |2,
we easily obtain

ϕf (x) =
1

2π
|

1∫

0

θ′(t)dt |= 1

2π
|

m∑

k=0

tk+1∫

tk

θ′(t)dt |

=
1

2π
|

m∑

k=0

(θ(tk+1)− θ(t+k )) |= 1

2π
| θ(1)− θ(0) +

m∑

k=1

(θ(tk)− θ(t+k )) |

= | ν − 1

n

m∑

k=1

ik +
1

2π

m∑

k=1

γk |,



whence (2.5) follows immediately.

Notice that in case x is continuous on [0, 1], we have ik = 0 and γk = 0 for all

1 ≤ k ≤ m; consequently, ϕf (x) =| ν | where θ(1)−θ(0) = 2πν, ν ∈ Z. Thus, Lemma

2.1 extends to discontinuous functions of class CT , Proposition 1 from [4].

Now, if F (t, x, λ) is a L1−Carathéodory function, we denote by Φ the continuous

functional

Φ : CT × [0, 1] → R, Φ(x, λ) = ϕF (·,·,λ)(x). (2.6)

The existence principle

Let n ∈ N∗ be fixed. For each k ∈ {1, . . . , m} define

Γk
i (x, λ) = 2πi/n + arg x− arg Ψk(x, λ)

for all λ ∈ [0, 1] and x ∈ R2\{0} with Ψk(x, λ) 6= 0 (−n ≤ i ≤ n). Denote ik = ik(x, λ)

that index for which

| Γk
ik

(x, λ) |= min{| Γk
i (x, λ) |; −n ≤ i ≤ n}

and write Γk(x, λ) instead of Γk
ik

(x, λ), for simplicity.

Now, let us list for convenience, the following conditions:

(H2) there exist n ∈ N∗ and R ≥ 1 such that

|
m∑

k=1

Γk(xk, λ) |< π/n (2.7)

for each λ ∈ [0, 1] and all (xk)1≤k≤m ∈ (R2)m satisfying | xk |≥ R and

| Ψk(xk, λ) |≥ R for every k ∈ {1, . . . ,m}.
(H3) for every R∗ > 0 there exists R∗ ≥ R∗ such that for each (x, λ) ∈ S with

inf{| x(t) |; t ∈ [0, 1]} ≤ R∗, one has ‖ x ‖≤ R∗.

(H4) for every j ∈ N, there exists Rj > 0 such that if (x, λ) ∈ S and

Φ(x, λ) ∈](j − 1/2)/n, (j + 1/2)/n[ ,

then inf{| x(t) |; t ∈ [0, 1]} ≤ Rj.

(H5) there exists x0 ∈ CT such that S(x0) is bounded.

We can now state our general existence principle.

Theorem 2.2 Suppose (H1)-(H5) hold. Then (1.1) has at least one solution.



Proof. We apply Corollary 1.2 with X = K = CT , the homotopy H given by (2.3)

and the functional Φ defined by (2.6).

If (x, λ) ∈ S and | x(t) |≥ R for all t, then γk
i (x) = Γk

i (x(tk), λ) for 1 ≤ k ≤ m and

−n ≤ i ≤ n. Hence γk(x) = Γk(x(tk), λ) for 1 ≤ k ≤ m. Thus, by (H2) and (2.5), there

exists l ∈ N, namely l =| nν − m∑
k=1

ik |, such that Φ(x, λ) ∈](l − 1/2)/n, (l + 1/2)/n[.

Next, by (H3) and (H4), we deduce that S∩Φ−1(](j−1/2)/n, (j+1/2)/n[) is bounded

for each j ∈ N. This implies, as we can easily see, that the restriction of Φ to S is

proper, and so (i1′) is satisfied.

Clearly (i2′) holds with zero as lower bound of Φ on S and with cj = (j +

1/2)/n, j ≥ j0; where j0 is large that (j0 + 1/2)/n > Φ(x, λ) for all (x, λ) ∈ S with

‖ x ‖< R.

