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1. ABSTRACT. We consider a convexity epasce X in the
sense of V.W.BRYANT and R.J.WEBSTER [1]. In [8] wo have pro-
ved thet for such & space the incidence snd order HIIRERT's
axioms sdapted for an erbitrary dimension are satisfied. Thus
the axicme T-VIII of O,VEBLEN [10] hold. If dim X3 then
the exiom IX also holds. The exiom X is equivelent with
dim X<3 end if ¥ is complete then as a consequence the axionm
I helds.

Therefere if X is complete, of dimension 3 end satisfias
‘the parsllel postulate then all of VEBLEN's axioms (I-XIT)
hold., In this case it is well Known [10] that there exists a
resl linearizastion of X; this means that X can be organized
8s a real linear space such thet its convexity structure be
that indebted to the slgebreic struocture.

J.P,DOIGNON {5] and J.CANTYELL, D.C.KAY [4] heve proved
the existence of a resl linesrizetion for sny complete con-
vexity space of dimension =3 setisfying the parallel postulate;
the linearization is vnique vp te a translation of the origin
sccording to e theorem of D.C.KAY, W.MEYER [6]. :

In our paper this resnlt will be proved from a different
point of view using & more general result of P.MAH, S.A.NATN-
PALLY, J.H.MJWHITFIELD [7].

We can summerize our proof ss follows: First we solve
the case Jgn = dim X<o@ by mathematicel induction after n.

In the case dim X =o= we represent X by Y><L, where
YcX is a hyperplane of X and LCX is & line meeting Y, iden-
tified with R. We denote by Y* the dusl of Y consisting of
ell functions f defined on Y and with values in R=1 having
the graph & hyperplene in YL = X and satisfying £(8)=0,
where & = ¥()L.
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We shall prove that Y* is a linesrization farily ti7l)
of Y. Conseguently we deduce the existence of a resl lineari-
zation of Y snd finally of ¥xL = X. To identify L=R, to
prove that Y* is & linsarization family of Y and to show that
the product of the linearization structures of Y and L is a
1ipear®zation for X = YXL, we eamploy the result from the cese
3%dic  {=eand the uniquence theorem from [61. Thus our
oroof is essentially based on the papars:[10] for the case of
dimension 3,[7] for & more general result on the lipearization
and [6] for the uniguence of the linearization.

2. INTRODUCTION. We denote by %) a 1inear structure
(F,+,0) over a field F on the set X and by éﬁ}(}lz the linear

" structure indoced by Z(X) on the subspace YC X, If
Ax)=(F,+*,0') is e linear structure of another space X',
then x)>¢ LX') weans the linear structure (F, ® , @ ) on
X>¢X' defi 4 by: (xl,xi)@(xz,xé) = (xy4%5, xi-i-'xé}

: A® (x,x*) = (Aox, do'x*) .

A pair (x,%) where X is s set and &is a fanmily of sub-
sets of X is called sbstract conveyity space (4.C.S5.) if s
ciosed ander arhitrary intersections. The members of Eare
called convex sete end the gomvex hull of ACKX is defin=d by
[A]=ﬂ{C:ACC, ceB). Instesd of the uotation[&&)&'} we use
[2,4 . Por x,yEX [x,y] is named the closed segment joining
x and y; the open segment, denoted by x-y ig defined by

[x,/\(x,y) , i£x#y

(1) XY Tiox , ifx=y

The open half-lins having the origin in x and nol containing

y, denoted x/y, is defined by = :

(2) x/y = (z: x&z*y)

and the line containing x,y , x#y is the set
(3) {x,y} = x/yUxUxyUyUy/x .

A set ACX is said to be linear if {x,y}c A for every x,yEA.

On en A.C.S. (X, &) we formulate the following thee conditions:

(4) [a]=U([B] : BCA, cerd B<ee) for each 4CX
(5) [x,A]=U([x,a]: a&[&]) for ACY, card A<eox€X
(6) x,7l=[z,yl=>x =z .

It is important to remarck that if {X,é') is sn A.C,.S.
satiefying (4) and (5) then
(1) ceBe=s xyCC (%) x,yEC .



The determination of & linear structure (F,+,0) for °
(X, &) which makes X a vector space over an ordered field F
whose algebrsic convex sets are presisely the members of &
has been called the linearization problem for an 4,C9Sy In
the case F = R we spsgk about a resl linearization.

If 2(X)=(B,+,°) is & real lineasr structure for X such
that the open segment idebted to £ defined by (1) is the same -
with the open segment idebted to LIX) we say that &%) iz =
strong real lineasrizastion of X. £

Clearly if &(X) is a strong real linearization of X
then the open half-line indebted to&ie identicel with that

indebted to AX) end so by (3) it follows that ACX is a linear
set in (X, &) if and enly if it ie an algebraic linear set.

