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1. INTRODUCTION.

Iet X be & real Banach space with norm I-l' and let I
be the interval [0,1]. Let
P:IxXxXxXC(I;X) — X ,
Wy = a u(0) - bu'(0) ,
and e = e u(l) + d u' (1) (uec(1;x)),
where a,b,c,d sare non.negati‘va real numbers with a + b>0 and

¢ + &> 0. Consider the mappings

Hu = P (u(0),u'(0), w(l), u'(1)),
Tu = P (u(0),ut(0), w(1), w(l)) (ueckT;m),

vhere @, IP T e

Thig paper is concerned with the existence of solutions
of the boundary value problem
(1.1) . u" = £(t,w,u’';u) s

Y.u= Tau (i = 1,2).

(1.2) Wy 4
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By a solution of (1.1) we mean a fuunetion n'ecz(I;x) satigfying
u"(t) = £(t,u(t),u’(t);u) for all teT.

We shall require that f,p and ¥ be o~ Iipschitz, of being the
Kuratowski's measure of noncompactness. There sre more reasons for
the inve_stigation of equation (1.1). One of them is the interest
in the existence of solutiohs to some boundary value pioblems for
systems of second-order differentisl equations with devmung ar-
gurzents. :

The technique that we shall use is baesed on the Leray -
Schadder's alternative for condensing mappings and does not use
the topological degree. In addition, we shall use the "a priori
bounds* method. . 2

Our paper has as point of starting, on the one hsnd the
monograph [7] of A.Granas, R.Guenther and J.lee, i’:ich in case X
is finite-dinensional is concerned with ‘the system

(1.3) = £(t,1,u")

with boundary conditions (1.2) sssuming the continuity of £, ?
ard ) , and on the other hand the paper [18] of K.Schmitt and
R.Thompson, which deals with the existence of solutions to the
infinite system (1.1) satisfying ;
u(0) = x, and u(l) = Xy (X59%X9 €X) or tne boundary conditions
Wsu = 0 (i =1,2), assuming the complete continuity of £,

The Lersay-Schauder's alternative on completeiy continuous
meppings (see [3] ) has been extended for condensing mappings by
M.Mertelli and A.Vignoli [12] . Their proof uses tne topological
degree in the sence of R.D.Nussbeum [14] (see also [17,pp.113 -
121]). In Section 2 we shall give a proof to this extention wit-

nout using the topological degree, but only the elementary notion
of essential mepping (see [6] ).
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In Section 35 we shall extend, in case ¥ is irfinite -
dimensional a re:;ault from [7] on & »riori bounds of the soluti-
ons of problem (1.1) - (1.2). The growth condition with Tespect
to u' that will be impoc<d to £ is that from [gq ..

In Section 4 we shall establish some resulis on the exis-
tence of solutions of the boundary value problem (1.1) - {3.2)%
Under several aspects, our results Ceneralize those obtained in
(7] ana (28] .

In what is to follow, we let flull= nax Ju)l: ter) ror
BEC = C(I;X), Nul= max (lul, lu' ) for uwec? - cMT:X) ena
llu ﬂz =mex (Hull, Hu'll , fu"ll) fop nec? = c2(I;%). Also "
by J we denote the dualitz mepping of Y.

_2. LERAI—SCHAUDER"S ALTERNATIVE FOR CONDEI'SING lMAPPTIGS.

Iet Y be a closed comvex subset of the real Banach space
X, Z an erbitrery subset of X ang let F :Z—Y be a conti-
nuous mepping. Denote by .o the Kuratows  's measure of noncom-
pactness. ‘

The mapplng F is szid to be (0, P) —- lipsehitz (where
r> 0) if for every bounded subset 1 oi“ 2, F(4) is bound'ed
5 %

-

o(F(4)) < fo((m
F is o(- Tipschitz if there exists f>o such that F
be (e, f’) - Iipschitz. ‘ :
F is said to be tondensing if for every bounded subset A
of Z , F(A) 1is bounded and if of(A) > 0, then
COU(F(A)) << ol(h) .