Finally, (H5) is precisely (i3′) and thus we may apply Corollary 1.2.

3. A PRIORI ESTIMATES OF SOLUTIONS

In this preparatory section we interrupt the study of impulsive differential systems; we

deal here with usual (absolutely continuous) solutions for differential systems without

impulses. The results will be used in the next section to verify (H3) and (H5).

The following lemma is a refinement of Proposition 3 from [4] and, roughly

speaking, applies to solutions of both periodic and initial value problems.

Lemma 3.1 Let χ ∈ {−1, +1}, V ∈ C1(R2) with | V (x) |→ ∞ as | x |→ ∞, f :

[0, 1] ×R2 → R2 a Carathéodory function and σ ∈ L1(0, 1;R+). Suppose that there

is R′ > 0 such that V (x) 6= 0 for | x |≥ R′ and

χ〈grad V (x), f(t, x)〉/V (x) ≤ σ(t) (3.1)

for a.e. t ∈ [0, 1] and every x ∈ R2 with | x |≥ R′. Then, for each r1 ≥ 0, there exists

r2 ≥ r1 (depending only on r1, V and σ) such that, for each (absolutely continuous)

solution x(t) on some interval [a, b] ⊂ [0, 1] of x′ = f(t, x), for which there are τ0, τ1 ∈
[a, b] with

χ(τ0 − τ1) > 0, | x(τ1) |≤ r1, | x(τ0) |= max{| x(t) |; t ∈ [a, b]}, (3.2)

one has

max{| x(t) |; t ∈ [a, b]} ≤ r2. (3.3)

Proof. We follow the same reasoning as in the proof of Proposition 3 from [4].

Define W (x) = log | V (x) | for | x |≥ R′. Since | V (x) |→ ∞ | x |→ ∞, one has

W (x) →∞ as | x |→ ∞ . (3.4)



On the other hand,

grad W (x) = V (x)−1 grad V (x) for | x |≥ R′. (3.5)

Further, let c1 = max{r1, R
′} and let x(t) be a solution to x′ = f(t, x) on [a, b]

satisfying (3.2). If | x(τ0) |> c1, then there is τ2 ∈ [a, b] such that

χ(τ0 − τ2) > 0, | x(τ2) |= c1, | x(t) |≥ c1 for t ∈ [τ2, τ0] (or t ∈ [τ0, τ2]).

Now, denote w(t) = W (x(t)). Since from (3.5),

w′(t) = 〈grad V (x(t)), f(t, x(t))〉/V (x(t)),

by (3.1), we obtain

w(τ0) = w(τ2) +

τ0∫

τ2

w′(t)dt ≤ w(τ2)+ |
τ0∫

τ2

σ(t)dt |

≤ max{W (x); | x |= c1}+ ‖ σ ‖L1(0,1) = c2.

From (3.4) it follows that there is r2 ≥ c1 such that W (x) > c2 for | x |> r2. Hence,

| x(τ0) |≤ r2.

We point out that the bound r2 does not depend on the subinterval [a, b] of [0, 1],

and is the same for all Carathéodory functions f satisfying (3.1) with fixed V and σ.

Remarks 3.2 (a) If χ = +1 in (3.1), then (3.3) holds for each solution of x′ = f(t, x)

on [a, b] which satisfies | x(a) |≤ r1.

(b) If χ = −1 in (3.1), then (3.3) holds for each solution of x′ = f(t, x) on [a, b]

which satisfies | x(b) |≤ r1.

(c) If, instead of (3.1), we assume the following inequality

| 〈grad V (x), f(t, x)〉 |≤ σ(t) | V (x) |, (3.6)

then (3.3) holds for each solution of x′ = f(t, x) on [a, b] which satisfies | x(τ1) |≤ r1

for some arbitrary τ1 ∈ [a, b].

Indeed, (3.6) implies that (3.1) holds with both χ = ±1 and so, in (3.2), the

location of τ1 with respect to τ0 is not important.

