ITINERANT SEMINAR ON FUNCTIONAL EQUATIONS,
APPROXIMATION AND CONVEXITY, Cluj-Napoca, 1983

A DUAL PROOF FOR THE LINEARIZATION OF THE CONVEXITY SPACES

RADU PRECUP (Cluj-Napoca)

1. ABSTRACT. We consider a convexity space X in the sense of V.W.BRYANT and R.J.WEBSTER [1]. In [8] we have proved that for such a space the incidence and order HIBERT's axioms adapted for an arbitrary dimension are satisfied. Thus the axioms I-VIII of O.VEBLEN [10] hold. If dim X≥3 then the axiom IX also holds. The axiom X is equivalent with dim X≤3 and if X is complete then as a consequence the axiom XI holds.

Therefore if X is complete, of dimension 3 and satisfies the parallel postulate then all of VEBLEN's axioms (I-XII) hold. In this case it is well Known [10] that there exists a real linearization of X; this means that X can be organized as a real linear space such that its convexity structure be that indebted to the algebraic structure.

J.P.DOIGNON [5] and J.CANTWELL, D.C.KAY [4] have proved the existence of a real linearization for any complete convexity space of dimension >3 satisfying the parallel postulate; the linearization is unique up to a translation of the origin according to a theorem of D.C.KAY, W.MEYER [6].

In our paper this result will be proved from a different point of view using a more general result of P.MAH, S.A.NAIM-PALLY, J.H.M.WHITFIELD [7].

We can summarize our proof as follows: First we solve the case $3 \le n = \dim X \iff$ by mathematical induction after n.

In the case dim X =>> we represent X by Y>>L, where YCX is a hyperplane of X and LCX is a line meeting Y, identified with R. We denote by Y* the dual of Y consisting of all functions f defined on Y and with values in R=L having the graph a hyperplane in Y>L = X and satisfying $f(\theta)=0$, where $\theta=Y\cap L$.

We shall prove that Y* is a linearization family ([7]) of Y. Consequently we deduce the existence of a real linearization of Y and finally of YXL = X. To identify L=R, to prove that Y is a linearization family of Y and to show that the product of the linearization structures of Y and L is a linear zation for X = YXL, we employ the result from the case 3≤dia (∞ and the uniquence theorem from [6]. Thus our proof is essentially based on the papers:[10] for the case of dimension 3. [7] for a more general result on the linearization and [6] for the uniquence of the linearization.

2. INTRODUCTION. We denote by £(X) a linear structure (F,+,o) over a field F on the set X and by $\mathcal{L}(X)|_{Y}$ the linear structure induced by Z(X) on the subspace YCX. If $\mathcal{L}(X')=(F,+',o')$ is a linear structure of another space X', then L(X) > L(X') means the linear structure (F, +, 0) on $x \times x^*$ defi d by: $(x_1, x_1^*) \oplus (x_2, x_2^*) = (x_1 + x_2, x_1^* + x_2^*)$

 $\lambda \odot (x,x') = (\lambda \circ x, \lambda \circ' x')$.

A pair (X, E) where X is a set and Eis a family of subsets of X is called abstract conveyity space (A.C.S.) if is closed under arbitrary intersections. The members of Gare called convex sets and the convex hull of ACX is defined by [A]= \(C:ACC, CEG). Instead of the notation [AUA'] we use [A,A]. For x,y EX [x,y] is named the closed segment joining x and y; the open segment, denoted by x · y is defined by

 $x \cdot y = \begin{cases} [x,y] \setminus (x,y) &, & \text{if } x \neq y \\ x &, & \text{if } x = y \end{cases}$ (1)

The open half-line having the origin in x and not containing y, denoted x/y, is defined by

 $x/y = (z: x \in z \cdot y)$ (2)

and the line containing x,y , x /y is the set

(3) $\{x,y\} = x/yUxUx\cdot yUyUy/x .$ A set ACX is said to be linear if {x,y}CA for every x,yEA. On an A.C.S. (X, &) we formulate the following free conditions:

[A]=U([B]: BCA, card B<00) for each ACX

 $[x,A]=U([x,a]: a \in [A])$ for ACX, card Aco, x EX (5)

 $[x,y]=[z,y] \Rightarrow x = z$. (6)

It is important to remarck that if (X,\mathcal{E}) is an A.C.S. satisfying (4) and (5) then CEE⇔ x-yCC (¥) x,y∈C.

