INEQUALITIES AND COMPACTNESS

RADU Precup!

ABSTRACT. We use the inequalities of Holder, Gronwall and of Wirtinger type to
establish sufficient conditions for that the null function is the unique nonnegative
solution of some integral inequalities. Such conditions are useful to guarantee
compactness properties of Ménch and Palais-Smale type for integral operators on
spaces of vector-valued functions. An application to superlinear boundary value
problems in Hilbert spaces is also presented.

1. Introduction
1.1. Compactness Conditions in Nonlinear Analysis

One of the main themes of nonlinear analysis consists in establishing existence
principles for operator equations of the form

(1.1) z=N(z), zeDCX.

There are two main approaches to the theory of existence, localization and mul-
tiplicity of solutions to (1.1): Fixed point methods and variational techniques.
Both of them use compactness conditions for V.

Thus, the fixed point methods usually require that N be contractive, compact,
of Krasnoselskii type (i.e., sum of a contraction and a compact mapping), of
Darbo type, or condensing in the sense of Sadovskii. A common generalization
of all these conditions is due to Mdnch [5] and requires the following implication
holds:

C = oy ({zo} U N(C))

(1.2) ¢ c D, C countable

} = C compact] .
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Here X is a real Banach space, xp is a given point of D and conv denotes the
convex hull. In the recent paper by O’Regan-Precup [7], it is used the following
slight generalization of (1.2):

M = conv ({zo} U N(M))

(1.3) M =C, Cc M c D, C countable

} => M compact| .

Note that (1.3) is expressed in terms of a pair (M, C) instead of a single set C
and it has been particularly useful to extend the Monch’s fixed point theorems
(see [5], [3], p-204-205 and [9]) to set-valued mappings ([7]).

Let us say that (1.1) has a variational expression if X is a real Hilbert space
with inner product (-,-) and N = I — E’, where I is the identity mapping of
X and E is a C! functional on X, ie., F € C}(X;R). Clearly, if (1.1) has a
variational expression, then its solutions are precisely the critical points of E,
that is the zeros of E’ located in D. In order to guarantee the existence (and
multiplicity) of critical points, the researchers in critical point theory use the
classical Palais-Smale compactness condition and variants. Thus one says [4]
that F satisfies the Palais-Smale condition on D ((P-S) p-condition) if

{zn} € D, E(z,) -bounded, E'(z,) — 0
= {z,} has a convergent subsequence |

An interesting variant for the case when D is the ball Bg = {x € X : |2| < R} is
due to Schechter [11]: We say that E satisfies Schechter’s Palais-Smale condition
on Bgr (( S-P-S)g-condition) if

E'(zn) ~ ‘-ﬁ——fr“ Zaptel g, — 0

l:{mn} C Br, E(zy)- bounded, (E,(mn)’-'”n) —v< 01:|
= {z,} has a convergent subsequence

1.2. Abstract Existence Principles

It is well known that the compactness conditions together with suitable geo-
metrical conditions yield existence results for (1.1). For example, we have the
following fixed point theorems involving the compactness conditions of type (1.3).
They are the single-valued versions of the abstract existence principles for inclu-
sions established in [7].

Theorem 1.1. ([7]) Let D be a closed convex subset of a real Banach space
X and N : D — D be continuous. Assume that, for some xo € D, the condition
(1.3) holds. Then there exists at least one x € D with z = N(z).

The next result is the continuation principle accompanying Theorem 1.1:
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Theorem 1.2. ([7]) Let D be a closed convex subset of a real Banach space
X, U be a relatively open subset of D and N : U — D be continuous. Assume
that, for some zo € U, the following conditions are satisfied:

(14) __Mc conv({zo} U N(M))
) M =C,C c M cU,C countable

x#(1=Nzo+AN(@), zeU\UAE (0,1).

} =M compact] ,

Then there exists at least one x € U with z = N().