(d) If, instead of (3.1), we assume the inequality

〈grad V (x), f(t, x)〉 ≤ σ(t) | V (x) |, (3.7)

then (3.3) holds for each solution of x′ = f(t, x) on [a, b] which satisfies x(a) = x(b)

and | x(τ1) |≤ r1 for some arbitrary τ1 ∈ [a, b].



Indeed, by (3.7), inequality (3.1) is satisfied with χ = +1 if V (x) > 0 for all

| x |≥ R′, and with χ = −1 in case that V (x) < 0 for all | x |≥ R′ (since | V (x) |→ ∞
as | x |→ ∞, we may suppose, either V (x) > 0 for all | x |≥ R′, or V (x) < 0 for all

| x |≥ R′).

Note that the result in Remark 3.2 (d) is essentially that in Proposition 3 from

[4]. Therefore, Lemma 3.1 generalizes Proposition 3 [4].



4. MAIN EXISTENCE RESULTS

This section is devoted to the investigation of some applications of Theorem 2.2. We

shall give sufficient conditions on f and ψk, 1 ≤ k ≤ m, in order that Theorem 2.2

applies.

Let us first list some conditions, part of them already introduced in [4]:

(h2) there exist r ≥ 1 and 0 ≤ δ < π such that

m∑

k=1

min{| 2πi + arg xk − arg ψk(xk) |; i = −1, 0, 1} ≤ δ (4.1)

for each (xk)1≤k≤m ∈ (R2)m with | xk |≥ r and | ψk(xk) |≥ r for all

1 ≤ k ≤ m.

(h3) f(t, x) = −Jh(t, x), with J =


 0 −1

1 0


 and

h(t, x) = grad V (x) + p(t, x), where

10 V ∈ C1(R2), | V (x) |→ ∞ as | x |→ ∞, and

p : [0, 1]×R2 → R2 is L1−Carathéodory;

20 there exists r0 > 0 such that grad V (x) 6= 0 for | x |≥ r0;

30 lim sup|x|→∞〈grad V (x),−Jp(t, x)〉/ | V (x) |≤ α(t)

uniformly a.e. in t ∈ [0, 1], for some α ∈ L1(0, 1;R+).

(h4) there exist a sequence (Qj) of positively homogeneous functions of second

degree and positive definite, and a sequence (βj) of Lebesgue integrable

functions such that

40 lim inf |x|→∞[〈grad V (x), x〉 − 〈p(t, x), x〉−]/Qj(x) ≥ βj(t)

uniformly a.e. in t ∈ [0, 1] and for all j ∈ N;

50 (βj − δ/qj)/Q̂j →∞ as j →∞.

Theorem 4.1 Suppose (h1)-(h4) hold and in addition that the functions ψk, 1 ≤ k ≤
m, are proper. Then (1.1) has at least one solution.

Proof. We apply Theorem 2.2 with n = 1,

Ψk(x, λ) = λψk(x) + (1− λ)x , 1 ≤ k ≤ m, (4.2)

F (t, x, λ) = −J(grad V (x) + λp(t, x)) + (1− λ)ρ(x) , (4.3)

where ρ(x) = (E(∂V (x)/∂x1), E(∂V (x)/∂x2)) and E : R → R is continuous, bounded

and satisfies tE(t) < 0 for all t 6= 0.



By the definition of ρ, there is E0 > 0 such that

| ρ(x) |≤ E0 for all x ∈ R2, (4.4)

and also, recalling 20,

〈grad V (x), ρ(x)〉 < 0 for | x |≥ r0. (4.5)

Check of (H1). Use (h1), (4.2) and (4.3).

Check of (H2). First, remark that since ψk are proper, there exists R ≥ r such

that

| x |≥ R implies | ψk(x) |≥ r for all 1 ≤ k ≤ m.

