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1. Abstract. The topological transversality theorem for econden-
sing rappings stated in [7] ie used to prove some perturbatioa
theorems: a theorem on r -condensing perturbations of hyperaccretive
mappings and a Browder type result oa the perturbatiom of some
bijective mappings by r-mpsemu mappings. An application eoncer-
ning the existence and the uniqueness of solution to a boundary
value problem for nonlimear second order diffential equations in
Banach spaces is finally given.

2. Prgl;ninar'iu. Ist X be a real Banach space, X* its
dual. Denote both the norm in I and its dual morm 4im I¥ by
l.]. The valoe of x®cI™ at x€X 4s denoted by (x%,x). 1In
case X = R® the bilinear functional (.,.) stands for the scalar
produet. '

Let & be the duality mapping of X, f.e. F:iX—2% ,

Fx -{x"ex" s (2%,x) =Ix]? =]3® I2} and let (.,.), be the

semi~-inner product on X defimed by

(x3), =lr e, £~ (ly+sxl-Iy D,
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or equivalently (x,y), = sup {(%3) : ¥% 3-';} =

A mapping P : D — 2X\[P], DCX, is said to be aceretive
it (yy-y50x)-3,), >0 fer all x,,3, €D, ¥y €Px; and y,€Fx,.
An accretive  mapping F ie said %o be hyperaccretive if I+sF -
is onto X for some (equivalenily for all) e >0. Recall that
if P is hyperaccretive them the mapping R =(I+sF)™:X —~D 1s
nonexpansive for each s>0 and B.: —=x as 840 for all
€D (see [3], pp.126).

Let Y denote of or ﬁ » Euratowski's er the ball measure of
noncompactness; for each bon.nd@d subset B of a metrie space one
has .
ﬁ{(B)-in.f{d)-O:B admits a finite ecover by sets of diasmeter (d}
and ! :

P(B)sm{r >0:B can be eovered by finlitely_nnq balls : of radius z}

Clearly, F(B).so{(ngzp(n).

A eontinuous mapping P : Y —X (Y being a matris space) is
called Yy -Lipschitz if : r(?(B))ék X'(B) for some k>0 and all
bounded BCY. We write k-T-Lipschitz if k 4s important. F
is said to be r-con.donsing ir Y(!(B))<r(l) whenever BCY 1ig
bounded and Y(n)>o.

Let J =[0,1]. Denote by 'C the real Banach space C(J;X)
with the norm llmli= u:{ln(t)l:te.‘f} and by c® (n»1) the
space C®(J;X) endowed with the nora ﬂnlnhmx{Ilﬁ(i)liziao,....n}

Ve shall denote by X'n and simply by ”' + the corresponding
measure of noncempactness on the space c", respectively en C.
If BCC ~is bounded and equicontinuous, then

o«(B) = sup{oL(B(3)) : ted],
where B(%) -{_n(t):u EB} (300[3].' Proposition 7.3 (a)).
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3« The topological transversality theorem feor
V}:gondensigg mappings

Let I be a real Banach space, K a elosed convex subset of
X and let UCK be bounded and opem in K. Denote by U and
U the elesure and the boundary of U in K. Led ﬂ’w(ﬁ;x) be
the set of all r-condanai.lg mappings P : U—+K with x 4 Px
for any x€30. The elements of a@‘w(ﬂ;ﬂ are called admisaible.
A mapping el (TiK) 1 said to be sssential 1 amy admissible
mapping € which coincides with P.on JU, has a fixed point. An
admissible mapping which 1s mot essential is called inessential.

Eroposition 3.1. The eonstant mapping P : F—x, Px= x,
for all x€U, where x2,€U, 1s eseential.

'Swe gdmissible mappings P. and !'1 ars said te be homotepie
if there exista H : JXU —=X such that E{l..)eﬁm(ﬂ'ﬂl fer

el sed, K0O,.) =7, BE(1,.) =P, ad {EG.,x)=xel] 1s
equicontinnons. A

Thegrem 3,2. Twe hemoto'pic adamissible mappings are both essen-
tial er botk inessentisl.

The proofes eof Propeositiom 3.1 and Theorem 3.2 eanm be found im
~ [7]. T™ey reproduce with some specifical changes those of the simi-
lar results on ecomplstely continuems mappings (zee [4]).

4. Perturbation theorems. We will preseant twe applications eof
Theorem 3.2.

Theorem 4.1, Let X be a real Banach space,
? : D—=2"\[p], DCX, a hyperaccretive mapping, UCX open
bounded with UCD and S : U —X Y -eondensing. Ir '
x - x.#a(Sz-'rz-x.) for some x €U and all s€]0,1], x € JU,
then there exists x €U such that x €(5-T)x.

