ITINERANT SEMINAR ON FUNCTIONAL EQUATIONS APPROXIMATION AND CONVEXITY, Cluj-Napoca, 1990

SOME REMARKS ON CLARKE **GENERALIZED GRADIENT**OF QUASICONVEX FUNCTIONS

by
RADU PRECUP
(Cluj-Wapoca)

1. Let X be a Banach space, X^* its dual and $f:D \longrightarrow R$, $D \subset X$, a function, H.J. Greenberg and W.P. Pierskalla [2] defined the quasisubdifferential of f at $x \in D$, by

(1)
$$\partial f^{\overline{x}}(x) = \{x^{\overline{x}} \in X^{\overline{x}}; (x^{\overline{x}}, y-x) \ge 0, y \in D \text{ implie } f(y) \ge f(x)\}$$
.

This notion is as closely related to quasiconvex functions as the usual subdifferential is to convex functions.

Assume that f is defined and locally Lipschitz (i.e.Lipschitz on each bounded subset) in a neighbourhood of x. The Clarke generalized gradient of f at x is defined by

(2)
$$\partial f(x) = \{x^{x} \in X^{x}; (x^{x}, v) \leq f^{o}(x; v) \text{ for all } v \in X\},$$

where $f^{O}(x;v)$ is the generalized directional derivative at x in the direction v, namely

(3)
$$f^{0}(x;v) = \lim_{\substack{y \to x \\ t \downarrow 0}} \sup_{t \to 0} t^{-1}(f(y+tv) - f(y))$$
.

Recall that

$$f^{0}(x;v) = \max \{(x^{x},v); x^{x} \in \partial f(x)\}.$$

In this note some relations between $\Im f$ and $\Im f^{\pi}$ in case of quasiconvex functions f, are established.

2. The function f is said to be <u>quasiconvex</u> if D is convex and

$$f(tx + (1-t)y) \leq \max \{f(x), f(y)\},$$

for all $x, y \in D$ and $t \in [0,1]$.

LEMMA. Let f:D - R be any function with convex domain DCX.

If $\partial f^{*}(x) \neq \emptyset$ for all $x \in D$, then f is quasiconvex.

Proof. Let $x,y \in D$, $t \in [0,1]$ and $x_t = x + t(y-x)$. Let

 $x_t^* \in \partial f^*(x_t)$. Since $x-x_t = -t(y-x)$ and $y-x_t = (1-t)(y-x)$, we have

$$(x_t^{\frac{\pi}{2}}, x-x_t) \ge 0$$
 or $(x_t^{\frac{\pi}{2}}, y-x_t) \ge 0$,

whence $f(x_t) \le \max \{f(x), f(y)\}$. Therefore, f is quasiconvex.

In the following we shall assume that D is a nonempty open convex subset of X and that $f:D \longrightarrow R$ is locally Lipschitz on D.

THEOREM 1. Suppose that $\partial f(x) \neq \{0\}$ for every $x \in D$.

The following statements are equivalent:

10. f is quasiconvex.

2°. $\partial f(x) \setminus \{0\} \subset \partial f^{2}(x)$ for all $x \in D$.

Proof. $1^{\circ} \Rightarrow 2^{\circ}$: Let $x^{\pi} \in \partial f(x) \setminus \{0\}$ and let $y \in D$ such that $(x^{\pi}, y-x) \geqslant 0$. Since $x^{\pi} \neq 0$, in each neighbourhood of y there is a point y_1 such that $(x^{\pi}, y_1-x) > 0$. From

$$0 < (x^{2}, y_{1}-x) \le f^{0}(x; y_{1}-x)$$
,

it follows that there are two sequences $\mathbf{z}_{\mathbf{n}} \to \mathbf{x}$ and $\mathbf{t}_{\mathbf{n}} \downarrow \mathbf{0}$ such that

$$0 < f(z_n + t_n(y_1-x)) - f(z_n).$$

On the other hand, the quasiconvexity of f implies that

$$f(z_n + t_n(y_1-x)) \le f(z_n + y_1 - x)$$
.

Hence, $f(z_n) < f(z_n + y_1 - x)$ and letting $n \to \infty$ we obtain $f(x) \le f(y_1)$. Consequently, $f(x) \le f(y)$, which shows that $x^* \in \partial f^*(x)$.

The implication $2^{\circ} \Rightarrow 1^{\circ}$ follows by Lemma.