(7)

The determination of a linear structure $(F,+,\circ)$ for (X,\mathcal{E}) which makes X a vector space over an ordered field F whose algebraic convex sets are presisely the members of \mathcal{E} has been called the <u>linearization problem</u> for an A,C,S, In the case $F=\mathbb{R}$ we speak about a <u>real linearization</u>.

If $\mathcal{L}(X)=(\mathbb{R},+,\bullet)$ is a real linear structure for X such that the open segment idebted to $\mathcal{L}(X)$ we say that $\mathcal{L}(X)$ is a strong real linearization of X.

Clearly if $\mathcal{L}(X)$ is a strong real linearization of X then the open half-line indebted to E is identical with that indebted to $\mathcal{L}(X)$ and so by (3) it follows that ACX is a linear set in (X, E) if and anly if it is an algebraic linear set.

Moreover, if (X, \mathcal{E}) satisfies (4) and (5) then by (7) the notions of real linearization and strong linear linearization for X are identical.

To obtain a characterization of the A.C.S. having a real linearization, a family X^* of real functions defined on X is called in [7] a <u>linearization family</u> for X provided that the following four conditions are satisfied:

- (8) if fex*, Ce& then f(C) is convex in R,
- (9) there exists $x_0 \in X$ with $f(x_0)=0$ for each $f \in X^*$, and if f(x)=f(y) for each $f \in X^*$, then x=y.
- (10) each f∈X* restricted to any line in X is either a bijection or a constant map.
- (11) if $f,g \in X^*$ and each separates x and y, then there are $\lambda, \mu \in \mathbb{R}$ such that for each $z \in \{x,y\}$: $g(z) = \lambda f(z) + \mu$. From [7] we know:
- (A). An abstract convexity space (X, 8) satisfying (4), (5),(6) has a strong real linearization if and only if X has a linearization family X*.

This characterization is an external one using the linearization family. The question is: how can an A.C.S. having a real linearization be characterized using only the properties of \$7

To answer at this question we formulate some conditions on the operations, "(open segment) and, / (open half-line) defined by (1) and (2):

- (12) $x \cdot y \neq \emptyset$, $x/y \neq \emptyset$
- (15) $x \cdot x = x = x/x$
- $(14) \qquad x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- (15) x/y∩x°/y° ≠ Ø ⇒ x∘y°∩ y°x° ≠ Ø
- (16) $x \cdot y \cap x \cdot z \neq \emptyset \implies y = z \text{ or } y \in x \cdot z \text{ or } z \in x \cdot y$

(A-B - ands for U(a-b : e EA, b EB)).

is named in [1] convexity space (X, \mathcal{E}) satisfying (12)-(16) is named in [1] convexity space. It will be denoted by (X, \circ) . For such a space (4), (5), (6) hold.

The notation, terminology and results from[1],[2],[3] will be used.

Let us mention the following theorem [6] which will be needed:

- (B). If an A.C.S. admits a real linearization of dimension >1, then it is unique up to a translation of the origin.
- 3. "E MAIN RESULT. The aim of this paper is to do a new proof c the following:

THEOREM. If (X,*) is a convexity space, complete, of dimension ≥3 satisfying the parallel postulate, then there exists a strong real linearization for X, unique up to a translation of origin.

This theorem can be reformulated in the following way:

An abstract convexity space (X,\mathcal{E}) has a strong real linearization of dimension ≥ 3 if and only if \mathcal{E} satisfies (12)-46), the parallel postulate and (X,\circ) is complete and of dimension ≥ 3 .

4. PROOF. Case 1. $3 \le n = \dim X \le \infty$. For n = 3 the theorem follows from [10]. For n > 3 we prove it by mathematical induction. Let us assume that it is true for n; we shall prove it for n+1. For, let $B = \{\theta, e_1, e_2, \dots, e_{n+1}\}$ be a basis for X where dim $X = n+1 \ge 4$. Define $Y = \{\theta, e_1, e_2, \dots, e_n\}$ and $L = \{\theta, e_{n+1}\}$. Y with the convexity structure induced by that of X becomes a complete convexity space of dimension n satisfying the parallel postulate. By the induction hypothesis it follows that Y admits an unique strong real linearization having the origin in θ , denoted by $\mathcal{L}(Y)$.

In the same way $Y_1 = \{\theta, e_2, \dots, e_{n+1}\}$ of dimension n has an unique strong real linearization with the origin in $\theta \colon \mathcal{L}(Y_1)$. Since LCY₁ it follows that $\mathcal{L}(Y_1)$ induces on L a strong real linearization $\mathcal{L}(L)$ having origin in θ .