Proof, We shall apply Theorem 3.2. to PF,F; : T—zx r - Xgr
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R = (1+7)"1s. To this end, define E: JXU—-1,

H(s,x) = Ra((l-a)xooan). Since S is Y—condenuing and R,

is nonexpansive, H(s,.) is Y—condenaing too. Also, the hypothe=-
sis on JU guaranties that x # H(s,x) for all seJ and
x€JU, Hence, H(a,.)ﬁfzau(ﬂ s X) for all sed. It remains
only fo show that {B(.,x} : xeﬁ} is equicontinuous at each
8,€J. For s, =0 ¢this follows from

JE(s,2) = x, 1< IR (1-8)x,+85x) R x I+

+IRx -x I < olsx-x |+IRx ~x | ,

because S(U) 1is bounded and R,X, —>x, as s&O; Now let
aoe:]o,l].. At the beginning we show that -[_(I-r(.)'l')"lx:xeB} is
equicontinuons at s, whenever BCX is bounded. Indeed, since

1
= (x=R x) € TR, for any s€]0,1], we have

e 1
Oé(-;(x-li'x) - : (x-R%xJ, R'x—naox) + =

((1 .1)(
= - ey w—— -R
Pl

1l
2 x) -:(Bax-n’.x), R’x-na.z) +

-]
1 1 1
- (6 - -’:)(x.g'ox), H'x—naoz):,, == n,x-n_.xlz 5

; 1
It follows that ln.x-aa xlg —|s-s,|Ix-B, zI , whence the
o s, S

equicontinuity of {_(Ii-(.)'l')"lx:zeﬁ } at s, is immediate
because B and R, (B) are bounded. Now, from :
(3 s

Vi(e,) (s, x) | < IR, ((1-0)x +o5%) “R, ((1-8)xg+ssx) |+
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+IRy ((-e)xyteSx)-B, ((1-8,)x,+e,S3) I < .'

< IR, ((1~8)x +eSx) -R"( (1-8)x +esx)|+|s-e | Ix,-sx1 ,

using the boundedness of S(U) end the equicontinuity just proved
fer B = unv({xO}US(U)), we may infer that {H(;,x):x,eU} is
equiceontinuous at 8,5 as desired. Thus, F, am F) are
homgtopie and since, by Prepositiem 5.1 F, is essentiel, it
fellews by Theorem 5.2 that F, is also essential. Consequently,
F, has a fixed point =xeU, that is xe€(S-T)x.

Theorem 4,2. Let X be a real Banach space, Y a metric space,
T:Y—X and S : Y —X twe mappings such that the following
conditions are satisfied:

(1) s ia Y-Id.peehits'

(ii) T maps bounded sets :I.nto bounded sets;

(iii) For each 8€J, T, = T-8S is injective, !;1 is

continuous en its domain and there exists €, >0 such that
() e, J(B)< iz, (B)

i?umver BCY is bemded,
(v} {T;'x: scJ] is bounded for eaen zxex.

Thea, if T is surjective, T-S is surjective toe.

Proof. At the begimning we will show that the constant e, in
(1) may be ec_amid.rad independent on a. To thia end, let s cJ
be arbitrar, scJ and €, ‘the greatest constant for whiech (1)
helds. Let BCY be beunded. If & > LT (B)), then B pean be
eevered by ﬁnital.y many subsets B-l such that diam T (Bi') < E
and, en the other hand, by (1), o{(B)<&/(2e g)e Them, S being
"-Lipaehits, say k-Y-Lipschitz, ene has a{(S(B))<2kc((B)<kE/e'.

It follows that B alse admits a PERTh e ea e e



154
172
diam S(Bi)st&/c’. Now, for yl,yzeBinBj one has
'Ts.’l'T%’?'é 17,317, 1+ [s-s, |15y, ~Sy,1 <

€ E +|s-8 |XE/e, .
‘ HAEA - £ T, (B)
Thus, the sets T, (Bin Bj) represent a finite cover e 2,
s .‘ .
of dismeter < &(1+l]a-a.lk/c') and so .

o(('.l'l,° (B)) £ E(2+ |s-8 | K/e,).

