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1 The continuation principle

The Banach contraction principle was generalized by Perov (see Perov-
Kidenko [3] and Rus [6]) for contractive maps on spaces endowed with vector-
valuéd metrics. Also, Granas (1) proved that the property of having a fixed
point is invariant by homotopy for contractions on complete metric spaces.
This result was completed in Precup [4] (see also O'Regan-Precup [2]) by
an jterative procedure of discrete continuation along the fixed points curve,
The result was recently extended to contractions on spaces endowed with
vector-valued metrics in Precup (5] In this paper the main result from (5] is
presented together wilh an application to Hammerstoin integral equations
in I with matrix-valned kernels.

Let X bea nonempty set. By a vector-valued metric on X we mean a
map d: X x X — R™ with the following properties:

(i) el (1.0) > 0 for all V€ Xl d(w,u) =0 then 4 = v;

(ii) ol (i, v) = o (e,u) for all u,uE.N;

(iii) dd (n,v) < d(it,w) +d (w,v) for all uew G,
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Here, if z,y € R™, 2 = (21,29, ...,%n) and y = (1,2, 4m) , by 2 < ¥
we mean that z; <y fori=1,2,...,n.

“ A set X endowed with a vector-valued metric d is said to be a generalized
metric space. For the generalized metric spaces, the notions of a convergent
sequence, Cauchy sequence, completeness, open subset and closed subset, are
similar to Lthose for nsual metric spaces. .

Definition 1 Let (X,d) be a generalized metric space. AmapT: X — X
is said to be contractive if there exists o matriz M € Miyxn (Ry) such that

M? = 0asj— 00 (1)
and
d(T'(u),T (v)) £ Md(u,v)

Jor allw,w € X. A matriz M which safisfies (1) is said to be convergent to
zero.

It is known (see Rus [6]) that a matrix M € Myx, (R4) is convergent
to zero if and only if I — M is nonsingular and

(I=-M)'=T+M4+AM 40

Theorem 2 (Perov) Let (X,d) bea complete generalized metric space and
T: X — X be contractive with the Lipschitz matriz M. Then T has a unique
Sfized point u* and for each ug € X one has

_ 4(T7 (up) w*) < M7 (1~ M)~ d(uo, T (o)
Jor every j € N.

We now state the continuation principle for such type of mappings whicl
was established in Precup [5).

Theorem 3 Let (X,d) be a complete generalized metric space withd : X x
X — R" and U be an open set of X. fet H : T x [0, 1) = X and assume
that the following conditions are satisficd:
(al) there is a matriz M € Muxn (R.y.) comuemgent to zera such thal
d(H (u,A),H (v,A)) £ Md(u,v)

foraluvelU and A e [0,1];
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(a2) H (u,)) # u for allu € U and A € [0,1];

(a8) H is continuous in X, uniformly for v € U, ie. for each ¢ €
(0,00)" and A € [0, 1], there is p € (0, 00) such that d (H (u, M), H (u, 1)) < ¢
whenever u € U and |A — p| < p. )

In addition suppose that Ho = H(.,0) has a fized point. Then, for
each A € [0,1], there ezists a unique fized point u(A) of Hy := H(.,A).
Moreover, w()) depends continuously on A and there exists r € (0, 00",
integers m, ky, Ka, ..., km-1 and numbers0 < A} < Xy < ... < Am-1 < Am =1
such that for any ug € X satisfying d (uo,u(0)) < r, the sequences (uji)iz0,
1=12,..m,

U0 = U
Wjip1 = H,\J.(ltj','), =0 e
U410 = Uik, F=1,2,.,m—1

are well defined and satisfy

Az, u(A;)) S MY (I = M)~ d(ujo, Hy,(u50), & €N.

The proof of Theorem 3 also yields the following algorithm for the ap-
proximation of u (1) :

Suppose we know r € (0, 00)" and the number h > 0 such that (I-Afr
€ (0.00)" and

d{v, H(w,A) < (I-M)r

whenever u = H (u, 1) and |A — | < h. We wish to obtain an approximation
@ of u(1) with d(Z,u(1)) < ¢ for some € € (0;00)". Then we choose
any partition 0 = Ap < A € Ay < oo € Apey € Am = 1 of [0,1] with
Aj#r=A; <h j=0,1,...,m -1, any element 1y with d(ug,u(0)) < r and
we follow the next
Iterative procedure:
Sel kg =0 and Up kg 1= Up;
Forj:==1tom-1do
Uj0 1= Ujo 1k,
t1=0
While M* (I — M)~ d(u;0, ITy, (uj0)) £ 7
Ujig] = HAj(Ujli)
=141
kj =1
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Set 1:=0

While M (I — M)~ d(umg, H) (tmo)) £ €
Um,i+1 = Hi (um,i)
i:=i41

Finally take T = um,.