In these two results, the geometrical conditions are : The Schauder’s invariance
condition N(D) C D and the Leray-Schauder boundary condition A(N () —o) #
z—120 (x € 8U =TU\U, A€ (0,1)), respectively. The next two theorems can be
seen as the analogous of Theorems 1.1-1.2 in critical point theory.

Let X be a real Hilbert space with inner product (-,-), D € X be a closed
convex set, E € C*(X;R), U be a relatively open subset of D, zp € U and
2, € D"\ U (here D™ is the relatively algebraic interior of D). Let

& = {p € C([0,1]; D) : p(0) = To, ¥(1) =21},
c= ,;relfp txen[g',)fl E(p(t)), m = zlng E(z),

K.,={z€D: E@x)=u E'(z) =0} (0 €R).

Theorem 1.3. ([4]) Assume that E satisfies the (P-S)p-condition and (I —
E"(D) c D. |

(a) If max {E(z0), E(z1)} < infecav E(z), then K.\ {20, 21} # 0.

(b) Ifm > —oo, then K, # 0. If, in addition, E(z:) € E(x0), then Km\{zo} #
0. .

Theorem 1.4. ([11]) Let D = Br Assume that E satisfies the (S-P-S)r-
condition. Also suppose that —(E'(z),z) < C and z # Mz — E'(z)) for all
|z| € R and X € (0,1). Then the statements (a) and (b) in Theorem 1.3 hold.

1.3. Compactness Properties of Integral Operators

In applications, when N is an integral operator, the compactness conditions
are most frequently fulfilled due to some particular results of compact embedding
(Ascoli-Arzela, Rellich-Kondrachov). Such results hold for several spaces of func-
tions with values in R™, but fail for the corresponding spaces of functions with
values in an infinite dimensional space. In such cases, the compactness conditions
have to be guaranteed by extra properties of the kernel of the operator. Those
properties are expressed in terms of a measure of noncompactness and require
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that a certain integral inequality has no other nonnegative solution than the null
function. Here we present some results concerning the compactness conditions
of Ménch type for the Urysohn integral operator

T
(1.5) N(u)(#) = / f(ts,u(s)ds (teJ =[0,T))
and the Volterra operator y,
(16) N(w)(t) = / f(ts,u(s))ds (teJ)

acting on functions u from J into a real separable Banach space (Y, }-]). We also
present our recent result on the Palais-Smale condition for the energy functional
associated to the Hammerstein integral operator

T
(L.7) N(u)(t) = / k(t,9)f(s,u(s))ds (te J)

acting on functions u from J into a real Hilbert space (H, (,-)). Let Br = {y €
Y : |yl <R} and f:J? x Bg — Y. Denote U = {u € C(J;Y) : |u(t)| < R for
every t € J}. Let B be the ball measure of noncompactness defined by

B(M) = inf{r > 0: M can be covered by finitely many balls of radius r}
for each bounded set M.
Theorem 1.5. ([8]) Suppose that, for eacht € J, f(t,-,-) is L'-Carathéodory,
sup /T sup |f(t,s,z)|ds < o0
teJ Jo |z|<R
and

T
/ sup |f(t,s,z) — f(t',s,x)|ds =0 ast' —t.
0 |z|<R .

In addition, suppose that there exists w : J% x [0, R] — R such that, for each
t e J, w(t,-,-) is L-Carathéodory,

B(f(t,8,M)) < w(t,s,0(M))
for a.e. s € J, M C Bg, and the unique 9 € C(J; [0, R]) satisfying

T
(1.8) W(t) < f wt,s,9(s))ds, teJ,
i :

is ¢ = 0. Then the operator N : U — C(J;Y) given by (1.5) is continuous and
satisfies (1.4).
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Theorem 1.68. ([8]) Suppose that, for eacht € J, f(t,-,") is L!-Carathéodory
uniformly in t in the sense that there exists a bounded function n : J* — Ry
with n(t,t'") = 0 ast —t' — 0% and

i
/ sup |f(t,s,z)|ds < n(t,t)
t' |z|<R

for 0 < t' <t <T. Also, suppose that, for each t € J,

to
/ sup |f(t,s,z) — f(t',8,2)|ds — 0 ast —t,
0 |z|<R

where to = min{t, t'} and that there exists w : J* x [0, R] — R such that, for
eacht € [0,T), w(t, ., .) is L'-Carathéodory,