Because X satisfies the parallel postulate it is possible the representation X = YXL; for we identify each x & X with the pair (y, f) where y is the intersection of Y with the perallel through x to L and 2 is the intersection of L with the parallel through x to the line $\{\theta,y\}$. If $x \in L$ then $\ell = x$. In particular each $x \in Y$ is identified with the pair (x, Θ) and each x EL with (0, x).

We have only to prove that $\mathcal{L}(Y) \times \mathcal{L}(L)$ is a strong linearization for YXL = X; that means that for every x,x'∈ X, x≠x' the open segment having its ends in x and x' defined by the convexity structure is identical with that defined by the algebraic structure L(Y)XL(L).

To do this we write $x = (y, \ell)$ and $x' = (y', \ell')$. If $\dim\{\theta, e_{n+1}, y, y'\}=1$ then $x, x' \in L$ and our efirmation is trivial.

If $\dim\{e, e_{n+1}, y, y'\} = 2$ then $(e_2, \dots, e_n) \notin \{e, e_{n+1}, y, y'\}$. In fact if we assume contrary then [0,e2,...,en,en+1] C C[e, entry,y'] and therefore n≤2 which is a contradiction. So we may suppose in this case e, \$ {e,e,,,y,y°}.

> $Y_{2} = \begin{cases} \{\Theta, e_{n+1}, y, y^{*}\}, & \text{if } \dim\{\Theta, e_{n+1}, y, y^{*}\} = 3 \\ \{\Theta, e_{2}, e_{n+1}, y, y^{*}\}, & \text{if } \dim\{\Theta, e_{n+1}, y, y^{*}\} = 2 \text{ and } \end{cases}$ e2 \$ {0,en+1,y,y', .

Since dim Y = 3 there exists a strong real linearization $\mathcal{L}(Y_2)$ with the origin θ for Y_2 . Applying two times the dimension formula ([3], theorem 9) we obtain :

(17)
$$n+1 \ge \dim \{Y_2, Y_1\} = \dim Y_2 + \dim Y_1 - \dim Y_2 \cap Y_1 = 3+n-\dim Y_2 \cap Y_1$$

and $n+1 = dim\{Y_2,Y\} = dim Y_2 + dim Y - dim Y_2/Y =$ = 3+a-dim Y2/1Y .

From (17) and (18) we have

 $\dim Y_2 \cap Y_1 \ge 2,$ $\dim Y_2 \cap Y = 2.$ (19)

(50)

(19) and (20) permit to apply to the spaces Yally and Yan't the uniquence theorem (B) on the linearization. Thus

(21)
$$\mathcal{L}(Y_2) \Big|_{L} = \mathcal{L}(Y_1) \Big|_{L} = \mathcal{L}(L)$$
(22)
$$\mathcal{L}(Y_2) \Big|_{Y_2 \cap Y} = \mathcal{L}(Y) \Big|_{Y_2 \cap Y}$$

and since $Y_2 = (Y_2 \cap Y) \times L$, $\mathcal{L}(Y_2) = \mathcal{L}(Y_2) |_{Y_2 \cap Y} \mathcal{L}(Y_2)|_{L}$ and $(\mathcal{L}(Y) \times \mathcal{L}(L)) |_{(Y_2 \cap Y) \times L} = \mathcal{L}(Y) |_{Y_2 \cap Y} \mathcal{L}(L)$, from (21),

(22) we have

(23)
$$\mathcal{L}(Y_2) = (\mathcal{L}(Y) \times \mathcal{L}(L)) |_{(Y_2 \cap Y) \times L}$$

Since $x,x' \in Y_2$ it follows that all the open segment $x \cdot x'$ is contained in Y_2 and since $\mathcal{L}(Y_2)$ is a strong real linearization of Y_2 , this segment coincides with the algebraic open segment defined by $\mathcal{L}(Y_2)$ which by (23) coincides with the algebraic open segment defined by $\mathcal{L}(Y) \times \mathcal{L}(L)$.

Therefore $\mathcal{A}(Y) \times \mathcal{A}(L)$ is a strong linearization of X. Case 2. dim X = ∞ . Consider B a basis in X; θ , $e \in B$, $\theta \neq e$. Then Y = $\left\{B \setminus e\right\}$ is a hyperplane in X, L = $\left\{\theta,e\right\}$ is a line and Y/\(\Lambda\L = \theta\). As in the case 1 it is possible the representation X = Y×L.