The fixed point theorem of D.N.Sadovskii [15] car be for—u-

lated &s follows.
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Theorem 2.1 (B.N.Sadovskii). If X is a real zsamch space
Y a closed convex subset of X and F : Y — Y a condensing
mepping with F(Y) bounded, then there exists xe¥ such that
Fx = x. :

Proof. TO P(Y) is a closed bounded convex subset of Y
and F (CO F(Y))CTO F(Y). Thus, we may apply to F : 00 F(Y) —
€0 F(Y) the Sadovskii's Tixed point theorem.

let U be an open bounded subset of Y and let T 1)
be the set of all condehsing meppings F : § — Y which are fized
point free on the boundary QU of U. A mapping F in J%(ﬁ;!") is
called sdmissible. 5

Iet Fe J@(B;I). F is inessentisl if there exists s fixed
point free mapping Geﬂtﬁ;'f) such that the restrictions of F
and G to Bp coincide, i.e., P'm’“'w’ If F is not ines-
sential it is calle@ essential.

It is clear that en sdmissible mapping P ie_:. essential if
and only if each sdmissible mapping which coincides with F on U,
has at least one fixed point in T.

lemna 2,1, Let X €U. The mapping P : § —Y, Px-= i
for 211 x€U is essential. :
Proof. Since ol( {xo}j‘l = 0 it is clear that F is con-

densing. ILet Ge-ﬁ(t‘r,n with . Define H : T —=Y,

GI =:r|
au U

Hx=x if xey~T

o !
=0z , 3 2<%,
Obviously, H is contimuous. Also, if A CY is bounded ,
since H(A) CG(aNU) U {x,} , we see that H(A) is bofinded too.
Now assume o{(A) > 0. In case of(A[1T) >0 we have
oa)) < LN U {x,} ) = olleaN®) <
< AN < oL8)
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vhence o((H(A)) < ol(A). If o(aNT) =0, then

o((H(A)) < o(G{ANT)) = 0 < (&) .

Thus, if o(4)>0 then (H(A)) < &(A). Therefore, H is con-
densing. Tn sddition, since H(Y) = 6(MU{x,}, HY is boundea.
Hence we mey apply Theorem 2.1. In consequence, there exists x €Y
such thet Hx=x, It is clear that x€U and so Gx= x. There-
fore, F is eswentisl.
et P, €AUT;Y). P and ¢ ere called homotopic if there

exists ¥ :IxT—-Y such that H, = H(A, - ) € AT;D) for a11
A€r, Hy =G, H =F and H(«yx) : T — Y is continuous uni-
formly with respect to x€U. If F and G are homotopic we write
rXa, i ' '

. 1erme 2.2. let FeUT;Y). F is inessential if and only
if it {8 homotopic to & fixed point free sdmissible mapping.

Proof. Suppose first that F is inessential. Then, there

exists & fixed point free mapping ¢ € A(T;T) such that G|

= ;l" » It is no Ga.fﬁmﬂt to see {use properties of messures of

ronstupactineg (1, pp.71) that. By =AF + (1 =1) ¢ e AT; D)
and since i .

Ia kg, = mA 01 <lral +le@ |25 =X, (xeD),
thet H(.,x) is continuous uniformly with respect to x€U .
Consequently, * L o .

Conversely, if F A../ G vhere G is a fixed po:.nt free
adm’isélble mapping, we shall prove that H, 1is inessential for
each XEI.‘ vhence, in particular, F = Hy is inessential. For
this, let ¥V '={xel; there fc AeI with Hyx=x}. IfV = 9,
then Hl = F hes no fixed point in T &and so F is ineseentisl.
Next, let us sssime V # @, Teking into account that H(-,x) is



continuous uniformly with respect to xzeU we easily see that

V is closed. In ed@ition v /) U = @ . By Urysohn's Theorem
there is a continuous function € : U —=1I such that €(x) = 1
for x€JU and 6(x) =0 for xe€vV. Define Hﬁ O I, 3