B(f(t, s, M)) < w(t,s,B(M))

for a.e. 8 € J and every M C Bg, and the unique solution ¥ € C(J; [0, R]) of
the inequality

(1.9) P(t) < /t w(t,s,¥(8))ds, t€J,
0

is 1 = 0. Then the operator N : U — C(J;Y) given by (1.6) is continuous and
satisfies (1.4).

Now we shall refer to the operator (1.7). First, we introduce the following
definition. A function x:J x D — Y, where D C X and X,Y are two Banach
spaces, is said to be (g, p)-Carathéodory (1<g<00,1<p<oo)if x(-,x) is
strongly measurable for each z € D, x(¢,-) is continuous for a.e. t € J and

Ix(t, 2)ly < xo(t) + alzlk

for a.e. t € J and all z € D, where xo € L9(J;R4) and o € Ry.
Suppose that f:J x H — H and consider the superposition operator associ-

ated to f’ F(y) = f(ay())

Theorem 1.7. ([10]) Assume thag
() k€ LP(J x J;Ry) (2 <p < o0) and the map K : LY(J;H) — LP(J;H)
given by

T
K(2)(t) = /0 k(t, 5)2(s)ds
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(1/p+1/q = 1) is well defined and splits into K = AA* with A : L%(J;H) —
LP(J; H) and A* the adjoint of A, : =
(ii) f is (g,p — 1)-Carathéodory with
|f(t,2)| < fo(t) +alz|P~™, ze€H, aeted,

where fo € LU(J;Ry), a € Ry, also there exists g : J x H — R (1,p)-
Carathéodory such that g(t,0) = 0 and

g(t,.’l) + y) - g(t,x) = (f(tvx)’y) + w(t,x,y)
for a.e. t € J and all z, y € H, where
w(t, z,y)/|lyl -0 asy—0

uniformly for x € H and a.e. t € J,
(iii) there exists R > 0 and € > 0 such that, for each n € LP(J; Ry ) satisfying

Inlp < €+ Clk|Le(aa),
where
(1.10) C =|foly +a|AP/9RP/1,
there exists a (q,p — 1)-Carathéodory function wy : J x Ry — Ry such that

(1'11) ﬂ(f(t)M)) S wn(taﬂ(M))

for every set M C H with |M| < n(t) a.e. t € J, and 9 = 0 is the unique solution
in LP(J;Ry) of the inequality '

(1.12) W(t) < /0 " k, $)wn (5, 0(s))ds, a6t J

(here |M| = sup{|z| : z € M}).
Then the functional

(1.13) E:L*(J;H) >R, E(z)=|z|3/2 — GA(z),

where . -
G:IP(J;H) =R, Cly)= /0 9(5,4(3))ds,
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belongs to C*(L*(J; H);R), E' = I-A*F A, and satisfies the (S-P-S)g-condition.

Notice that, in [10], we asked that g be (oo, p)-Carathéodory. However, the
proof shows that the result remains valid if g is more generally (1,p)-Carathéo-
dory.

If we examine the above three theorems, we see that a common assumption
is that a certain integral inequality (1.8), (1.9), respectively, (1.12), has no other
nonnegative solution than the null function. So it is important to find sufficient
conditions for that this happens. We shall obtain such conditions in the next
section.

2. Integral Inequalities without Non-zero Solutions

" In this section we are concerned with the following implications:

Y(t) < fy wit,s,¥(s))ds, t€J =1[0,T] _ ]

(2.1) [ 0 bew =Y =0

and, in particular, for w(t,s,r) =0 when t <, with the implication
(1) < fo wit, 8, ¥(s))ds, tE€J = }

(2.2) [ 0 T = =0|.