THEOREM 2. Let $\partial f(x) \not \ni 0$ for any $x \in D$. The following statements are equivalent:

- 1°. f is quesiconvex.
- 2°. $f^{\circ}(x;y-x) \ge 0$ implies $\dot{f}(y) \ge f(x)$ $f^{\circ}(x;x-y) < 0$ implies f(y) > f(x) $(x,y \in D)$.
- 3°. $f^{\circ}(x;y-x) > 0$ implies f(y) > f(x) $(x,y \in D)$.
- 4°. $\partial f(x) \subset \partial f^{*}(x)$ for each $x \in D$.

Proof. $1^{\circ} \implies 2^{\circ}$: Suppose that f is quasiconvex and $f^{\circ}(x;y-x) \ge 0$, $y \in \mathbb{D}$. Then, there exists $x^{x} \in \partial f(x)$, clearly $x^{x} \ne 0$, such that $(x^{x},y-x) \ge 0$, and the inequality $f(y) \ge f(x)$ follows as in the proof on Theorem 1.

Assume now that $f^{O}(x;x-y)<0$ and $y\in D$. Then, it is easy to see that $f^{O}(x; y-x) > 0$. In consequence, $f(x_{+}) \ge f(x)$ for all $t \in [0,1]$, where $x_t = x + t(y-x)$. Suppose, nevertheless that f(y) = f(x). Then, the quasiconvexity of f implies $f(x_t) \leq f(x)$ for all $t \in [0,1]$. Hence, $f(x_t) = f(x)$ for all $t \in [0,1]$. Since $f^{0}(x;x-y)<0$ and the map $\partial f:D \rightarrow 2^{X^{*}}$ is weak*-upper-semicontinuous, there is an open neighboarhood V of x included in D such that $f^{0}(x';x'-y)<0$ and consequently $f(y)=f(x)\geqslant f(x')$, for all $x' \in V_0$. On the other hand by $f^0(x; x-x_t) < O(t \in]0,1]$), there exists an open neighbourhood $V_{\mathbf{t}}$ of $\mathbf{x}_{\mathbf{t}}$ such that $f^{O}(x;z-x)>0$ and consequently $f(z)\geqslant f(x)$, for all $z\in V_{t^*}$ The sets V and Vt, te[0,1], represent an open cover of the compact segment [x,y]. Let v_0, v_t , i=1,2,...,n, $0 < t_1 < t_2 < ... < t_n \le 1$, be a finite subcover of [x,y]. We have f(x') = f(x) for all $x' \in V_0 \cap V_t$. This implies that $\partial f(x') = \{0\}$ for any $x' \in V_0 \cap V_t$, a contradiction. Therefore, f(y) > f(x).

The implication $2^{\circ} \Rightarrow 3^{\circ}$ is obvious.

 $3^{\circ} \implies 4^{\circ}$: Let $x^{\overset{\pi}{\cdot}} \in \partial f(x)$. Suppose that $(x^{\overset{\pi}{\cdot}}, y-x) \geqslant 0$, $y \in D$.

Then, $f^{0}(x;y-x) \ge 0$ and so $f(y) \ge f(x)$. Hence $x^{\pi} \in \partial f^{\pi}(x)$.

The implication $4^{\circ} \Rightarrow 1^{\circ}$ follows by Lemma.

Remark. For any function f satisfying 20 in Theorem 2, one has

(4)
$$\min \{ f^{\circ}(x; y-x), - f^{\circ}(y; y-x) \} \leq 0$$

for all x,y & D.

In the particular case when f is Gâteaux differentiable on D, there is known that $\partial f(x) = \{ \nabla f(x) \}$ and $f^{O}(x;v) = (\nabla f(x),v)$ and so, 3^{O} in Theorem 2 becomes just the condition of pseudoconvexity of f, while (4) expresses the pseudomonotonicity of ∇f , both in the sense of S.Karamardian [3].

REFERENCES

- [1]. Clarke, F.H., Generalized gradients and applications, Trans. Amer. Math. Soc., 205(1975), 247-262.
- [2] . Greenberg, H.J., Pierskalle, W.P., Quasiconjugate function and surragate duality, Cahiers du Centre d'études de Resch.

 Oper., 15(1973), 437-448.
- [3]. Karamardian, S., Complementary problems over cones with monotone and pseudomonotone maps, J.Optimization Th. Applic., 18(1976), 445-454.
- [4] . Precup, R., Maximal pseudomonotonicity of generalized subdifferentials of explicitly quasiconvex functions, L'Anal.Num. et la Th.de l'Approx., 17(1988), 53-62.

Faculty of Mathematics University of Cluj 3400-Cluj-Napoca