I—:’; X = Hoep X for xel (A €I). Obviously Hai is continuous.
We now show that F’i (0y is bounded. Indeed, if it is no bounded,
then there is a sequence (J;n) - {I such that lH‘i xnl —» 00 a8

n —= oo ., Passing if necessary to a subsequence, we may assume
that &(x)) —6, @ n — oo , where 8, €I. Ten, since H(-,x) s

is continuous uniformly with respect to zet-}, we must have
I etex)a, =) - 8,4, x 1 <1
for n sufficiently large. Wext, from
IH"; xl=1H (ex )2, x)l< |mtetx )A 1Xp) = H(Q A ,x ) | +
+|® (6,4, x|

we found that [ E (8,2 ,x,)| —co @8 n —- oo ,

Thus we arrive at a contradiction, Lecause Hg 61(1-1) is bounded.
It follows that H’i (T) is bounded.
let ACU with &(A) > 0..We will show that

(H (8)) <o(A). Let &A)>0 such that :

o((H, () <o(4) - 3 E(A) and let V(A) be & neighbourhood
of A such that'HPx -Hx I< &A) for ald /JeV(l) and
x€A. Thus, the set H(V(A),A)  cen be covered by e finite num-
ber of sets of diameter at most equal with ol(A) - 3-E(A) +
+ 2-8(A) = X(A) - E(A). Hence o{{H(V(A),8)) < o((A). Consider
{v(li); i= 1,...,n} C{V(l }s leI} a finite covering of the
corpact interval I, Then ol(A(I,A)) < max (ol(H(V(A;),4)) ;
i=1,..0,n)< {(A), whence oC(Hgi (8)) < ol(A). Thus we have shown
that % e AHT;¥). Purther, it is essy to see thet H} is a fixed
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point free mepping and H:

= H;J « B follows that H, i8 ines-
; L g
sential,

o
Now we can prove the Lensy - Schauder's alternative for
condensing mappings.

Theorem 2.2, Let F,Ge ﬁ(ﬁ;!) be two homotopie mappings.
Then P is essentisl if eand only if g is essential,

Iroof, Apply remma 2.2 and use the transitivity of the
homotopy relation.

Remerk 2.1. fThe classical Leray - Schauder's alternative
can be deduced from ‘I’heoreg 2.2'i£: one considers: v - x y U the
unit bell of X , H: I x —X a completely continuocus mapping
satisfying H(A,x) # x vwhenever lE_I end x €9V, H(0,x) = o
for all x€f ena u@,.).-p.

Remark 2.2. Theorenm 2.2 remains tyue if the condensing
meppings are defined with respect to certain other measures of
noncompactness.

3« A PRICRI BOUNDS ON SOLUTIONS .

lemra 3.1. Iet £ : T x XXX CI;X) X be 2 conti -
nuous mepping such that for sach X €X satisfying IxI>u> o
there is x" € Jx for which
(3.1) %, £(t,x,3;2)) > 0
vhenever te€I, yex with (x*,3) = 0 ang z €C%(1;X) with
hzli=1x1).

If wec®(I;X) is a solution to (1.1) for which there
exists tg €[0,1] such that lall=lu(to)l ena (xg,u‘(to)) =
for every x: € Ju (t;) , then .

(3.2) lall < u.

Proof. If we suppose that lu(to)l:.u then, oy (%3.1)
there is x:: € Ju(t,) such that
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(x5, T(ty,u(ty), ui(t);u)I>0 .
Since f is continuous, it follows that there is §>0 such thet
(x{.‘,f(tOm yu(to+h), u'(t#h);u))>0
whenever |hl<§ and t +h €I . Hence ;
=5, w(t+h))>0 ° ( Inl<d, t hel) ,
whence, using Teylor's formula
u(tyth) - ulty) =hu'(ty) + (h%/2)u"(t ¢ eh) ,

where- s = s(h) € I , we deduce that

(x: » ulty + h) —u(t)))>0 .

On' the other hend, since xj € Ju (t,) we must have

(5yultyn)- u(t N < 3 lu(t‘,a‘ml2 -3 lu('te)lzg o,
which ie a contradiction. Therefore, (3.2) must hold.

We shall obtain bounda on the derivatives of solutions to
(1.1) by using the following result. :

Lema 3.2 (K.Schmitt, R.Thompson [18]). Suppose that

(i) There is M0 such that iulll for every solution
u -t LT.1) 5

(ii) There is & nondecreasing function ¥ : [0,+esf—s JO,+eef
such that !