Next, by (4.2) and (h2), it follows that

| Γk(x, λ) |≤ min{| 2πi + arg x− arg ψk(x) |; i = −1, 0, 1}

for each x ∈ R2 with | x |≥ R and all λ ∈ [0, 1] (1 ≤ k ≤ m). Therefore,

|
m∑

k=1

Γk(xk, λ) |≤
m∑

k=1

| Γk(xk, λ) |≤ δ < π

for each λ ∈ [0, 1] and all (xk)1≤k≤m ∈ (R2)m with | xk |≥ R, 1 ≤ k ≤ m.

Check of (H3). From (4.3), (4.5) and 30, it follows that there exists R′ ≥ r0, large

enough that V (x) preserves the same sign for | x |≥ R′, such that

χ〈grad V (x), F (t, x, λ)〉/V (x) ≤ α(t) + 1 = σ(t)

for a.e. t ∈ [0, 1], all x ∈ R2 with | x |≥ R′ and all λ ∈ [0, 1], where χ = sign V (x).

Consequently, we may apply Lemma 3.1 on any subinterval of [0, 1].

Let R∗ > 0 and (x, λ) ∈ S such that

inf{| x(t) |; t ∈ [0, 1]} ≤ R∗.

Suppose that this infimum is achieved on ]tk, tk+1] for some k, 0 ≤ k ≤ m. Then,

there is ξ ∈ [tk, tk+1] such that | x(ξ+) |≤ R∗ . Further, we distinguish the cases

χ = +1 and χ = −1. First, assume that χ = +1. Then, by Lemma 3.1, Remark 3.2

(a), there is a number R∗
0 ≥ R∗ depending only on R∗, such that

sup{| x(t) |; t ∈]ξ, tk+1]} ≤ R∗
0.

In particular, one has | x(tk+1) |≤ R∗
0 and, by the continuity of ψj, 1 ≤ j ≤ m, we

can find a number R1
∗ ≥ 0 depending only on R∗

0, such that | Ψk+1(x(tk+1), λ) |≤ R1
∗.

Hence,

inf{| x(t) |; t ∈]tk+1, tk+2]} ≤ R1
∗.



Next we apply the same reasoning for the interval ]tk+1, tk+2] and get R∗
1 ≥ R1

∗, R∗
1 ≥

R∗
0 and R2

∗ ≥ 0 such that

sup{| x(t) |; t ∈]tk+1, tk+2]} ≤ R∗
1,

| Ψk+2(x(tk+2), λ) |≤ R2
∗.

Then we apply successively the above arguments to the intervals ]tk+2, tk+3], . . . , ]tm, 1],

[0, t1], ]t1, t2], . . . , ]tk−1, tk] and ]tk, ξ], using that x(1) = x(0), and we obtain two sys-

tems of numbers

R∗ ≤ R∗
0 ≤ R∗

1 ≤ . . . ≤ R∗
m+1,

R1
∗, R2

∗, . . . , Rm+1
∗ .

It is clear that R∗ = R∗
m+1 fulfills (H3).

In case that χ = −1, we shall apply Lemma 3.1, Remark 3.2 (b), to the intervals

]tk, ξ], ]tk−1, tk], . . . , ]t1, t2], [0, t1], ]tm, 1], ]tm−1, tm], . . . , ]tk+1, tk+2] and ]ξ, tk+1], in this

order. Here we essentially use the hypothesis that ψj are proper, as we explain in

what follows. First, remark that, if 0 ≤ δ < π, then for each M0 > 0, there is M > 0

such that

| µz1 + (1− µ)z2 |> M0 for all µ ∈ [0, 1],

whenever z1, z2 ∈ R2, | z1 |> M, | z2 |> M and

arccos
| z1 |2 + | z2 |2 − | z1 − z2 |2

2 | z1 || z2 | ≤ δ.

Returning now to our task, by Lemma 3.1, Remark 3.2 (b), we get R∗
0 ≥ R∗ such that

sup{| x(t) |; t ∈]tk, ξ]} ≤ R∗
0.