The convexity structures induced on Y and L have the following properties:

(24)
$$y_1 \cdot y_2 = \pi_1 (y_1, l_1) \cdot (y_2, l_2)$$
 $(x) l_1, l_2 \in L$

(25)
$$y_1/y_2 = \pi_1 (y_1, l_1)/(y_2, l_2)$$
 $(\psi) l_1, l_2 \in L$

(26)
$$l_1 \cdot l_2 = \mathcal{R}_2 (y_1, l_1) \cdot (y_2, l_2)$$
 (#) $y_1, y_2 \in Y$

(27)
$$l_1/l_2 = \mathcal{R}_2 (y_1, l_1)/(y_2, l_2)$$
 (#) $y_1, y_2 \in Y$

where for ACYXL we define \mathcal{R}_1 A = (y \in Y: (3) \in \in L \) such that $(y, l) \in A$ and \mathcal{R}_2 A = ($l \in L$: (3) y \in Y such that $(y, l) \in A$).

In the following we identify the line L with the real numbers set in the following way: we choose $e_1,e_2\in\mathbb{B}\setminus(0,e)$ with $e_1\neq e_2$ and we denote $X_1=\{0,e_1,e_2,e\}$. From dim $X_1=3$ it follows that X_1 admits a strong real linearization with origin in $0:\mathcal{L}(X_1)$. In the next we consider as real coordinatization of L the coordinatization induced by $\mathcal{L}(X_1)$; so $\mathcal{L}(L)=\mathcal{L}(X_1)|_{L}$.

Using this coordinatization of L we can define the set Y* of all functions $f:Y \longrightarrow R \equiv L$ with $f(\theta)=0\Xi\theta$, for which graph $(f)=((y,f(y)):y\in Y)CY\times L=X$ is a linear set of X. Our next step is to prove that Y* is a linearization family for Y. First, observe that for $f\in Y^*$ and $y_1,y_2\in Y$ we have:

(28)
$$f(y_1 \cdot y_2) = f(y_1) \cdot f(y_2)$$
,

(29)
$$f(y_1/y_2) = f(y_1)/f(y_2)$$
.

To verify this let $y \in y_1 \cdot y_2$. By (24) there exists $l \in L$ such that $(y,l) \in (y_1,f(y_1)) \cdot (y_2,f(y_2))$. Since graph (f) is linear then $(y_1,f(y_1)) \cdot (y_2,f(y_2)) \subset \operatorname{graph}(f)$ and so $(y,l) \in \operatorname{graph}(f)$. Therefore l = f(y). Using (26) we obtain $f(y) \in f(y_1) \cdot f(y_2)$ which proved that $f(y_1 \cdot y_2) \subset f(y_1) \cdot f(y_2)$.

For the converse inclusion let $l \in f(y_1) \cdot f(y_2)$. Then by (26) there exists $y \in Y$ such that $(y, l) \in (y_1, f(y_1)) \cdot (y_2, f(y_2)) \in f(y_1)$. Thus l = f(y) and by (24) $y \in y_1 \cdot y_2$. So $f(y_1) \cdot f(y_2) \in f(y_1 \cdot y_2)$ and (28) is proved.

To prove (29) we use the same reasonement with/instead of the operation.

According to (28) we see that Y satisfies (8). For (9) we have to prove

(30)
$$(y_1, y_2 \in Y, y_1 \neq y_2) \Longrightarrow (\exists f)(f \in Y^*, f(y_1) \neq f(y_2))$$

For, let Y_1 be a hyperplane in Y such that $\theta \in Y_1$, $Y_1 \cap \{y_1,y_2\} \neq \emptyset$ and $\{y_1,y_2\} \neq Y_1$. We may assume $y_2 \neq Y_1$. Let $F = \{Y_1,(y_2,1)\} = Y_1 \cup (y_2,1) \cdot Y_1 / Y_1 \cup Y_1 / (y_2,1)$. We have

 $\{F, (y_2, 0)\} = \{\{Y_1, (y_2, 0)\}, (y_2, 1)\} = \{Y, (y_2, 1)\} = X$

In addition $(y_2,0) \notin F$ because otherwise either $(y_2,0) \in (y_2,1) \cdot Y_1/Y_1$ or $(y_2,0) \in Y_1/(y_2,1)$. In the first case it would follow that $(y_2,0) \cdot Y_1 \cap (y_2,1) \cdot Y_1 \neq \emptyset$ and in the second case that $(y_2,0) \cdot (y_2,1) \cap Y_1 \neq \emptyset$. According to (26) in both cases we we obtain $0 \in I \cdot O$ which is absurd.