(3.4) lim inf 2/ W(t)> 4¥
t —+oo

and

(3.5) Lt 720l < Wty h

for all te€I, x,y,2€X with Ix|glzigu .
Then there is a constant My such that

(346) ot ll < 1y

for each solution u to (1.1) .
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4. EXISTEVCE THECREIS.
& Consider the boundary value problem
(4.1) Lusx e(s,z,u';n) {(tel) ,
(4.2) Wiu =V, w 4= L3) .
where Lu= 8" + b{tha* + e(thu , b,e€c(I;x) .
-~ tet & o{ued®nn ;mu=o,1i- 1,2} . wWith the
norm l-ﬁe > ci is'a;_ Banach space.

~ If the mepping L'Cz-—--c hmaniwerse, 1:henL]_(32-----(::Jt12
e = «(Lun, Vyu, ¥ym) has also an inverse and LI is a bounded linear
n;apping. !
T B it i b follow, we assume that g:IXTXRXC(I;X) — X
Imlr 4’ x‘u-x are continuous and we denote

: P e x X , Gu= (g{+yu,u';u), V,u, va).
'Mously & 1is continuous.
Theoren 4,1 xf;,cz-——c haeanlnverse.LllG ?—c?

is condensing and there is HM>0 such that HuH2<M for each
solution u to the ‘boundary value problem

(4.3) Lo= Ag(t,u,u';u) (ten) ,

(4.4} Wu= AVe : =53,

for each X € I, then the problem (1.1) - (1.2) has at lesst one
solution.

Broof. A4pply Theorem 2.2 te LIIC— and to the zero mepping,
where U ={ne P s lu lz-:m}. By Lerma 2.1 the zero mapping is
essential. Hence Lilt; is eesential too. Thus, there is weU such
that I7°Gu= u, that is u is & solution to (1.1) - (1.2).

Remerk 4.1. If V,=0, i = 1,2, then G : f i
¢ x{o}x {O}Er: and in theorem 4.1 we may tske instead of LilG
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the mapping o Ci —-cz "

Remark 4,2. if VW=r arnd Vo=s, where r and s
are fixed elements in X, then in Theorem 4.1 we nay take instesd
of Ii'IG the mepping vlg : cg--(% s Where cg ={u eez H
MEs=r, Lu=s}, N: 2 —c, Nu= Ln-u,) and u, is the
u:ﬁ.'qtie solution to the boundary value problem T,u = 0, W_Iu =P,
W8 = 8. Then N h= L+ u, and Theorem 4.1 can be fornulated
as follows : if I"1G is condensing and flu Hy<¥+lhuy i, for
each solution u to (4.3) - (4.4) (A €1), *hen there is at
least one solution u -te (1.1) satisfying %o = » and Wou = a.

We now consider the botmd;sry corditions (1.2) in the follo-
wing cases r ;

(a) &a>0 e300, P and Y bounded ;

() 2=0,e>0 , ¢=0 ad § boundea
(8>0,c=0 , Pbounded and §=0) ;

(¢) a>0,a>o0, (P(xl,xz,xs,x4) =83 - brz
pof Voxpxamsmy) = e x5+ ax,

(periodie boundary conditiens) :
(@ a>0,e>0, (q, tp(xl,xz,xs,xﬂ} <0 snd
(%, 4”‘1*’2*’3’*4” <0
for all x3,%,,%5,%X, €X , Be Jxy and z’;e Jzg 3
(¢) a>0,c¢c=0, (x{, ?(xl.!goxgpxﬂ) <0, ‘f-'—“-—o
(s Ohizes> 0, CPEO, (l’;, *(11,::2,'::3,2‘)} < 0)
for all X1sXp,%s5s%, € X, x;e Jxy (1§ij3) .

In all these cases the mepping I c2

O——C,Lu=u. has

an inverse.



Theorem 4:2. Let £, ¢ and | be (of,r) - Lipschitz .
Suppose that

(1) For each x€X satisfying |¥|>E>0V there is
x* € Jx for whiech (3.1) holds ;

(ii) There exists a nondecreasing function B o lo A T
J0,+eo[ such that

(4.5) lim 2/ W(t) = + oo
t —= 400 =

and

(4.6) It (tyx,752)) < wlyD

for all t €I, x,y,2 €X with Ixi<lz] ;
(iii) Hli'lﬂr A
Then the boundary value problenm (1.1) - (1.2) has at least

one solution in each of cases (a) - () ..