In particular, | x(t+k ) |≤ R∗
0 , that is

| λψk(x(tk)) + (1− λ)x(tk) |≤ R∗
0.

This implies, by the above remark (with M0 = R∗
0) and (4.1), that

| ψk(x(tk)) |≤ M or | x(tk) |≤ M,

for some M, M ≥ r. Since ψk is proper, these yield, in both cases

| x(tk) |≤ R1
∗,

for some R1
∗ ≥ M. Further we apply the same reasoning on each of the next intervals,

successively, and we obtain, as in previous case, that (H3) is fulfilled with R∗ = R∗
m+1.



Check of (H4). By 50, passing possibly to a subsequence, we may suppose that

for each j ∈ N,

(βj − δ/qj)/(2πQ̂j) ≥ j + 2.

Then, we can choose εj > 0 such that

(βj − εj − δ/qj)/(2πQ̂j) ≥ j + 1. (4.6)

From 40 and the Carathéodory conditions on p(t, x) it follows that, for each j ∈ N,

there is ηj ∈ L1(0, 1;R+) such that

〈grad V (x), x〉 − 〈p(t, x), x〉− ≥ (βj(t)− εj)Qj(x)− ηj(t) | x |,

for all x ∈ R2 and a.e. t ∈ [0, 1]. Then, for x 6= 0, λ ∈ [0, 1] and a.e. t ∈ [0, 1], we

have
[〈grad V (x), x〉+ λ〈p(t, x), x〉 − (1− λ)〈ρ(x), Jx〉]/ | x |≥

≥ (βj(t)− εj) | x | Qj(x/ | x |)− E0 − ηj(t) .

(4.7)

Now, for each j ∈ N consider Rj ≥ r. Let (x, λ) ∈ S such that inf{| x(t) |; t ∈
[0, 1]} > Rj. From (4.7), using (4.3) and integrating on [0, 1], we deduce

1∫

0

x2(t)x
′
1(t)− x1(t)x

′
2(t)

| x(t) |2 Qj(x(t)/ | x(t) |)dt ≥ βj − εj − E0 + ηj

Rjqj

. (4.8)

Recalling now the definition of the function θ(t) attached to x and using the

2π−periodicity in θ of Qj(cos θ, sin θ), we can compute

1∫

0

x2(t)x
′
1(t)− x1(t)x

′
2(t)

| x(t) |2 Qj(x(t)/ | x(t) |)dt =

1∫

0

θ′(t)dt/Qj(cos θ(t), sin θ(t))

=
m∑

k=0

tk+1∫

tk

θ′(t)dt/Qj(cos θ(t), sin θ(t))

=
m∑

k=0

θ(tk+1)∫

θ(t+
k

)

dθ/Qj(cos θ, sin θ)

= (θ(1)− θ(0))Q̂j −
m∑

k=1

θ(t+k )∫

θ(tk)

dθ/Qj(cos θ, sin θ)

= 2πQ̂j
1

2π
[θ(1)− θ(0) +

m∑

k=1

(θ(tk)− θ(t+k ))] +

+
m∑

k=1

θ(t+
k

)∫

θ(tk)

[Q̂j − 1/Qj(cos θ, sin θ)]dθ



= 2πQ̂jχΦ(x, λ) +
m∑

k=1

θ(t+
k

)∫

θ(tk)

[Q̂j − 1/Qj(cos θ, sin θ)]dθ ,

where χ ∈ {−1, +1} (recalling also the computation of Φ(x, λ) in the proof of Lemma

2.1). Replacing the above relation in (4.8) we get

2πQ̂jχΦ(x, λ) ≥ βj − εj − (E0 + ηj)/(Rjqj)−

−
m∑

k=1

|
θ(t+

k
)∫

θ(tk)

[Q̂j − 1/Qj(cos θ, sin θ)]dθ | .