Letting & § oUT,(B)) we ebtain :

¢, [ (BY< LT, (B))& T, (B)) (14 |0-s | X/e,),

whence c...{ze’(l*[a-a.[k/c‘), that is c'°é23'+2k|a-e.l,

which clearly shows that ¢, are upper bounded by a nunb;r
e>0, as desired. i

Next, suppese that for a certain s<1, T, is surjective
(equivalently, bijective). Define Fy=(T,-T,)T;1:X—X for
s<t<l. We have P, = (t—sJST;]‘ whence, by the continuity of

S and '1';1_,- F, 1is continuous. Now, let k>0 be such that

S is k-y-Lipschitz. If BCX ' is bounded, them by (1) we have
Y -2 X :
J (Py(BY)=(t-e) y(ST] (B)) < (t-8)k 31‘(:. (B)) £ (t-8) z “Y(B).
This implies that F, . ie r-eondensing whenover'
2 ‘ '
B<t<a + =t tsl. Let yeX De fixed arbitrary and put

- e =
Gy = Fyty. charly,. G, .is Y -condensing for s<gt<s + ; s ¥,

We will prove that the set of fixed points ef the mappings
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G,y Bgt<e + : sy t<1l, is bounded. Indeed, ;f xel’iz(Gt),

thea x = F.x+y or equivalently, x = x-Tt'r;lm. Hence

'1’;1: = T;ly,, wheace by (iv), the set

' c
{!';lx:xeﬁx(ut), agt<e +-; ’ tél} is bounded. Since, by

(i) end (ii) T, maps bounded sets inte bounded sets, this

: .
impliea that {_x:x eFix(Gt), st + -;, tsl} is alse bounded,

as elaimed. Let r>0 be such that |xl<r whenever

, \
xeFix(a,), s<t<s +=, t<l end put U={zreX:dzi<r] . For

@
each t<1 satisfying s<tcs +;, define

B:Jd XU —X, B3 =01 _13),03¢ T

It is easy to see that H(0,.) = G, =y eamd EHQ,.) = Gy as

-mappings from U to X, are homotopic and simee G' 8y is
essential, because yéU, G, will be essential teo. Thus, there

ie xyeU such that x,=Gtxy, i.es y = ttr;lx,. Since y -

was arbitrary fixed in X, we get thet Ty is surjective for
any t =atisfying s<t<s + ; sy t<1 ., Now it is elear that

ir To =T is surjective, then after a finite mumber of steps,.
it follews that Tl 2 T-5 is alee surjective.
Remark 4.1. In particular, eonditions (1)=(iv) in Theorem 4.2

are setisfied if T and S are Lipschitz and there exists e>C
such that ed(:,y)sli‘sz-'r'yl for &1l x,y €Y end seJ. Indeed,
in this case, conditions (i)-(iii) clearly hold. To preve (iv),
let xcX, We fix 8,€J such that '1';1 x# @ and we put
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-1 ;
Yo'l '.!;lx whenever for some seJ ome has T "x # ?. Since

] o - = t
0=l !,y.-r..y,.l;ll',y, Tl’a.l I,s’l. Ta”a.l s W BN
eAly, T, ) $1757,7T7, 1< 127, %5 74,1 =

-la-l.\lsy..l-‘éls;..',
for each seJd with T.'r 7 8. Hence { 77'x: secJ} is bounded.

In this special case !homnl;a reduces ts a result ef
?.2. Browder [2].

Remark 4,2, An ether consequence of Theorem 4.2 is the rolleri.ng
_hyperaccretivity criterion: If X is a resl Banach space and ‘
F: X—X is accretive and r-Lipaehita, them F is hyperaccre-
tive, For the preef it is sufficient to take T = I, the identity
ef X, and S = -F and to apply Theorem 4.2; This result can

alse be derived frem a more general hyperaceretivity eriterion
due ts ¥, Barbu [1], cerellary 3;3;2.

Remark 5;2. A topelogical transversality theorem fer multivalue
r-condensins mappings _T, having 7Tx eclesed convex for all x,
can be proved similarly, It can be unsed instead ef the degree
theory, te preve certain other perturbation theorems as, fer ins-
tance, some results of J.R.L. Webb [11].

5. Applicatien. We will study the existence, and th.e uniqueness
of the selutien te the problem

-

(2) a"(t)+p(t)u’(t) = f£(t,ul(t))szl(t), seJ

(3) u(0) = a, uf(l) =b

in a resl Banach space X, where pecC(J;R), geC(J;X),
£e€C(I XX; X) and a,beX. ¥We look for selutions in c?.
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Let cb {uecz : u(O) =a, u(l) = b} 01ear1y, Cb is &

cloaed cenvex subset -1’ 02

Theorem 5.1. Assume
(a) £ is uniformly continuecus on J X B fer any beunded
: BCx; .
(b) There exiets k>0 such that
(4) Y(r(t,ﬂ.))sl’- y(B), for any beunded BCX;

(e) There exists ¢>0 such that
(5) (£, x))-2(4,3,), 2)x,), > elx; =x,|2

for all xl,xzex and teJ:
Then (2)-(3) has exactly one solutiem wucC2.
Prosf. We shall apply Theerem 4.2 with = C(J;X) instead
of X and !-cb te the mappings T=1L,
c§--c, (La)(t) = u*()+p(t)u'(t) ama
S=7F: ¢l —c, (Fa)(t) = £(t,u(t)).

