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1 Introduction

There exists a huge literature devoted to the existence and localization of
positive solutions of various types of integral, ordinary differential and par-
tial differential equations. The most common approaches go from the con-
traction principle, topological fixed point methods and upper and lower
solution techniques, to more advanced methods of degree theory and crit-
ical point theory. One of them is based on the Krasnoselskii’s fixed point
theorem in cones (see [8], [9], [12] and [17]) and has been intensively used
in studying boundary value problems for ordinary differential equations (see
[1], [2], [5], [6], [10], [13], [14], [17], [19], [24], and [9], [11], [16] for similar
results on integral equations). Its success is due to the upper and lower
inequalities for the appropriate Green’s functions. Similar inequalities for
boundary value problems related to partial differential equations are not
known and Krasnoselskii’s Theorem has appeared quite unapplicable to this
type of problems. Some progress in this direction has been made in [21]
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and [23], where bilateral estimates are used only with respect to one of the
variables (say, time variable), or, by iteration, successively, to all of the vari-
ables. Obviously, this has required a suitable geometry of the domain of the
equation.

The main goal of this paper is to investigate the applicability of Kras-
noselskii’s Theorem to semi-linear elliptic problems in general domains. The
main ingredient will be a global weak Harnack inequality whose use will re-
quire a new version of Krasnoselskii’s Theorem.

2 Compression-expansion fixed point theorems

Throughout this section E will be a linear space endowed with two norms
|.| and ‖.‖ such that

|x| ≤ c ‖x‖ for all x ∈ E (2.1)

and some constant c > 0. Also C ⊂ E will be a cone, i.e., a closed convex
set with

λC ⊂ C for all λ ≥ 0, C ∩ (−C) = {0} and C 6= {0} .

As usual, the notation x ≤ y for x, y ∈ E will stand for y − x ∈ C.
For two numbers r,R with 0 < cr < R we shall denote

Cr,R = {x ∈ C : r ≤ ‖x‖ , |x| ≤ R} .

Notice Cr,R is bounded with respect to norm |.| , but can be unbounded with
respect to ‖.‖ .

In this paper, a continuous map N : X → Y, where X, Y are topological
spaces, is said to be compact if N (X) is contained in a compact subset of
Y. If X is a metric space, then N is said to be completely continuous if the
image of each bounded set in X is contained in a compact subset of Y.

Theorem 2.1 Assume 0 < cr < R, the map N : Cr,R → C is completely
continuous with respect to the ‖.‖-topology and N (Cr,R) is bounded with
respect to norm ‖.‖. In addition assume that the following conditions are
satisfied:

(h1) N (x) 
 x for all x ∈ C with ‖x‖ = r,
(h2) N (x) � x for all x ∈ C with |x| = R.
Then N has at least one fixed point in C with

r < ‖x‖ and |x| < R.
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Proof. Following the ideas from [20], we consider the map N ′ : C → C
defined by

N ′ (x) =





δh if x = 0
‖x‖
r N

(
r
‖x‖x

)
+ δh if 0 < ‖x‖ ≤ r − δ

‖x‖
r N

(
r
‖x‖x

)
+ h (r − ‖x‖) if r − δ ≤ ‖x‖ ≤ r

N (x) if x ∈ Cr,R

N
(

R
|x|x

)
if R ≤ |x|

where 0 < δ < r and h ∈ C \ {0} . Notice the values of N ′ only depend on
the values of N in Cr,R. Let

r0 = sup
{∥∥N ′ (x)

∥∥ : x ∈ C
}

.

Then, in particular,
∥∥N ′ (x)

∥∥ ≤ r0 for every x ∈ C with ‖x‖ ≤ r0.

Also N ′ is compact on {x ∈ C : ‖x‖ ≤ r0} with respect to norm ‖.‖ . From
the Schauder fixed point theorem we have that there exists a point x ∈ C
with

N ′ (x) = x and ‖x‖ ≤ r0.