Since 0 < Q̂j ≤ 1/qj and 0 < 1/Qj(cos θ, sin θ) ≤ 1/qj, we have

|Q̂j − 1/Qj(cos θ, sin θ) |< 1/qj. Then,

2πQ̂jχΦ(x, λ) ≥ βj − εj − (E0 + ηj)/(Rjqj)−
− 1

qj

m∑

k=1

| θ(t+k )− θ(tk) | ,

and since

| θ(t+k )− θ(tk) |=| Γk(x, λ) | for all 1 ≤ k ≤ m,

we deduce

χΦ(x, λ) ≥ (βj − εj − δ/qj)/(2πQ̂j)−
− (E0 + ηj)/(2πQ̂jRjqj) .

Now, using (4.6) and choosing Rj ≥ max{r, (E0 + ηj)/(πQ̂jqj)}, we deduce that

χΦ(x, λ) ≥ j + 1− 1/2 = j + 1/2.

Consequently, χ = +1 and therefore,

Φ(x, λ) ≥ j + 1/2.

Thus, we have obtained that for each (x, λ) ∈ S with inf{| x(t) |; t ∈ [0, 1]} > Rj,

we have Φ(x, λ) ≥ j + 1/2. Hence, if (x, λ) ∈ S and Φ(x, λ) ∈]j − 1/2, j + 1/2[, then

inf{| x(t) |; t ∈ [0, 1]} ≤ Rj and so, (H4) is fulfilled.

Check of (H5). Let x0 = 0. Then, S(0) reduces to the set of all periodic solutions

of the autonomous systems

x′ = µ(−J grad V (x) + ρ(x)), µ ∈ [0, 1]. (4.9µ)

From (4.5) we deduce that V (x) is a guiding function for (4.9µ) (see [8, p.82]). Con-

sequently, the periodic solutions of (4.9µ) are bounded uniformly with respect to µ.

Thus, the assumptions (H1)-(H5) are fulfilled and we may apply Theorem 2.2.

So, the proof of Theorem 4.1 is complete.

Remark 4.2 We may replace hypothesis 40 by



4′ lim sup|x|→∞[〈grad V (x), x〉+ 〈p(t, x), x〉+]/Qj(x) ≤ −βj(t)

uniformly a.e. in t ∈ [0, 1] and for all j ∈ N;

and the conclusion of Theorem 4.1 remains true (see the similar Remark 5 from [4]).

Note that Theorem 4.1 generalizes for impulses Theorem 4 in [4]. Consequently,

Theorem 4.1 assures the existence of solutions for the equations and systems from

Examples 4, 5 and 6 in [4], even in case that impulsive effects subject to (h2) and to

the properness condition are considered.

Our next goal is to replace (h2) by a more general condition depending on an

arbitrary n ∈ N∗. We shall do this requiring a little stronger condition on f . Instead,

we have not to suppose that ψk are proper.

Let n be an arbitrary fixed integer, n ≥ 1. We shall refer to (h2′) as to (h2)

where δ < π/n and instead of (4.1) we require

m∑

k=1

min{| 2πi/n + arg xk − arg ψk(xk) |; −n ≤ i ≤ n} ≤ δ. (4.10)

Also, we shall refer to (h3′) as to (h3), where 30 is replaced by

3′ lim sup|x|→∞〈grad V (x),−Jp(t, x)〉/V (x) ≤ α(t),

and to (h4′) as to (h4) where, in addition, the functions Qj(cos θ, sin θ) are assumed

to be 2π/n−periodic.

Theorem 4.3 Suppose (h1), (h2′), (h3′) and (h4′) hold. Then (1.1) has at least one

solution.

Proof. This time we apply Theorem 2.2 with

Ψk(x, λ) = λψk(x) , 1 ≤ k ≤ m, (4.11)

F (t, x, λ) = −J(grad V (x) + λp(t, x)). (4.12)

Check of (H1). It is immediate by (h1), 10, (4.11) and (4.12).