Here U is a class of nonnegative real functions on J.

First we collect sufficient conditions for (2.1):

Let us consider R € (0,00}, p € [1,00], g € [1,00] with 1/p+ 1/q =1, and
w : J2 x (0, R] — (0,00). We adopt the convention that if R = oo, then by (0, R},
[0, R] we mean the intervals (0,00) and [0, 00), respectively. Also, throughout
this section, by |.|, we shall mean the LP- norm.

Theorem 2.1. (1) Assume that one of the following conditions is satisfied:
() w(t,-,r) € L}(J), w(t, s, ) is continuous, nondecreasing for any r € (0, R],
t,s € J, and -

(2.3) 1 <r/lwt, )l
forallT € (O,R] and t € J.
(ii) w(t,s,7) = k(t,8)wi(s,7), k : J? — Ry, k(t,) € LI(J) for every t € J,

wy ¢ J x (0, R] = (0,00), w1(-,7) € LP(J), w1 (8, ) is continuous, nondecreasing
for every r € (0, R}, s € J, and

~ |k(t’ )lq < T/lwi('sr)lﬂ

forallT € (0,R} and t € J.
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(iii) w(t, s,r) = k(t,8)wo(r), k : J> — Ry, k(t,-) € L'(J) for every t € J,
wo : (0, B] — (0, 00) is continuous, nondecreasing, and

(24) k(¢ )2 < 7/wo(r)

forallr € (0,R], t € J.

Then (2.1) holds for ¥ = C(J; [0, R)).

(2) Assume that one of the following conditions ig satisfied:

(iv) w(t, s,7) = k(t,8)r, k : J2 = Ry, k(t,-) € LI(J) for every t € J, the map
t — |k(t,-)|q belongs to L?(J) and

(2.5) |k, )], < 1.

(v) w(t,s,r) = k(t,8)d(s)r, where k is the Green function of the problem
—u’ = f, w(0) =u(T) =0, 6 € L"(J;R;), and

foT |u|m"2u’2dt
(f(;r |u|m‘r/(‘r—1) dt) (r-1)/r

(2.6) Fn'l:I”" <inf{ . we CL(J), u;éo},

where p € (1,00), T € [g,00) and m € [2, o).
Then (2.1) holds for ¥ = LP(J;Ry).

Proof. Assume (i). Suppose that there is ¥ € C(J;[0, R}), ¢ # 0, with

T
27) () < /0 wit, s, 9(s)) ds, teJ.

Let ro = ¥(to) = maxes Y(t). Since ¢ # 0, we have ro € (0, R]. Then, since
w(to, 8, ) is nondecreasing, we have

T T
To S/O w(to, 8,9(s))ds S/o w(to, 8,70)ds = |w(to,",7o)l1-

Hence ro/|w(to, -, 70)|1 < 1, which contradicts (2.3).

It is easily seen that (iii) implies (ii) for ¢ = 1, and (ii) implies (i) via Holder’s
inequality. -

Assume (iv) and suppose that (2.7) holds for some non-zero ¥ € LP(J;Ry).
Then, using Holder’s inequality, we see that

P(t) < |k(E )lgldlp, teEJ



INEQUALITIES AND COMPACTNESS 265

It follows that
|'¢|p = Wlp”k(t» ')lqlp-
Since ¥ # 0, |¢|p, # 0. Consequently, we have

1< Hk(t’ ')Iq'm

which contradicts (2.5).

Finally, assume that (v). Suppose (2.7) holds for some non-zero 9 € LP(J;R4).
Let

T
uft) = /0 k(t, 8)5(s)(s)ds.
Then u € C}(J;R4), ¥ <uonJ,u#0, and
—u"'(t) = 6(t)yY(t), ae t€J.

Tt follows that
—u”(t) < 6(t)u(t), ae te€J.