It remains to show that x ∈ Cr,R. Clearly x 6= 0. Assume 0 < ‖x‖ ≤ r − δ.
Then

‖x‖
r

N

(
r

‖x‖x

)
+ δh = x

whence
r

‖x‖x ≥ N

(
r

‖x‖x

)

which contradicts (h1). We obtain the same contradiction if we assume
r − δ ≤ ‖x‖ ≤ r. Finally assume R ≤ |x| . Then

N

(
R

|x|x
)

= x =
R

|x|x +
(

1− R

|x|
)

x ≥ R

|x|x

which contradicts (h2). Therefore x ∈ Cr,R as wished.

Theorem 2.2 Assume 0 < cr < R, the map N : Cr,R → C is compact with
respect to the ‖.‖-topology, and that there is a constant c1 such that

∥∥∥∥
1
λ

N (λx)
∥∥∥∥ ≤ c1 whenever x ∈ Cr,R, λ > 0 and λx ∈ Cr,R. (2.2)
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In addition assume that the following conditions are satisfied:
(h1) N (x) � x for all x ∈ C with ‖x‖ = r,
(h2) N (x) 
 x for all x ∈ C with |x| = R.
Then N has at least one fixed point in C with

r < ‖x‖ and |x| < R.

Proof. Let N ′ : Cr,R → C be given by

N ′ (x) =
(

R

|x| +
r

‖x‖ − 1
)−1

N

((
R

|x| +
r

‖x‖ − 1
)

x

)
.

Notice N ′ is well defined since
(

R

|x| +
r

‖x‖ − 1
)

x ∈ Cr,R for all x ∈ Cr,R.

Also note if ‖x‖ ≤ M, then

(
R

|x| +
r

‖x‖ − 1
)−1

≤ M

r
.

Consequently, N ′ sends bounded sets into relatively compact sets (with re-
spect to the ‖.‖-topology). Hence N ′ is completely continuous. Also (2.2)
guarantees that N ′ (Cr,R) is bounded with respect to norm ‖.‖ (note that(

R
|x| +

r
‖x‖ − 1

)−1
may tends to infinity as |x| → R and ‖x‖ → ∞). Now

observe that N ′ satisfies all the assumptions of Theorem 2.1. Hence N ′ has
a fixed point y ∈ Cr,R. Obviously,

x :=
(

R

|y| +
r

‖y‖ − 1
)

y

is a fixed point of N.

Remark 2.3 In case that there exists a constant c0 > 0 with

c0 ‖x‖ ≤ |x| for all x ∈ C, (2.3)

condition (2.2) trivially holds since

R

|x| +
r

‖x‖ − 1 ≥ c0r

R
> 0.
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Under assumption (2.3) (see also [22] and [18]), Theorems 2.1 and 2.2
yield the following result:

Theorem 2.4 Assume (2.3), 0 < cr < R and N : Cr,R → C is a compact
map. In addition assume that one of the following two conditions holds:

(i) N (x) 
 x for all x ∈ C with ‖x‖ = r and N (x) � x for all x ∈ C
with |x| = R;

(ii) N (x) � x for all x ∈ C with ‖x‖ = r and N (x) 
 x for all x ∈ C
with |x| = R.

Then N has at least one fixed point x ∈ C with

r < ‖x‖ and |x| < R.

3 Application to boundary value problems

We consider the Dirichlet problem for a semi-linear elliptic equation
{ −∆u = f (u) in Ω

u = 0 on ∂Ω
(3.1)

where Ω is a bounded regular domain in Rn, n ≥ 1, f : R+→ R+ is contin-
uous and f (u) = f ◦u. We seek positive solutions (see also [3], [4] and [15]),
i.e., u ∈ C1

(
Ω

)
, u (x) > 0 for all x ∈ Ω and u satisfies (3.1), where ∆u is

considered in the sense of distributions.
The main assumption will be the a global weak Harnack inequality for

nonnegative superharmonic functions. By a superharmonic function in a
domain Ω ⊂ Rn we mean a function u ∈ C1 (Ω) with

∆u ≤ 0 in D′ (Ω) ,

that is,
∫

Ω
∇u · ∇v ≥ 0 for every v ∈ C∞

0 (Ω) satisfying v (x) ≥ 0 on Ω.