Moreover, if (X, &) setisfies (4) and (5) then by (7)
the notions of real linearization and strong linear linemri-
zation for X are identicel.

To obtain acheracterization of the A4.C.S. having a real
linearization, a femily X* of real functions defined on X is
celled in[7] a linesrizetion family for X provided that the
following four conditions are satisfied :

(8) ir .t‘EX*, cef then £(C) is convex in R ¥

{(9) there exists x €X with f(x )=0 for esch fex*,
and if f(x)=f(y) for each £&X", then x=y .

{(10) each f&X restricted to any line in X is either a
bijection or a constant map.

(11) if f,g&X" and each separates x and y, then there
are l, &R such thsat for -esch ze{x,y}: g’(z)=}f(z)+jv &

From[7] we know :

(A). An shstrect convexity space (X, &) satisfying (4),
(5),(6)- hes a strong resl linesrizastion if snd only if X
has s linearization femily e

This characterization is an external one using the
linegrization family. Tne question is: how can an A.C.S.
having & resl linearization be charaecterized using only the
properties of &7

To answer st this question we formulate some conditi-
ons on the operations,-"(open segment) and,/'(open half-line)
defined by (1) and (2) :
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(12) x.y #£8 , x/y £8P

(13} XeX = X = %/X

(14) x-(y-2) = (x:y)-z

(15) x/yQyx"/y' £ B => xy' Y yox' £ 8

(16) Xeyf}xez £ P =D J =& ofr yEX°2 OF 2EX+y

{a-B ~*ands for Wa-b : e €k, bEB)).

.n abstract convexity space (X, %) setisfying (12)-(16)
is naimed in [1] convexity spsce. It will be denoted by(X,e).
For soch a space (4),(5},(6) hold.

The notation, terminology and resnits fromfi],[2],[3]
will be upsed.

Let us mention the following tneorem [5}uwdich will be
needed :

(B). If gn A.C.S. admits & real linearizaticn of dimen-
sion>1, then it is unigme up to & trsnsistion of the crigin.

3. ""E_MAIN RESULT. The aim of this paper is tc do a
new proof ¢ * the following :

THEOREM, If (X,e) is o convexity spece, compleie, of
dimension =3 satisf¥ing the pesraliel postalate, then there
exists e strong real linesrization for X, unicue up to 2 trans-
lation of origin. 3

This theorsm can be reformuplated in the following way:

An sbstrect convexity soace (X, £) haes o strong real
linearizstion of dimension% if and only if £ setisfiss(12)-06),
. the perallel postulate and (X,*) is complete snd of dimensien3.

4, PROOF. Case 1. 3€n = dim X=<e®, For o = 3 the theoren
feollowe from[1C]l. For n»73 we prove it by mathematical induction.
Let us sssume that it is true For n; we shall prove it fer n+l.
For, let B = (9'31'92'""%4-1) be a basis for X where
dim X = n+124. Define Y ={8,e,,8,,...,¢ }and L ={e, °n+1}'

Y with the convexity structure induced by that of X becomes &
complete convexity space of dimension n setisfying the parailel
postnlate. By the induction hypothesis it fellows thet ¥ admits
an unique strong reel linearizetion having the origin in &,
denoted by L(¥).

In the same way Y, ={63e2,...,en+1} of dimension n has
an unique strong real linearization with the origin in 8&: ;ﬂrl}.
Since LCY, it follows that EﬂYl) induces on L a strong resl
lineerization (L) having origin in & .
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Becanse X satisfies the parsllel postulate it is possi-
ble the representstion X = ¥xL; for we identify emch x€X
with the pair (y,f) where y is the intersection of Y with the
perallel through x to L and £ is the intersection of L with
the parsllel through x to the 11::9{6,3}. If x&€L then 4= x,
In perticuler esch x €Y is identified with the pair (x, @)
and easch x &1 with (&, x).

e have only to prove that (Y)XXL) is a strong linea-
rization for YL = X; that meens that for every x,x'€ X, x#x°
the open segment having its ends in x and x° defined by the
convexity structure is identicel with that defined by the
algebreic atructure ﬂY}XﬁL).

To do this we write x =(y,f) end x'=(y*, ). If
d_im{e, LI y,y'}= 1 then x,x*'€L and our sfirmaetion is
trivial, : 3

If dim{e, LA y,y‘}= 2 then {52,...,en}¢{9,enﬂ,y,y‘}.
In fact if we assume contrary then{g,az,.,.,en,an+1} =
(:{9, eﬂ_._lsy,y'_} and therefore n<? which is o contradiction.
So we may suppose in this case ezéie,enﬂ,y,ya}.