If we multiply by u(t)™~! and integrate, we obtain
T T T
(m _ 1)/ um—2u12dt < / su™dt < |6|‘r(/ umT/(T—l)dt)(T_l)/T.
0 0 0

It is clear that this inequality is in contradiction with (2.6). This completes the
proof.

Notice that (2.6) is possible since the infimum in the right hand side is positive
as shows the following inequality of Wirtinger type:

Theorem 2.2. Assume T € (1,00) and m € [2,00). For each u € G3[0, T},
one has

T (r-1)/7 T
(2.8) ( / ||/ (=D dt) <c / ™22 dt,
0 0

where

2, 1\(r=D/T
(2.9) c=c(r,m,T) = (Ti) ( -1 ) T(2r-1)/7
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Proof. We have

t
-2—[u(t)|m/2=/ [u| (™24 ds
m 0

t 1/2 t 1/2
< (/ 12 ds> (/ |u|™2u'? ds)
0 0
T 1/2
< t1/2</ [u|™ 20" ds) .
0 3
<

If we take the 27/(7 — 1)-th power and integrate, we obtain

9 27/(r=1) T
(E) / Iu|m‘r/(‘r—1)dt

r/(r-1)
<11 T(21’—1)/(‘r—1)< / ™2y '2dt> '

_21'—-1

This inequality is equivalent to (2.8) with c given by (2.9). This completes the
proof.

An interesting open problem is to find the smallest value ¢* of ¢ in the inequal-
ity (2.8). Note that, for m = 7 = 2, (2.8) was first established in Aram3 [1] with
the better constant ¢ = T3/24/2/7. Also, for m = 2 and any 7 > 1, (2.8) can be
derived from a more general inequality of Boyd (2] (see also [5], p. 149-150).

It is clear that, if w(t,s,r) = 0 whenever ¢t < s, then (2.1) turns into (2.2).
Thus, in particular, each condition from (i) to (iv) is also sufficient for (2.2).
However, (iii) and (iv) can be relaxed for (2.2) as shows the next result.

Theorem 2.3. (1) Assume p < oo and
(ili*) w(t,s,7) = k(t,8)wo(r), k : J> — Ry, k(t,-) € LI(J) for each t € J,
sup;e s |k(t,+)|q < 00, we : (0, R] — (0, 00) is continuous, nondecreasing, and

p—1
(2.10) / 9 u:) oy o =

Then (2.2) holds for ¥ = C(J; [0, R)).

(2) Assume that

(iv*) w(t, s,r) = k(t, s)r, with k as in (iii*).
Then (2.2) holds for ¥ = LP(J;R,).

Proof. (1) Assume (iii*). Let o = sup,¢y |k(t,)|q. Suppose that 3 € C(J; 0,
R}), ¢ # 0, and

W(t) < /0 "kt sywo(w(s))ds, €.
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We have
t 1/q t 1/p
wo < ( [ resras) ([ wn((5))"ds
t 1/p
< o(t) = a( /o wo(zp(s))”ds) .
Then |
(2.11) (c(t)?) = pc(t)P~1 (t) = aPwo(¥(t))? < aPwo(c(t))P.

It is clear that ¢ is a continuous and nondecreasing function. Consequently,
since ¥ # 0, ¢(T) > 0. In addition, ¢(0) = 0. Then, for each ¢ € (0, A), where
A = min{¢(T), R}, there is a subinterval [a,b] C J with

c(a) = ¢, c(b) = A, c(t) € (¢,4),t € (a,b).

Then, from (2.11), we deduce

Al e
P / wmp = ), wolcEmp P =T

Letting € — 0%, we derive a contradiction to (2.10).
(2) Use Gronwall’s inequality. This completes the proof.