1) We will preve that F is r-mpsehitr.. At the beginning we
shew that
(6) ,‘(r(.r X B)) <k y‘(a) for all bounded Bc:x.
Indaed fer E£E>0 arbitrary fixed, by (a), we have that fer
each teJ there is a neighbourhoed V(%) ‘of T sueh that

lr(t.x)-r('i,x)l<£ for all tev(‘i €) and :t-B.‘
In e.mquenee

Y2V (®,€) x B) )€Y (£(X,B))+2¢ ,
whence, taking into account (4) and the cempactness of J, we get

X'(t(J XB))<k Ar(a)\\ze
Row (6) follews if we take £ —wn
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The continaity of F follews by the continuity of f. Now
let nc.cb be bounded. From (6), tahns B = D(J}, we see that
F(D) is bounded. On the ether hend, sinct D in bounded i.n cz,
11. follura that D i.s equ:.canunueus. Hence,
MD) = r.zp gn(t)) sea;. Also, the lqnieentimity of D
tegether with the uyniform continuity ef £, implies that !(D)

is equicontinucus toe and se
oL(P(D)) = sup LE(DI(1)) : teT] .
VInnsnuch as by (4), .
LIF(DY (1)) = LIL(£,D(1))) € 2 (L1, D())) £
< & Y (DL 2k ol(D(1)) £ 2k D)

we de_duece that

(7 L(F(D)) < 2k (D),

whence all the more
[ (P(D)) < 4k y‘(_m. Finally, since r;ms h(n),

(8) _ J(FD)) &4k J,(D) for all beunded peet

which shews that F is "-Li.paehitz.

2) Obviously L mape bounded subsets ef C-zb

of C.

inte bounded sets

3) T, = L-sF(seJ) is jnjective. This being elear for & =0
we may assume 8>0. Iet T,u = T,v where u,v ec%. Let t €J
such that Iu(to)—v(to)h m[lu(t)—v(t)l:tea‘}. We may suppose
that t°e)0,1'f because u(0)-v(0) = u(1l)-v(1) = 0. Then ;

(:',u'(t.)-v'(t.)) =0 and (x',u"(te)—v‘(t‘})éc ‘:tor every
™e ﬁn(t.)-v(‘t')); Conseguently, sinece

u*(t)=v(t)+p(t) (u' (t)-v' (2)) = s(f(t,u(2))-£(t,v(t))), we get
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0 2(f(t ,ult ))=r(t ,vit )),ult )-v(t ), , whence, by (5)
u(t,)-v(t,) = 0, that is u = v.

4) The fellowing step ia te -p!‘.ﬂ that for each seJ' there
exists ¢, >0 such that

(9) e, rztr;lum €J(B) fer any beumded BCC.:

Such an inequality’clearly helds fer s = 0 beecause
2, =L: czb‘—-—t! is linear bounded and bijeetive. Henee we may
sassume s>0, Let BCC be bounded and let & > o(B) be
arﬁitrsryly fizxed. Then B admits a finite cover by subsets Bj
of dismeter < £ . We have only to prove that eaeh set
!;I(Bj} ean be convered by finitely many subsets Bjt of
dinzB&‘ €/(2¢,), &, being a constant independent of B,t,§
and 4 (we have- denoted by diam, the diameter with respect to the
norm floll 5z .

4e) Let g €B; end u; = T.'g, i=1,2 with g # g,
Coneider tcelo-,.1F such that ugl-ugualult-t,)-nz(to)l (>0).
From
Qo) uf(r)-uz(ti+p(t) (uf () -uy(t))=e(flt,u, (£))-L(t,u,(t)))+

+g;(t)-g,(t)

we deduce :

a(x’,,r(to,ulttoiJ-r{t,,,uztto}))+(x‘,gltt°)-gart°_)) <0

for all x¥c Fuy(t)-uy(t,)). Sinee ll g -g,ll <&, by (5) this
yields 7 ' :

(2 5 b SRESCl el Hal-nzllésf(u);