We shall assume that the following global weak Harnack inequality holds:

(H) there exists p ∈ [1,∞] , a compact set K ⊂ Ω and a number η > 0
such that

u (x) ≥ η |u|Lp(Ω) for all x ∈ K

and every nonnegative superharmonic function u ∈ C1
(
Ω

)
with u = 0 on

∂Ω.
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In order to apply Theorem 2.2, let

E = C0

(
Ω

)
:= {u ∈ C

(
Ω

)
: u = 0 on ∂Ω}

be endowed with norms ‖.‖ = |.|∞ and |.| = |.|p , where

|u|∞ = max
x∈Ω

|u (x)| , |u|p =
(∫

Ω
|u|p

) 1
p

.

Clearly (2.1) holds with c = (µ (Ω))
1
p , where µ (Ω) is the measure of Ω.

Let

C =
{

u ∈ C0

(
Ω;R+

)
: u (x) ≥ η |u|Lp(Ω) for all x ∈ K

}
.

Define
N : C

(
Ω;R+

) → C
(
Ω

)
by N (u) = (−∆)−1 F (u) ,

where
F : C

(
Ω;R+

) → C
(
Ω

)
, F (u) (x) = f (u (x)) .

Since f ≥ 0, and (−∆)−1 is positive, we have that N maps the set C
(
Ω;R+

)
into itself. Also, by the global weak Harnack inequality, condition (H), we
have N (C) ⊂ C.

Next we assume

(C) There exists c0 > 0 and θ ∈ [1, 2p
n ) ∩ [1, p] , such that

f (τ) ≤ c0τ
θ for all τ ∈ R+.

This condition guarantees that for every R > 0, the restriction of N to
CR :=

{
u ∈ C : |u|p ≤ R

}
is compact with respect to the |.|∞-topology, and

that there exists a c1 > 0 such that
∣∣∣∣
1
λ

N (λu)
∣∣∣∣
∞
≤ c1 whenever u ∈ C, |u|p ≤ R and λ ∈ (0, 1) . (3.2)

Indeed, if we denote q = p
θ , then we have that F (CR) is bounded in

Lq (Ω) , whence N (CR) is bounded in W 2,q (Ω) . Since q > n
2 , we deduce

that N (CR) is relatively compact in C
(
Ω

)
. Hence the restriction of N to

CR is compact with respect to the |.|∞-topology.
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Furthermore, we have
∣∣∣∣
1
λ

N (λu)
∣∣∣∣
∞

≤ γ

∣∣∣∣
1
λ

N (λu)
∣∣∣∣
W 2,q(Ω)

≤ γ
1
λ

∣∣∣(−∆)−1
∣∣∣ |F (λu)|q

≤ γλθ−1
∣∣∣(−∆)−1

∣∣∣ c0 |u|θp
≤ γ

∣∣∣(−∆)−1
∣∣∣ c0R

θ =: c1

which shows (3.2).
Now assume that the following condition is satisfied:

(A1) There exists r > 0 such that

max
τ∈[0,r]

f (τ)

r
<

∣∣∣(−∆)−1 1
∣∣∣
−1

∞
.

Then, if u ∈ C, |u|∞ = r and N (u) ≥ u, since

f (u (x)) ≤ max
τ∈[0,r]

f (τ) ,

we derive

r = |u|∞ ≤ |N (u)|∞ ≤
∣∣∣(−∆)−1 1

∣∣∣
∞

max
τ∈[0,r]

f (τ) < r,

a contradiction. Hence (A1) guarantees (h1) in Theorem 2.2.
Finally, assume:

(A2) There exists R > cr such that

inf
τ∈[ηR,∞)

f (τ)

R
>

∣∣∣(−∆)−1 (1|K)
∣∣∣
−1

p
.

