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.1, et X be s Lesnach space *  its dusl and fiD ~» Ry
! 9 l

‘DCX, & function, H.J.Ureenberg and ¥.P. Pierskalls [2] def:l.ned theﬁf{

guasisubdifferential of f at x€D, by

(1) 9% z{xx 5 (T, -0z 0, ;veD implie f(:ﬁf}afi.ﬁ:'}} _'

This notion is as closely related to 'qaasiconve'x functions as tjhae
usuel uodiFferent1al is to convex functions. :
Agsume that £ is defined and 1ot 21ly lechﬁz (1.0, Livmhﬁ._ -

on esch bounded subset) in a nelﬂ’hbeurhood of x. The Clarke

gcenerelized cradient of £ at =x is defined by

(2) delx) ‘.z{xxexg;(xx,v)s‘fo(x;v) for all v,e}{},

where f£9(x;v) 4is the generslized directionel derivative at =x
_in the direction v, namely |
(3) fo(x;v)‘ = lim sup t_l(f(y-i-tv} - £(y)) .

V- X

t V0
Recall that

2¢(x;v) = mex {(x‘x,v.}; X € gf(x}} 5
In this note some relations between gf and 9t in cage

6f quasiconvex functions £, are established.

.
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2. The funetion f is seid to be gussiconvex if D is convex

and ; ; :
S f(tx o+ (1-t)y) < max {f(x),f{y}} :

for ell =x,y€D =and t&lo,1] .

LENGA. Let f£:D —» R he eny function with convex domsin DCX.

it 9€ (x) # & for gil- x€D, then £ 4ig guesiconvex.

J.b

X, =X+ t(y=-x). Let

- 3% - s : : : G
x, € ar (XT)' since X-x, = «t(y=-x) and y=x, = (1-t) (y=-x), we heve

Proof. Let z,y€D, 1t€J10,1L anc

wherce f(xt)s mex {f(x?,f{y}} . Therefore, f is quasiconvex.
"In the following we shsll mssume that D is a nonempty open

- convex subset of X and thet £:D —» R is locally Lipschitz on D.

THECREM 1. Suppose that 9£(x) # {0} for every =xe€D.

IThe following stetements are sguivalent

Y, f 1a quasiconv;g. ‘ ,
2y, Qf(x}\{()} C (%) for a1l xE€D,
Proof. 1° = 2% : Let x* & 92(x)N{0} end let yeD such

that (xx,y4x} > C. Since % # O, in each neighboarhood of y there
iz & point y1 such taht (xx,ylwx)>'h. From

£ ('x*,yl-x}-s fd(x;yl-x} 3
it follows that there are two sequences ‘Zn — X gnd tn_$ 0 such

that

0 < f(zm + tn(yl-xﬂ - f(z:n).

Un the other hand, the quasiconvexity of ¢ 'impiies that

) i ’ - \, h ] < » i 3 .
f(zn + 1, (y=x)) £ f(zn + ;1 %)y

Hence, f(z,) < f(z, + y; = x} =and letting n-sco we obtain

f(x)éf(yl). Consequently, f(x)s< f(v?, which shows that X € 91’*(1)
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3 ; =Y o 2 ; t 2 :
The implicetion 2 ° = 1° follows by Lemmsa.

THEOREM 2. Let @f{x) # ¢ for sny =x€D., The following

gtatements ere equivalent:

o :
1. £ dig quessiconvex.

0 !
Lo B

¥ Pyrvex) 20 implies iy fix)
A0 p % - f 3 e v ey
(i) 0 dimplies fly)»fix) " [x,yel).
5 O ?Df.‘ i ,.:} p= 2 3 Kt : {) 5 Ty
. P xiy-x) 20 dmplies flyimf(x) (x,yeld);
0 : - el
C g deix) G 91 (x) for each =xé€l,

%0 o " e : b
Proof. 1 =P 2°: DSuppose that £ 1s quasiconvex and

(%]

f‘s(x;y-x}a(;:, y €D, Then, there exists x" & gf(x), clearly % # 0,
such thet (x ,y-x)> 0, 8nd the inequaelity £(y)z=f(x) follows as
in the proof on Theorem 1. ‘

. Assume now that f£%(x;¥=-y)<0 and yé&D. Then, it is easy tlo
see that fo(x;y-—f;c)>0. In conéequence, ‘f(xt)af(x}. for ail
te[C,1] , where X, =X & t(y-ﬁt). Suppose, nevertheless that 7
£(y) = f(x). Then, the quasiconvexity of £ ‘dmplies f(x_t)s £(x)

x) for all t€lC,1] . Since

e

for all t€[0,1] . Hence, f(x,) = £(
X

% (x;x-y) < ¢ and the map DD — 2 is we&kﬁ-upper-agmicon{
tinuous, there ig an Gpen‘ neighboarhood "VD 'c;f x dincluded in D
such that fD(X_’;x"-y)<0 end ;:_onseQuently fiy) = ffx);f(x'),
for all ‘x'e"\.’o. Cn the other hand by li’o(i;xex‘t)<0(t€-]b,1] Yi
there exists an open neighbourhood ’d’t of Ey ‘such_that
f9(x;2-x) > ¢ and consequently f£(z)3z £(x), for all zeV.. The ‘sets
VO - &nd 'Vt, telo.al, represeﬁat, gn open c':ovs‘s-f of the compact
segjmeht [x,y]. Let VooVy o 121,24.000n, O0SH,<t,< cee<t, g1,
be 8 finite subcover of [x,y] « e have f(i') = £lx}  for a1l

X' € V'oﬂ V, o This implies that De(x') = { C} for eany x'€ Van Ve o

1 1

@ contradiction. Therefore, f(y)>f(x) 5



The implicatibn 29 = 3° 1g obvious.

3° = 49 Le‘zr x e Jf(x). Suppose thet (‘x?,y-x_}?;-(),l vE€D,
Then, (x‘v x)2'0 end so fiv)z fo . Hence x & d£%(x). -

The implicetion 4° = 1% follows by Lemma. |

Lot e = 3 e o % i ’
Remerk. For any funciion £ satisfying 2° in Theorem 2, one has

¥ e
-
L

\-f-t
AN
')

4 " % O :
min {f (x39=%), = £ {(y;y~x)

for all x,y €D,

e

"In the particuler case when f s Giteaux differentiabie er1 D,
there is known that . Jdt(x) = {V:t‘(:?:} * and £7(xiy) = (Vf(x},v")

and so, 3% in Thédrem 2 becomes Just the conditidﬁ of pséudeconvéxit;
‘of f, while (4) expreseces the pweudomanouanicltv of V£, both in
the sense of S.hars mardﬁan [31 . G |

.
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