4%) Applying (7) to D = T1(B;) and teking into secount (11)
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we may infer thst T;]'(Sj) can be represented as an union of ;
finitely many subsets sz such that dism F(Bit)s 2k € /(se)+ &.
In the following we shall fix our attention to some subset Bj‘.
Suppose that ul,uzea B

Then | £(t,u;(t))=2(t,u ()< 2kE /(se)+ € Tor ol ted
and by (le) and (11l) we get

(12) Il ug-uzll <M luj-uslls 2x€ fer2e ,

where X, = max{lp(t)l: teg].
‘4e) u) and u, being as in 4b) denote v = u,-d, and gq=livtil=
=lvr(t°)l, where t €J. Let P be such that irlél/é and

toored‘ and put § = Ir’ . Using Taylor's formula
2
V(to-fr) = V(to)"-rV'{tu) *E— v'(t°+0r} for some 'QEJ,

by (11) and (12) one deduces
a3 lq <2€/(se) + Bl 82,
where F(q) = lpq*zké /e+2E . It is easy to see that ;

Tzfﬁ(ﬁ)>4 €/(se) for all 5 7 EQ, where Q is some nonnegative
eonstant independent of £, Assume q >£Q. Then

#lq)<g?se/(4€) and by (13) one has

2
26 1

(14) I
- : se S . 8E

Thie implies that 4¢ /(s.eq]}%l/z or equivalently, q:SBE/(ae):
Indeed, if 4£/(seq)<1/2, echoosing § = 4% /(seq) in (14), |
one obt_aina “q<§/2+q/2, a contradietion. Thus, if g > £EQ then
qQ < BE /(se). ‘!'hereforo', o

as) Tk gt i | o] s edtsy o e ekt Yo



161
By (11), (12) end (15), dienm BJL E/(2¢ ), where

1/(2¢,) = nx{Q.B/(se), llpnax{Q,B/(se}}*- 4k/e+2_} s a8 deaimd;
5) For each sedJ _3e T -1 is eont‘lnuous. To show this, let

‘n- _._...g’ 8 B-+cc and u, = ‘1'. 8,+ Sinee I‘({gnm‘—'l})
by (9) the sequence (n ) contains a subsequence whieh eonverges
ia €2 to some u®. By &, = T,u, and the mtimty of T,

we obtain g% = 'l.'.u s teoe w¥ 2 '1‘;13’, vhence it follows that
even the entire sequence (u,) converges to r;lg";

6) Condition (iv) in Theorem 4.2 is satisfied if for eaeh
€€C the set of all solutions u et% to

(16) ' ﬁ'*p{-t)n' = sr(t.n}-rg(t)l

for sed, ia boundod in c’- Let u ec.h a aolutiou to (16)

and wu ecb the solution to (16) in ease 3 = 0. Denote
A u'-u.. Then

.':...p(tiv; =l lﬂt,un(thv') .
.ﬁna, wee have to prove the s priori boundedness of the set of
all solutiors v e¢? satisfying
an ; '!"-l-p(t)" = af(t,‘u (t)ﬂ')

and v(0) = ¥(1) = 0, for aEJ. But this follows by Lemmas 4 ang
5 in [8] vecause, vy (5) we have e

(£(t,u, {t)ﬂ:),x) »~(-2(t,u m),x; +elzlz

2 elxlz-ﬂr(.,u Nzl >o,

for Ix!>|lf(.,u°(.)lﬁle, which means that econditien (133) ~e
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Thus, all the assumptions of Theorem 4.2 are satiaﬁed; Thers-
fore, since L is surjective, L-F is surjeetive too (even
bijeetive), which shows that (2),(3) has exactly one solution
uec2 rﬁr eagch g€C.

Remark 5.1. The existence of solutions to (2),(3) also follows
from our paper [8], by using directly the topological transversality
theorem and the a priori bounds teechnigue, but under the additional
assumption that k "in (4) be sufficiently small. Thus, the'

. advantage of using the perturbation Theorem 4.2 in case of equation
(2), consists in the fact that k in (4) may De afbit_rar.

Remark 2; . Conditions (a) and (b) in Theorem 5.1 are, in
particular, satisfied if f ia completely continuous or if
£ = fy+f, where fy is completely mntinnoué and T, 5 s
Lipachitl; i

Remark 5;2; In partieular, if X = " the assumptions of .
Tieorem 5.1 reduce to: f : J X R® — R® continuous and

(f(t,:l)-f(t,zz),x_l-xz);clxl-lea for all xl,xzeﬂn,téq!:

In this case the existence and the uniqueness of solution to
(2), (3) follows from [5], Theorem II 3.3, Theorem V 2.2.
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