Proof. By (iii) the mepping L]_lG is condensing. Thus ,
with a view 1':0 apply Theorem 4.1 we have only to prove the boun-_
dedness with respect to i+ ll, of the set of solutions to (4.3) -
(4.4). We shall use Lemme 3.1 and Lemma 3.2. Let u be a nonzero
solution to equation u" = A £(t,u,u*;u) (Ae I) satisfying (:1.4).
Iet tg be such that lull= lu(to)l . Suppose first that tOG]O,lt =
Then for every x’g € Ju(to) we have

(xgru(t) - ulte)) < 51 u(t)lz- 3 |u(t°)|2.$ @ o
whence for t fta we get (x:f,u'(to)) = 0 and for tlto, 4
(x’;,u'(tu))( 0 . Therefore (x’;,u'(to)} = 0. Thus, we may svply
Lemma 3.1 to coneclude that lh_lffsf.' for each solution u to (4.3) -
(4.4). Further, by Lemma 3.2 we have llu' i< My. Consegquently, sirce
f cerries bounded sets into bourded sets, we also . ohisin ol < ¥,

So it remains only to investigatg the casz t, e{o,l} . In cese :
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(8) If t, =0, thenby (x%,u(t) - u(0)) < z-lu(t)’

. Iu(o;l €0, for x€Ju(0),we deduce (x%,u%(0)) <0 .
Henoe ;
0> b(xg,u'(0)) = a (x3,u(0)) - A (FZ,vym) >

> alu(0312 - rlu(o)l , vhere lrlgr %
Tt follows thet Ju(0)| < r/a. Similarly, if ty= 1, we get
Jun) | < s/e, vhere ,lp[gs. Therefore,
ol < mex (M,x/a, ste) .

(B) If t,= O then since u'(0) = 0 we may apply lemma
5.1 and we getflull < 3. If ¢, =1 then, as in cese (a) we ob-
tain [lull g s/c. Therefore, ﬂuﬂ(-msx (ly8/e). (For a>0, e = 0,
¢ bounded and qlEO we have flu ll < max (%,7/a)). |

(e) Since u(0) = u(1) , lu(o}l'-lul,‘e heve

(<Bu(t) - w(0)) = (Fu(t) - (1)) <0
for each r:e Ju{0). Thence
(x5,2'(0)) O and (x5,u'(1)) 2 0 .

But since u'(0) = u'(l) it follows (x' u*(0)) = 0, wich pernits
us to apply Lemma 3,1l. 8

(d) We will show that in this case t,€Jo,if. t.hi;
end let us first sssume b = 0. Then, since 2 u(0)= A f'(u(O') 4
u'(0), u(1), u'(1)) it follows (x5,2(0)) €0 for all x, € Ju(0),
whence {u(0) | = 0. Thus t, # 0. Next let B> 0 and suppose that
luto) b = lull . Then (x:_,u (0)) g0 for &1l x €Ju(0). on the
other hand, since (Ix VIu) <0 we hm

(4.7 (x5, (0)) = B!u(o)l - %— (x5, Ty@) > 0 .

In consequence, (x':,u'(o)) =0 and since a>0, by (4.7) we also
deduce Juto)| = o y & contradiction., So t, # 0« Similarly, using
the second boundary eondition in (4.4) one shows that t, # S e
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(e) As 1n case (d) it is shown that t, # 0. Ir LA 1
then wu'(l) = 0 and we mey epply Lemma 3.1,
_ Remerk 4.%. If V=1 and V, = s, then in Theorem 4.2
instead of (iii) we may require that

ety <1,
where LT is the integral operator heving as kermel the Green's
Tunction associated to ILIm= u" end Wyu=0 (i =1,2) (see Re-
marks 4.0 and 4.2).
In particular, condition (iii) in Theorem 4.2 is satis —

fied if f,? end QI ere completely continuous ( r =0) .
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