Thus by [2] lemma(16),pp.325, F is a hyperplane of X with 0 GF.

If we shall prove that for any $y \in Y$ card $F \cap L_{g} = 1$,

where Ly is the parallel through y to L, then the existence of f EY* such that graph(f) = F will be proved.

First observe that L $\not\in F$, because otherwise, from the fact that $L_{y_2} || L \subset F$ and $L_{y_2} \cap F \neq \emptyset$ it would follow $L_{y_2} \subset F$.

Thus $(y_2,0)$ EF, but this is impossible by what was proved above. Now, if for $y\in Y$ the line L_y was parallel to F it would follow that L is also parallel to F and by $\text{L}\cap\text{F}\neq\emptyset$, that $\text{L}\subset\text{F}$, in contradiction. Therefore $\text{F}\cap\text{L}_y\neq\emptyset$.

Finally, observe that if card $F \cap L_y > 1$ then $L_y \subset F$ and since $L_y \parallel L$ and $L \cap F \neq \emptyset$, it would have $L \subset F$, which is again a contradiction. Thus (31) holds and for each $y \in Y$ we may define $f(y) = \mathcal{K}_2 \ F \cap L_y$.

We have only to show that $f(y_1) \neq f(y_2)$. Denote $y = Y_1 \cap \{y_1, y_2\}$, then f(y) = 0. If $y = y_1$ then $f(y_1) = f(y) = 0 \neq 1 = f(y_2)$ and so (30) is proved. If now $y \neq y_1$ then since $y_2 \neq Y_1$ we have $y \neq y_2$. The following cases are possible: $y \in y_1 \cdot y_2$, $y_1 \in y \cdot y_2$, $y_2 \in y \cdot y_1$. In each of them by (28): $0 \in f(y_1) \cdot 1$, $f(y_1) \in 0 \cdot 1$, $1 \in 0 \cdot f(y_1)$, respectively. Thus in all cases $f(y_1) \neq f(y_2)$ which completes the proof for (30).

To verify (10) let be the line $\{y_1,y_2\} = y_1/y_2Uy_1Uy_1 \cdot y_2Uy_2Uy_2 \cdot y_2/y_1$, where $y_1 \neq y_2$. If $f(y_1) = f(y_2) = \ell$, then the fact that $f(y) = \ell$ for every $y \in \{y_1,y_2\}$ is a trivial concequence of (28), (29), (13); thus in this case f restricted to $\{y_1,y_2\}$ is a constant map.

In the case $f(y_1) \neq f(y_2)$ the injectivity of this restriction is trivial. For the surjectivity let $r \in \mathbb{R} = \left\{ f(y_1), f(y_2) \right\}$, $f(y_1) \neq r \neq f(y_2)$. Then $r \in f(y_1)/f(y_2) = f(y_1/y_2)$ or $r \in f(y_1) \cdot f(y_2) = f(y_1/y_2)$ or $r \in f(y_1)/f(y_1) = f(y_2/y_1)$ and consequently $r \in f(\left\{y_1, y_2\right\})$. Thus (10) is verified.

To prove (11) consider $y_1,y_2\in Y$, $y_1\neq y_2$, the line $D=\{y_1,y_2\}$ and the finite dimensional subspace $X_2=\{X_1,D\}$ of X. X_2 has an unique strong real linearization with origin Θ : $\mathcal{L}(X_2)$. Since X_1 admits an unique linearization with the origin Θ we may write $\mathcal{L}(X_2)|_{L}=(\mathcal{L}(X_2)|_{X_1})|_{L}=\mathcal{L}(X_1)|_{L}=\mathcal{L}(L)$. This means that the coordinatization of L induced by $\mathcal{L}(X_2)$ is identical with that induced by $\mathcal{L}(X_1)$.

Let $f,g\in Y^*$. The restrictions to \mathcal{R}_1 X_2 of f and g are linear functions since their graphs in \mathcal{H}_1 X2×L are linear sets.