Here by h|K we have denoted the function defined as h (x) for x ∈ K,
h (x) = 0 for x ∈ Ω \K.

Let u ∈ C, |u|p = R and N (u) ≤ u. From

F (u) (x) = f (u (x)) ≥ inf
τ∈[ηR,∞)

f (τ) , for all x ∈ K,
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we derive

R = |u|p ≥ |N (u)|p
≥

∣∣∣(−∆)−1 (F (u)|K)
∣∣∣
p

≥
∣∣∣(−∆)−1 (1|K)

∣∣∣
p

inf
τ∈[ηR,∞)

f (τ)

> R

a contradiction. Hence (A2) guarantees (h2) in Theorem 2.2.
Thus we have obtained the following result.

Theorem 3.1 Under assumptions (H), (C), (A1) and (A2), problem (3.1)
has a positive solution u satisfying

|u|∞ > r and |u|p < R.

Remark 3.2 If f is nondecreasing on R+, then conditions (A1), (A2) be-
come

f (r)
r

<
∣∣∣(−∆)−1 1

∣∣∣
−1

∞
(3.3)

and
f (ηR)

ηR
> η−1

∣∣∣(−∆)−1 (1|K)
∣∣∣
−1

p
(3.4)

respectively. In this case, the existence of the two numbers r,R satisfying
(3.3), (3.4) and cr < R, is guaranteed by the following behavior of f at zero
and infinity:

lim inf
τ→0

f (τ)
τ

<
∣∣∣(−∆)−1 1

∣∣∣
−1

∞
and

lim sup
τ→∞

f (τ)
τ

> η−1
∣∣∣(−∆)−1 (1|K)

∣∣∣
−1

p
.

Also, multiple solutions to (3.1) can be obtained if inequalities (3.3) and
(3.4) are satisfied for several pairs of numbers (r,R) .

We finish this section by some comments about Harnack inequalities.
For n = 1, inequality (H) holds for every p ∈ [1,∞] . This follows since

every superharmonic function in a real interval is concave. Now if Ω = (a, b) ,
K = [c, d] , a < c < d < b, and u ∈ C1 [a, b] is nonnegative, superharmonic
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in (a, b) , u (a) = u (b) = 0, and min
x∈[c,d]

u (x) = 1, then, if u (x0) = 1 for some

x0 ∈ [c, d] , the concavity of u implies that

u (x) ≤ (d− b)−1 (x− b) for all x ∈ [a, x0]

and
u (x) ≤ (c− a)−1 (x− a) for all x ∈ [x0, b] .

Hence there exists a constant δ > 0 only depending on a, b, c and d, with

u (x) ≤ δ for all x ∈ [a, b] .

Then (H) holds with p = ∞ and η = δ−1.
For n ≥ 2, by our knowledge, inequalities of type (H) are not known.

However, some partial results come to support (H) as a conjecture, at least
for some suitable values of p. Indeed, if we denote by Bρ (x) the open ball in
Rn with centre x and radius ρ and abbreviate Bρ (x) = Bρ when the centre
is not important, we have the following basic result (see [7, Theorem 8.18]):

Proposition 3.3 (weak Harnack inequality) Let ρ > 0, n ≥ 3 and p ∈
[1, n

n−2). There exists a constant η0 > 0 such that for every nonnegative
superharmonic function u in B4ρ, the following inequality holds:

u (x) ≥ η0 |u|Lp(B2ρ) for all x ∈ Bρ.

This proposition yields:

Proposition 3.4 Let B4ρ ⊂ Ω, n ≥ 3, p ∈ [1, n
n−2) and Ω0 ⊂⊂ Ω. There

exists a constant η1 > 0 such that for every nonnegative superharmonic
function u in Ω, the following inequality holds:

u (x) ≥ η1 |u|Lp(Ω0) for all x ∈ Bρ.

Therefore, an open problem is to investigate property (H), in terms of p
and of the regularity of Ω.
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