Define
{é,enﬂ,y,y’} o A vdim{e,en+1,y,y'}=_5
2 {9,e2,9n+1,y,y'}, ir dim{9,9n+1,y,y'_1 2 and

85 ¢{e!en+1lyly‘.l °

Since dim I, = %3 there exists a strong resl linesrization

off(Ye) with the origin & for ¥,. Applying two times the dimen-
sion formula ({5], thecrem 9) we obtain :

¥

(17)  esl2dim {¥,,% }= din T+ din ¥, -din T,AY =
= Bsn-dim Yzﬂ Yl

and
(18) o+l = dinfY,,Y}= dim ¥, + din Y-dim T,NY =

= Jrp-dim LAY .

From (17) and (18) we have
{19) dim LAY, 22 ,
{20) dim YaﬂI e i

(19) and {20} permit to spply to the spaces anY1 end
Iznt the uniquence theorem (B) on the linearizetion. Thus



= 124 <
(21) Ly | = Hny) I, =&
(22) 2x,) ]anY =ZlY) 'anY

snd since ¥, = (Y,NYXL , &I1,) =ai"(¥21l anxxﬂxz)lh

?::) (fa‘(r)x&‘tL))I(anr)XL =ﬁ!)'zzn,)fffL), from (21),
we have
(23) Lxy) = (Zeoxu)) i(anY)XL g

Since x,x'eta_it follows that all the open segment
- x*x' is contained in Y, and since ﬂYa) is a strong real i
linearization of ¥,, this segment coincides with the algebraic
open segmeat defined by o'ﬂYz) which by (23) coincides with the
algebraic open segment defined by LYIXAL).
Therefore 1Y) L) is a strong linesrization of X.
Case 2. dim X =oo, Consider B a basis in X; 8, e&B,
@ #e. Ten Y ={B\e}is s hyperplene in X, L =fe,e}is =
line and YL = € . As in the case 1 it is pessible the
representation X = Y L.
The convexity astrnctures induced on Y snd L have the

following properties :

(28) 39, = By yady)toody)  @®d e

(25) 3795 = By (3. pudy) 00, €L

27) Ak, = T, (0,00 /(y0udy) () 3,35 €Y

where for ACYXL we define T A = (yET: (DLer sueh that,
: (y,2)e ik

ond T, & = (QeL:(D yeY such that (y,d)en) .

In the following we identify the line L with the real
numbers set in the following way : we choose 91,926?3\(9,e)
with ey # & and we denote X, ={e, el,az,e}. From dim X; = 3
it follows that X admits a strong real linearization with
origin in & :.,‘f(xl). In the next we coansider as real coordina-

tization of I the coordinatization indaced by 5.'(1(1) ; 80

Ly =&y .



Using this coordinatization of L we can define the

_ 36t ¥ of all functions £:Y —s|R = L with £(8)=0%9, for which

graph (f) = ((y,2(y)):yeY)CYXL = X is a linesr set of X.

Our next step is to prove that Y* is = linearization family for Y.
First, observe that for f&Y" and ¥11¥2 €Y we have:

(28) 2(yy07p) = £lyy) 2ly,) ,

(29) £(yy/¥,) = £(y,)/2(y,) .

To verify this let YEYy+Y, « By (24) there exists letn
such that (y,0) € (y,,£(3,))+(3,,2(y,)) o Since graph (£) is 1i-
near then (yl,f'(yl))'-(yz,t(ya))Cgraph(f) and 3o (y,{)sgraph(f).
Therefore {=f(y). Using (26) we obtain £(y)& £(y,)+2(y,) which

" proved that ﬂyl-yz)c_f(yl}-f(xz}.

Pot the converse inclusion 1et;[6£(y1)-f(yz). Then by(26)
there exists y &Y anch that (y,be(yl',f(yl))-(Jz,f(yzi)‘granh(f)-
Thas f=£(y) and by (24) TEY ¥y - So £(3))-£(y,)CL(y,-y,) dnd

(28) is proved, : 5
To prove (29) we use the same reasonement with/instesd of

L )
the operation .’ . :
According to (28) we see that Y* satisfies (8).
For (9) we have to prove

(30) (31,7, €Y, 3y #y,) => (Jo)FeY”, £ly;) # 2(y,)
For, let Y, be 2 hyperplane in Y such that e€y,,

-.!;n{yl,y.‘,}# ? and {11,123¢!1 . Wa mrmn‘m ’2#11 a
Let F ={Il,t32,1)}_= !1U(3271"'¥1’Y1U!1’(12'1) - We have

{7020} {1, 02008, 0,0} fr.opn)=x.
In addition (yz,o)ﬁ F becanse otherwise either(ya,o)étyz,l)-‘[l/!l
or (yz.O)Etlltyz.l}' In the first case it would follow that
(ya,o)‘tln(rz,i)-rl # @ and in the second case that

(75400 (yo 10V L, # B . According to (26) in both cases we w -
obtain 0E1+0 which is absurd,

Thus by 2] lemma(16),pp.325, F is a -hyperplane of X
with 0€F .