If f separates y, and y, then the following system

$$\begin{cases} \lambda f(y_1) + \mu = g(y_1) \\ \lambda f(y_2) + \mu = g(y_2) \end{cases}$$

has an unique solution (λ, μ) . If $y \in \{y_1, y_2\}$ then there is $\alpha \in \mathbb{R}$ such that $y = \alpha y_1 + (1-\alpha)y_2$ (in $\mathcal{L}(X_2)$). But then

$$g(y) = dg(y_1) + (1 - d)g(y_2) = d(\lambda f(y_1) + \mu) + (1 - d)(\lambda f(y_2) + \mu) =$$

$$= \lambda(df(y_1) + (1 - d)f(y_2)) + \mu = \lambda f(y) + \mu \text{ and the proof of}$$
(11) is completed.

To finish the proof of our theorem we must only show that the real linear structure $\mathcal{L}(Y)\!\!\times\!\mathcal{L}(L)$ is a strong real linearization of YXL = X .

For, consider $x_1, x_2 \in X$, $x_1 \neq x_2$, $X_3 = \{X_1, x_1, x_2\}$, $X_4 = X_3 \cap Y$. Since $3 \le \dim X_3 < \infty$ there exists a strong real linearization with the origin 8 of X3 and since dim $X_3 \ge \dim X_4 \ge 2$ we have $\mathcal{L}(X_3)|_{X_4} = \mathcal{L}(Y)|_{X_4}$

and
$$\mathcal{L}(\mathbf{X}_3)\big|_{\mathbf{X}_1} = \mathcal{L}(\mathbf{X}_1)$$
 . Therefore

$$\mathcal{L}(\mathbf{x}_3) = \mathcal{L}(\mathbf{x}_3) \big|_{\mathbf{X}_4} \times \mathcal{L}(\mathbf{x}_3) \big|_{\mathbf{L}} = \mathcal{L}(\mathbf{Y}) \big|_{\mathbf{X}_4} \times (\mathcal{L}(\mathbf{x}_3) \big|_{\mathbf{X}_1}) \big|_{\mathbf{L}} =$$

$$= \mathcal{L}(\mathbf{Y}) \big|_{\mathbf{X}_4} \times \mathcal{L}(\mathbf{X}_1) \big|_{\mathbf{L}} = \mathcal{L}(\mathbf{Y}) \big|_{\mathbf{X}_4} \times \mathcal{L}(\mathbf{L}) = (\mathcal{L}(\mathbf{Y}) \times \mathcal{L}(\mathbf{L})) \big|_{\mathbf{X}_4 \times \mathbf{L}}$$

Thus

(32)
$$\mathcal{L}(X_3) = (\mathcal{L}(Y) \times \mathcal{L}(L))|_{X_4 \times L}$$
.

Since $x_1 \cdot x_2 \in X_3$ and $\mathcal{L}(X_3)$ is a strong real linearization of X3 it follows that x1 .x2 coincides with the algebraic segment induced by $\mathcal{L}(X_3)$ and next by (32) it coincides with the algebraic segment induced by L(Y)×L(L). Therefore L(Y) X L(L) is a strong real linearization of X .

REFERENCES

- [1] V.W. Bryant, R.J. Webster, Convexity spaces. I; The basic properties, J.Math.Anal.Appl. 37,206-213 (1972).
- [2] V.W. /ant, R.J. Webster, Convexity spaces. II; Separation, J.Math.Anal.Appl. 43, 321-327 (1973).
- [3] V.W.Bryant, R.J. Webster, Convexity spaces. III; Dimension, J.Math.Anal.Appl. 57, 382-392 (1977)
- [4] J.Cantwell, D.C.Kay, Geometric convexity. III: Embedding, Trans.Amer.Math.Soc. 246, 211-230 (1978).
- [5] J.-P. Doignon, <u>Caractérisations d'espaces de Pasch-Peano</u>, Aced.Roy.Belg. Cl.Sci. (5) 62, 679-699 (1976).
- [6] D.C.Kay, ...Meyer, A convexity structure admits but one resingular transfer of dimension greater than one,

 J.London Math.Soc. (2) 7, 124-130 (1973).
- [7] P.Mah, S.A. Naimpally, J.H.M. Whitfield, Linearization of a convexity space, J.London Math.Soc. (2) 13, 209-214 (1976).
- [8] R. Precup, Sur l'axiomatique des espaces à convexité, L'Anal. Num. Th. L'Approx. 9, 2, 255-260 (1980).
- [9] R. Precup, Funcții definite de spații de convexitate; spații duale de convexitate, Lucr. Sem. Itin. Ec. Funct., Aprox., Conv., Cluj-Napoca 16-17 mai (1980).
- [10] O. veblen, A system of axioms for geometry, Trans. Amer. Math. Soc. 5, 343-384 (1904).