Notice in the case 7 := sup,¢ s |k(t, -)|1 > 0, the condition (2.10) is less restric-
tive than (2.4). Indeed, if (2.4) holds, then mf,,e(o r)(r/wo(r)) = v > 0 and, in
consequence,

/ (P fwo(r)P)dr > inf (r/we(r))? / r=ldr = oo
0+ TE(O,R] 0+
!
3. Application
Consider the superlinear boundary value problem
3.1) { —y" = |B)|IP=B*B(y) + h(t), ae.te
' y(0) =y(T) =0

in a real Hilbert space H, where B : H — H is a linear isomorphism, B* is the
adjoint of B, p > 2 and h € L4(J; H). By a solution of (3.1), we mean a function
y € C3(J; H) such that 9/ is absolutely continuous and y satisfies (3.1).
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With the notations of Theorem 1.7, the problem (3.1) is equivalent to the
Hammerstein integral equation y = KF(y), where the kernel &k of the linear
mapping K is the Green function associated to the operator —y” and to the
boundary conditions y(0) = y(T') = 0 . Also f(t,z) = |B(z)|P~2B*B(z) + h(t).
We can see that the conditions (i)-(ii) of Theorem 1.7 are fulfilled with fo = |h|,
a = |B|?, g(t,z) = p~|B(@)|P + (h(t),z) and A the square root of K. It is
clear that, if z € L?(J; H) is a solution of the equation z — A* FA(z) = 0, then
y = A(z) is a solution of (3.1). Also note |A| = |A*|. In what follows we show
that the condition (iii) of Theorem 1.7 also holds.

First, we observe that, if M C H and |M| < %(t), then

!
(3.2) B(f(t, M)) < (p —1)| BIPn(t)P~2B8(M).
Indeed, for every z, ' € M, we have
|£(t,z) - f(t,2)]
= ||B(«)|P~2B*B(z) — | B(z")|P~*B* B(z')|
< |IB(@)lP~*B*B(z — 2')| + |(|B(2)I*~? - | B(z')|P~*)B*B(z')|
< |BP|M[P~%|z — 2’| + | B*| M|||B(z)|P~2% — | B(2")|P~?|
< |BP|MP~2|z - 2’| + (p — 2)|BIPIM P~ 2|z — 2|
= (p— 1)|BIP|MPP~%|z — 2'|.

It follows that B(f(t, M)) < (p — 1)|B|P|M|P~28(M) and so (3.2) holds.
Thus the function w, in (1.11) is

w(t, ) = (p — 1)| BIPy(t)P~2s.
Note that the constant C in (1.10) is |hlg+|B[P|A[P~1RP~! (recall that p/q =

p — 1). We wish to show that there exist ¢ > 0 and R > 0 such that the null
function be the unique solution in LP(J;R;) of the inequality

¥(t) < (p—1)|BF / K(t, s)n(s)P~2p(s)ds, t€ J,
J
where n € LP(J;R,) and
(3.3) Inlp < €+ (1Rlq + | BIPIAP~ P~ K| o).

Since n € LP(J), we have n?~% € LP/(P=2)(J). Thus we may apply Theorem 2.1
(v), if we take 6(s) = (p — 1)|B|Pn(s)?~? and 7 = p/(p — 2). We shall consider
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m = p, although it is clear that an analogous result can be established for any
m > 2. Then (2.6) means

f(;‘r |u|P—2u"2dt
(foT |'u,|1”/2dt)2/1’ '

|BP|n5? < Ap—1 := inf { C3(J),u # 0}

or, equivalently,
Inl < |BI~#/ =D NLG7,

Clearly, according to (3.3), the last inequality holds if

(34) (Ilq + | BIPL AP~ RP ) [k| 1oy < |BI7P/®=200372,
For |h|, sufficiently small that

(3.5) Ihlq < [kl )| BIP/ @20/ T 2,

the inequality (3.4) is equivalent to
R < Ry

(3.6) m e _ —
= |B|7?/(>=1)| 4 1(|k|LP(J2)IBI »/(p 2))‘11’/_(5’ 2)—|h|q) /(=1)

Thus we have proved the following result:

Theorem 3.1. Assume (3.5). Then the energy functional ¥ : L>(J; H) — R
of the problem (3.1) given by (1.13) satisfies the (S-P-S)g-condition for any R
satisfying (3.6).