Check of (H2). Since, by (4.11), arg Ψk(x, λ) = arg ψk(x) for all λ ∈]0, 1] and

x ∈ R2 with ψk(x) 6= 0, we have Γk
i (x, λ) = 2πi/n+arg x−arg ψk(x) for −n ≤ i ≤ n.

Thus, (h2′) clearly implies (H2).

Check of (H3). From (4.12) and 3′, it follows that there exists R′ ≥ r0, large

enough that V (x) 6= 0 for | x |≥ R′, such that

〈grad V (x), F (t, x, λ)〉/V (x) ≤ α(t) + 1



for a.e. t ∈ [0, 1]; all x ∈ R2 with | x |≥ R′ and all λ ∈ [0, 1]. Further we argue as in

the proof of Theorem 4.1, by using Lemma 3.1, Remark 3.2 (a).

Check of (H4). We use the same reasoning as in the proof of Theorem 4.1. Here,

by (2.4) and the 2π/n−periodicity of Qj(cos θ, sin θ), we equally have that

θ(1)∫

θ(0)

dθ/Qj(cos θ, sin θ) = (θ(1)− θ(0))Q̂j.

Check of (H5). Let x0 = 0. Then S(0) is the set of all solutions x ∈ CT to




x′ = µ[−J grad V (x)] a.e. t ∈ [0, 1],

x(0) = x(1),

x(t+k ) = 0, 1 ≤ k ≤ m (µ ∈ [0, 1]).

To prove its boundedness it is sufficient to apply Lemma 3.1, Remark 3.2 (a) (with

χ = +1 and σ(t) ≡ 0) on each interval [tk, tk+1], 1 ≤ k ≤ m, and on [0, t1].

Thus we can apply Theorem 2.2 and the proof is complete.

5. APPLICATIONS

In this section we shall apply our results to some well-known equations with super-

linear growth. The Examples we deal here with, have already been presented in [4]

in the case without impulses.

Example 1. Consider the second order scalar equation with impulses




u′′ + g(u) = q(t, u, u′) for a.e. t ∈ [0, 1],

u(t+k ) = ψk
1(u(tk), u

′(tk)) for 1 ≤ k ≤ m,

u′(t+k ) = ψk
2(u(tk), u

′(tk)) for 1 ≤ k ≤ m,

u(0) = u(1), u′(0) = u′(1).

(5.1)

where q is a Carathéodory function, g : R → R and ψk
1 , ψk

2 : R2 → R, 1 ≤ k ≤ m,

are continuous. We suppose that

lim
|u|→+∞

g(u)/u = +∞

and

| q(t, u, v) |≤ A(| u | + | v |) + a(t)

for all u, v ∈ R and a.e. t ∈ [0, 1], with A ≥ 0 and a ∈ L1(0, 1; R+), and we assume

that there exist n ∈ {1, 2}, r ≥ 1 and 0 ≤ δ < 1/2 such that

m∑

k=1

min{| 2πi/n + arg xk − arg(ψk
1(xk), ψ

k
2(xk)) |; −n ≤ i ≤ n} ≤ δ (5.2)



for each (xk)1≤k≤m ∈ (R2)m with | xk |≥ r and | (ψk
1(xk), ψ

k
2(xk)) |≥ r for all

1 ≤ k ≤ m. Under these assumptions, one can prove that conditions (h1), (h2′), (h3′)

and (h4′) are satisfied with (see also [4, p.382])

x = (x1, x2) = (u, u′), h(t, x) = (g(x1)− q(t, x1, x2), x2),

V (x) =
∫ x1

0
g(s)ds +

1

2
x2

2,

p(t, x) = (−q(t, x1, x2), 0)

and

Qj(x) = 2j2x2
1 +

1

2
x2

2 , βj = 1− (a(t)/2j2).

So, we can apply Theorem 4.3 and (5.1) has at least one periodic solution in CT .

We point out that, even in case n = 1, we need δ < 1/2, in order to satisfy 50.