If we shall prove that for eny y €Y
(31) ‘card !‘ﬂtz o B
where 1:’ is the parallel through y to L, then the existence
of f&Y" such thag graph(f) = F will be proved.



First observe that L F, because otherwise, from the
2 ; d P i a:f i F.
fi.t thet Ly JILCF an Ly, N # 8 it would follow Ly, C

Thas (32.0) E€F, but this is impossible by what was proved.above.

Now, if for y&£Y the line L_ wsas parallel to F it would
follow that L is slso parallel to F end by LMIF # § , that LCF,
in contradiction. Therefore FnL.‘I # d.

Finally, observe that if card FnLy>1 then LyCF and
since Ly “L snd LAF # @ , it would have LCF, which is again
s contradiction. Thus (31) holds and fer each y&Y we may define
£ly) =T, Fﬂr.y a1

e have only to show that fly,) # r(yé). Denote
¥y = rln{yl,yz}, then £(y)=0. If y=y, then f£(y,)=f(y)=0£1=L(y,)
and so (30) is proved. If aow y # ¥y then since yzéYl we have
y # Yoo The following cases are possible: YEY1 Yoy V1 €Y T3 »
Y €YYy - In each of them by (28): 0&f(yy)-1, fly,)&€0°L,

1&0-f(y;) , respectivelly. Thus in all cases f(y11 # £(yy)
which completes the proof for (30).

To verify (10) let be the une[yl,;yz} =y, /¥ Uy3Uyq 705, U
Uyzlyl, where y; # y,. If £(y,) = £(y,) ={ , then the fact
that £(y) =4 for every 36{31’323 is a trivial concequence of
(28), (29}, (13) ; thus in this case -Frestricted to {-71’3’2-}
is a constant map. : :

In the case f(y;) # f(y,ithe injectivity of this restric-
tion ie trivisl. For the surjectivity let ré&f® ={f(y1),f’(y2)},
Ply,) # v # fly,) .Then ref(y,)/f{y,) = £lyy/y,) or

PEL(F, ) L(y,) = £ly,ey,) or PET(y,)/Elyy) = £(y,/y,) and
consequently ref({yl,yzy). Thas (10) is verified.

To proée {*1) coasider y. .y, &Y, y, # ¥,, the line

12 1 2

D =[y1,y2} end the finite dimensional subspsce X, ={xl,D} o A
X, has an vnique strong resl linearization with origin &7 fﬁ}(.‘.).
Since Xl admits an unigne linearizationm with the origin & we may
write fﬂxz)h = (ff(xz)lx‘l.llh =§:{KI)IL = Z(L). T™is means that
tne coordinatization of L induced.by i’!xa) is identical with
that induced by lel) . :
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et £,g €Y . The restrictions to Ty X, of £ and g sre
linear functions since their graphs in 71" X2><.L ere linear
seté.

If f separates ¥y &nd y, then the following system

{ Afly)) +p = aly,)
A£(y,) +y = 2ly,)
has en onigue solntion {1
e 75{3’1:735 then there 1a &R suth that y= o€y1+(1-e£Jy2

(in :f(xz)). But then

glyl= a(g(yl)+(1-=oﬂ)g(yz}=o({lf(yl)-*/’)*-(l-ol)(lf(yz_}f/-’} =
= At £y, )+ (1= L)2(3) )+ = A £(y) « P end the proof of
{11) is completed. ’

To finish the proof of our theorem we must only show
that the real linear structure AYIXZIL) is a strong resl
lineerization of ¥YXL =X .

For, consider x,,X,€X, x; #x, , Xy = {xl' xl,le
= X;{}Y . Since 3<dim X,<o° there exists e strong resl

linearizat:.on with the origin € of Xz and since
din Xg>din Y22 we have XX, )Ix *Z(!}l

and o‘f(xa}l ":ﬂxl) Therefore
Lix,) =D‘Z’(x3)]x4x "?(X'ﬁ)!L =Z’(r)]x'xci’(x )lx )l
= éﬁy}!x‘x Z(xl)lL=I<r>fx4><mm (f&’(x)xl‘iml, XL

Thus
(32) Lxy) = (z(Y)XfﬂL))lx se%,

Since 11.12(‘_}(3 and 2(1{3} is & strong real linearization

of X3 it follows that Xy 4%y coincides with the algebreic seg-
ment induced by .K(X ) and next by (32) it coincides with the
algebraic segment induced by L1)XLL). Therefors

LXK HAL) is a strong reel linesrization of X .
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