Using the above theorem, we can obtain an alternative result for (3.1):

Theorem 3.2. Assume (3.5). Then at least one of the foIIowmg two state-
ments is valid.

(i) For each R € (0, Ro), there exists p € (0,1) and z € L2(J; H) such that
|z|2 = pt/ P~V R and y = A(2) solves
—y" = |B(y)[P~2B*B(y) + uh(t), ae.te,
{ ¥(0) =y(T) =0.
(ii) There exists x € L?(J; H).such that |z|2 < Rp and y = A(x) solfres (3.1).

Proof. Suppose that (i) does not hold. Then there exists R € (0, Rp) such
that for every pu € (0,1) and z € L3(J; H) with |z]; = p/®P~V R, the function
y = A(z) does not satisfy (3.7), that is,

y # K(FA(2) + (1 — 1)h)

(3.7)
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or, equivalently,
(3.8) 2 # A*(FA(2) + (u — 1)h).

Now, if, for any z € L?(J;H) with |z|]2 = R and X € (0,1), we put p =
Ae=1/(p=2) gnd 7 = A\V/(P~2g, then (3.8) guarantees

z # Mz — E'(z)).

Thus the Leray-Schauder boundary condition required by Theorem 1.4 is sat-
isfied. Now, (ii) follows from Theorem 1.4 (b) if we use Theorem 3.1 and we
observe that inf|;),< g F(z) > —oo and that —(E'(z),z) < C for |z|2 = R.

Finally, we shall discuss the case h = 0, when y = 0 is a solution of (3.1). We
shall try to prove the existence of a non-zero solution via Theorem 1.4 (a). For
this, take any R € (0, Ro) so that the (S — P — S)g-condition is satisfied. Two
cases are possible: .

(1) The Leray-Schauder boundary condition does not hold. Then there exists
an z € L?(J;H) with |z]2 = R and a A € (0,1) such that z = Mz — E'(%)),
ie, £ = M*FA(z). Recall F(y) = |B(y)|P~2B*B(y). It is easily seen that
T = A\ (P-2g satisfies T = A*FA(T), ie., y = A(Z) is a non-zero solution of
- (3.1).

(2) The Leray-Schauder boundary condition holds. Then we look for a function
z1 and a number r € (0, R) such that r < |£1]2 < R and E(2) < infjq),~, E(z).
Let € > 0 and z; € L?(J; H) with |z2|; = 1 and |BA(z2)[5 > |BA|P —e. We look
for z; in the form z; = Az, where X € (, R). Let us consider the function

" ¢(0) =0%/2 —p~loP|BAP, o >0.
We have
E(xl) = )\2/2 - p_lAplBA(mg)lg
<A/ —pTINP|BAJP 4+ p7 NP
= ¢(A) +p™ ' We.
Also, for every x € L2(J; H) with |z|2 = r, one has
E(z) =1?/2 —p~r?|BA(r'z) |2 > r?/2 — p~ 1P| BAJP = ¢(r).

It is easy to check that the function ¢ is increasing on [0,0] and decreasing on
[oar, 00), where o3 = |BA|~?/®*~2) Consequently, if op < R, we may choose
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r = opm, A any number in (r, R) and ¢ > 0 sufficiently small, such that ¢(A) +
p~1XPe < ¢(r). Therefore, according to Theorem 1.4 (a), a sufficient condition
for the existence of non-zero solutions to (3.1) (when h = 0) is that opr < Ro,
or, equivalently,

(3.9) 1 < Ap1| BAPPD| A= G- B|=P-D k|70,

An open problem is to study if (3.9) is possible or not, and also to refine the

reasoning above in order to obtain inequalities less restrictive than (3.9).

10.

11.
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