Example 2. Consider the second order scalar (Liénard) equation with impulses





u′′ + f(u) u′ + {u}l = q(t, u, u′) for a.e. t ∈ [0, 1],

u(t+k ) = ψk
1(u(tk), u

′(tk)) for 1 ≤ k ≤ m,

u′(t+k ) = ψk
2(u(tk), u

′(tk)) for 1 ≤ k ≤ m,

u(0) = u(1), u′(0) = u′(1).

(5.3)

where q is a Carathéodory function, f : R → R, ψk
1 , ψ

k
2 : R2 → R, 1 ≤ k ≤ m, are

continuous and {u}l = u | u |l−1, with l > 1. If q is bounded and, for

F (u) =
∫ u

0
f(s)ds,

we assume

lim
|u|→

inf
+∞F (u)/u > −∞,

γ = lim
|u|→

sup
+∞

F 2(u)/ | u |l+1< 4

and if we suppose that there exist n ∈ {1, 2}, r ≥ 1 and 0 ≤ δ < 1− γ/4 such that

m∑

k=1

min{| 2πi/n + arg xk − arg(ψk
1(xk), ψ

k
2(xk)) |; −n ≤ i ≤ n} ≤ δ (5.4)

for each (xk)1≤k≤m ∈ (R2)m with | xk |≥ r and | (ψk
1(xk), ψ

k
2(xk)) |≥ r for all

1 ≤ k ≤ m, then (5.3) has at least one periodic solution in CT . Indeed, conditions

(h1), (h2′), (h3′) and (h4′) are fulfilled with (see also [4, pp.383-385])

x = (x1, x2) = (u, u′ + F (u)), h(t, x) = ({x1}l − q(t, x1, x2), x2 − F (x1)),

V (x) =
1

l + 1
| x1 |l+1 +

1

2
x2

2,



p(t, x) = (−q(t, x1, x2),−F (x1))

and

Qj(x) = (j2/η)x2
1 + ηx2

2 , βj(t) = 1,

where η is a fixed real number such that δ < η < 1−γ/4. Consequently, we can apply

Theorem 4.3.

Example 3. Consider the (planar) perturbed Hamiltonian system with impulses




x′ = J grad W (x) + q(t, x) for a.e. t ∈ [0, 1],

x(t+k ) = ψk(x(tk)) for k = 1, 2, ..., m,

x(0) = x(1),

(5.5)

with W : R2 → R of class C1, q : [0, 1] × R2 → R2 a Carathéodory function and

ψk : R2 → R2, 1 ≤ k ≤ m, continuous functions. We suppose that

| q(t, x) |≤ q̃(t), for a.e. t ∈ [0, 1] and all x ∈ R2,

with q̃ ∈ L1(0, 1;R+) and there are A,B ∈ R+ such that

| grad W (x) |≤ A | W (x) | +B, for all x ∈ R2.

Assume also the superlinear growth condition

lim
|x|→+∞

| 〈grad W (x), x〉 | / | x |2= +∞,

and that there exist n ∈ N∗, 0 ≤ δ < π/n, and r ≥ 1 such that

m∑

k=1

min{| 2πi/n + arg xk − arg(ψk(xk)) |; −n ≤ i ≤ n} ≤ δ (5.6)

for each (xk)1≤k≤m ∈ (R2)m with | xk |≥ r and | ψk(xk) |≥ r for all 1 ≤ k ≤ m. Then

(5.5) has at least one solution in CT .

Indeed, we can apply Theorem 4.3 with (see also [4, pp.385-387])

V (x) = −W (x),

p(t, x) = Jq(t, x)

and

Qj(x) = j | x |2, βj(t) = 1− (q̃(t)/j).

Finally, we point out that one can reobtain the results from [4], if we consider

trivial impulses, i.e. ψk = (ψk
1 , ψ

k
2), ψk

1(x1, x2) = x1, ψk
2(x1, x2) = x2. Indeed, in this

case, conditions (4.1), (4.10), (5.2), (5.4) and (5.6) hold with δ = 0.
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