Notice for m = 1, Theorem 3 reduces to Corollary 2.5 in Precup [4].

2 Hammerstein Integral Equations with Matrix-
valued Kernels

In this section we give an application of Theorem 3 to the Hammerstein
integral equation in R"

u@) = [ K@ Wi sen, @
a
in the case that the kernel k has matrix-values, i.e.
K1 0% = Mpen (R), &= K]

The usual Hammerstein equation in R™ with a scalar kernel appears
as a particular case of (2) when Ky; = 0 for i # j and ki = &5 for all
14 € {12, sun}s

The simplest examples of problems which allow us to systems of Lhe
form (2) with matrix-valued kernels are the boundary value problems for
differential equations of order > 2. For instance, the problem

{ u' =g(z,uv), z€(0,1}
w(0)=0, /(1) =0

can be put in the form (2) if welet n= 2, v = u, uy = o',

1 y<e 0,y<=z
H—]](."C,y) = { 0 g>1’ 1“"22(1:1:';):{ —-,lyy>:r
Kig = Ky =0,

and f (z,wy,up) = uy, fa(z,01,u2) = g (2, u,up).
Before we state the main result we introduce the following notations.
For an element z € R™ we let

"z” = (Izll 9IZ'Z| I"'!Iz’ll) £
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Also, for a function u € L? (4, R™) (1 < p < c0) we let

el = (Tl sl ) -

Clearly ||.|| and ||.||, are vector-valued norms on R™ and L”({}; R™), re-
spectively. Endowed with the vector-valued metric dp (u,v) = |Ju— u”p,

L7 (% R™) is a complete generalized metric space. Similarly, (¢ (R )
is a complete generalized metric space.
We now state and prove a general existence and uniqueness principle [or

(2).

Theorem 4 Let 2 C RY be an open, bounded set, & : Q2 — Mpyn (R)
measurable and f : Q0 x R™ — R™. Suppose that there are p € [2,00),
g € [l.00), p > g, and an open subsel I of (f)’ (Q:R"‘),”."p) containing
the origin, such that the following conditions are satisfied:
(a) 1 <p<oo, thenryj(z,.) € L™ () ae.z €N and
the map z — [rij (z,.)], belongs to LM (2) (1/q+1/r =1);
(h) if p=oco, then ni;(z,.) € L™(Q) for every » € Q and
the map z — ki (z,.) is continuous from (3 to L™ () ;

(3)

Ifwo21) = fFly 20l S L@ 21 — =)
a.e.y €K, forall z;,2p € R™ and some L € [P/(p—q) (% Maxn (Ry)).

(4)

{ [ satisfies the Carathéodory conditions, f(.,0) € L (Q;R™) and

Let M = {M,’k] "

. n
Mg =" |lnij (=, el 1Lkl g pip- 0y
i=1
and assume that M is convergent to zero. In addition suppose

well

Jor any solution w e U to
u(z) = /\/ k(z,y) fly,n(y)dy, ne ze0
a

Jor cach X € (0,1). Then (2) has a unique solution v € U C LP (S R").
Moreover, for p=co, u € C (;R").

3N



Proof. Apply Theorem 3 to X = L? (% R™) with norm I, and H :
T x[0,1] — LP (O R") given by

H(u.mx)sALr:(::.ﬂf(y.::@»dy (zen).
From (4) we have

07 G 2l < W @, 0)ll + L (w) ||2]] -
Henee
lfiwi2)] < 1fi (u, 0)] + i L (y)i; |21 (5)
Jj=1 3

By Yonung's Tnequality,

Ly |1
Liy)ylyl < =08 5177
Wiy 21 p/p-q) " plg

Since f;(.,0), L(.)f_'.,‘-/(":'_tﬂ € L7(Q), from (5) we get that

If (v,2)] < g (v) + ¢zl

for some g € L9 () and ¢ > 0. Hence the Nemytskii operator associated to P

maps [7(Q; R") into L7 (€ R"). From (3) we sec that the Fredholm linear

integral operators of kernels x;; maps L9 (% R") into L? (?; R™). Hence H
I is well-defined. Furthermore,

[(FT; (10, A) = Hi (v, X)) ()] sfnZlm;(r.y)lifj(y.u(w)—f,- (W v (y)l dy
i=1

< f DI @) 3 Lk (0) ek (9) — v ()
0 j=1 k=1

n n
€ 202 15 M, Vbl gy ik = .

k=1 j=1
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Consequently

n

|H!' (tl., ’\) - Hl ('U. ’\)|p < z “"‘_'l'j (I, ')lr|p |ij qu,’{p—q} 1“* =k P
k=1 j=1

3

n

= ZAL“' I”l.' - Vi p*

k=1
Thus
[[H (u,A) - Ho M), < Mlju- |-

Now the conclusion follows from Theorem 3. =
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